

SINDH UNIVERSITY RESEARCHJOURNAL (SCIENCE SERIES)

Making the Software Architecture Explicit in Java Programs to Enable Dynamic Evolution

G. LAGHARI++, SAADNIZAMANI*, SEHRISHNIZAMANI*, M.MEMON+, A. H. ABRO***, M. Y. KOONDHAR***

Institute of Mathematics and Computer Science, University of Sindh, Jamshoro, Pakistan

Received 09th November 2018 and Revised 14th June 2019

1. INTRODUCTION

In software development, it is customary that

developers describe the software architecture of the

application diagrammatically comprising the boxes and

lines. The boxes symbolize computational components

while the lines correspond to the interconnection those

between components (Garlan and Schmerl 2002).

Clearly, the box-line model does not succinctly

represent the true architecture of the application. The

lines do not adequately specify the interaction type

rather it is left to the developers to make their own
interpretations. When the system is implemented the

mapping between the implementation its initial

architecture is lost. Consequently, to support the

maintenance of such systems, developers rely on reverse

engineering techniques to identifying the key classes in

a software system to understand the system (Wang,

et. al. 2017). Thus, researchers have emphasized the

software architecture defined as the organization of

computational components and their interconnection

through connectors (Shaw and Garlan 1996, Garlan

2000). The components encapsulate functionality and
the connectors mediate interactions between them

(Taylor, et al. 2009). Software architecture, therefore,

ensures that system satisfies the requirements including

performance, reliability, or interoperability etc. (Garlan

2000). Yet, the programming languages like Java do not

provide the mechanisms to directly write software

components and connectors.

In this paper, we propose an architecture-centric

approach to application development where the

application development is specified as composition of

components and connectors. As the application is

specified as composition of components and connectors,

our approach also supports architecture-centric dynamic

evolution of applications where the components can be

dynamically added, removed, or replaced. This dynamic

evolution is supported by maintaining a runtime model

of the application architecture.

Dynamic evolution is necessary in applications

which are deployed and started but their shutdown or

restarting them is undesirable. However, traditional

programming lack the support for this. Hence, there

exist research effort to support dynamic evolution

(Gomaa and Hussein 2004, Oreizy, et. al. 1998).

The contributions of this paper include:

- An architecture-centric approach to develop

applications in java and enable their dynamic evolution.

- The development of architecture-centric middleware

that supports initialization of applications specified at

software architectural level and dynamic modifiability

of those applications via architectural actions.

- A small set of configuration commands and the

component model as well as their implementation.

In the rest of the paper, Section 2 explains the

architecture-centric approach. Section 3 provides

particular implementation details about architecture-

centric middleware, configuration commands, and the

component model. Section 4 highlights some related

work. While Section 5 finally concludes the paper.

Abstract: Software architecture helps in developing and understanding software applications at high-level abstraction. Yet,

programming languages like Java do not directly support those abstractions. In this paper, we provide the support for architectural

abstractions in Java. The support is provided in a middleware that, besides application development and initialization at architectural

level, also supports dynamic evolution in the running applications. We demonstrate the use and benefit of the approach with an

example scenario.

Keywords: Software Architecture, Dynamic Evolution, Software Components.

SindhUniv. Res. Jour. (Sci. Ser.) Vol. 51 (03) 541-546 (2019)

http://doi.org/10.26692/sujo/2019.03.85

++Corresponding Author: gulsher.laghari@usindh.edu.pk
*Department of Information Technology, Sindh University Campus Mirpurkhas, Pakistan.
**Sindh University Laar Campus @ Badin, Pakistan.

***Information Technology Centre, QUEST, Nawabshah, Pakistan.

Note: Part of this paper comes from M.Phil. thesis titled “Policy-based Context-aware Architectural Adaptation in Pervasive Computing”

by the first author.

2. ARCHITECTURE-CENTRIC APPROACH

The application development in our approach is

based on software architecture—composition of

components and connectors.

First, we provide overview of the key concepts. The

core architectural element component is the compact

executable element with provided and required services.

The provided services are the tasks performed by the

component while the required services are the tasks

provided by other components. Both provided and

required services are specified at ports. On the other

hand, connectors are architectural elements that

correspond to the lines in traditional box-line

architecture and mediate the communication between

the provided service of one component and the required

service of the other component (Abdelkrim, et. al.
2009).

Architecture-centric middleware

This middleware is at the core of our approach. It

has two essential responsibilities: initialize the
application from the initial description of the software

architecture of the application and dynamically modify

the application.

 Application is initially specified as composition

of components and connectors (software architecture)

using configuration commands (Section 3.2).When this

specification is input to the middleware, it loads the

necessary components and connectors effectively

initializing the application. Additionally, the

middleware also builds and maintains a runtime model

of the architecture as seen in its initial description. This
model is causally connected to the executing units, any

change in the model is immediately reflected in the

running application.

As the dynamic changes in application essentially

change the architecture of the application, thus the

model reflects the current architecture. Some examples

of the dynamic changes include to add totally new

component as a new feature, remove any unwanted
components, or replace old component with new

component that might implement new strategy or

improved algorithm different from the previous

implementation.

Those dynamic changes are applied by the

middleware by modifying the runtime model via

architectural actions such as add, remove, or replace a
component.

Notable features of the architecture-centric

middleware owing to use of the software architecture

centric approach include: providing loose coupling

between entities and operating at a high-level of

abstraction. The limitations include: a component is able

to provide a single required service to another

component and a limited set of configuration

commands. The middleware might also not work well

with large scalable systems.
.

3. IMPLEMENTATION
In this section, we provide the implementation details of

the prototype implementation of architecture-centric
middleware, the configuration language, and the component
model.

Fig. 1 The architecture-centric middleware.

Fig. 2 The graphical user interface.

3.1. Architecture-centric middleware

This architecture-centric middleware is the core that

provides the application initialization and dynamic

application evolution at architectural level. The

middleware is implemented in Java and runs in the java

virtual machine (JVM). The overall architecture of the

middleware and how the application is executed in it is

depicted in Fig.1. It also provides a graphical user

interface for the user to initialize and modify the

application and comprises several sub-components
described below.

User Interface

The graphical user interface is organized into four

vertically stacked sections (Fig. 2). In the top section at

right side the button labeled as “Select File and Run” is

used to input the file describing the initial software

architecture of the application. Once the file is selected,

G. LAGHARI et al., 542

the application is initialized from this initial description,

the complete path of the selected file is displayed in the

textbox. The check box with label “Enable Cache

Support” if checked before the architecture is loaded,

enables the cache support for performance enhancement.

The text pane with white background in following

section prints the text from standard output. While the

one with black background shows the actions that the

middleware performs.

To modify the running application dynamically, the
modification command can be typed in the text box in

the last section. Then the button click will trigger the

reconfiguration actions to modify the architectural model

in memory and subsequently modify the application.

Parser

The parser first checks the syntax of configuration

commands (Section 3.2) and organizes them as a list to

be used by Configurator. When the file describing the

initial architecture is selected, the Parser reads the

contents and performs line-by-line syntax checks. In case

of any syntax errors, the Parser aborts the further
process. Then, the Parser prepares the list of commands

and passes it to the Configurator.

Similarly, the commands issued at runtime also go

through the Parser.

Configurator

The Configurator serves for the two primary roles.

First, it is responsible to load the components, initialize

them, and finally bind them together to initialize the

application. Importantly, it builds the model of the

software architecture as a first-class citizen in the

memory, which is causally connected to the executing

components.

The other key role is to dynamically modify the

application. This dynamic modification may be to load

new components in memory and replace them with the

existing components. These modification actions are

applied to the model in the memory and thereby to the

running application.

This model of the software architecture of the

application, initialized from the initial software

architecture description, always represents current

architecture of the application. It has references to

executing units. Dynamic evolution of the application is

carried out by change in the model. Any change in the

model is immediately reified in running application also.

Cache Manager

As new components are added in the architectural

model in the memory and removed from it, the

references to those components are also removed from

the model and the components are also garbage collected

from the memory. Thus, when the very same component

needs to be added into the application again, it is

reloaded fresh in memory. Consequently, these

component-reloads incur cost in terms of time.

These costs can be avoided by enabling cache

support. Then, the Cache Manager maintains references

to the components removed from the model. Though

they are removed from the model, yet they reside in

memory. If in the future they are needed, their reference

is obtained from Cache Manager and they are reused in

the application without requiring reload.

3.2. Configuration Commands
The mechanism for dynamic evolution of the

application in architecture-centric middleware is based

on software architecture where the application initial

application composition as well as dynamic composition

of components is carried out via software architecture.

Initially, the composition (specification) of the

components is expressed via the configuration

commands that come as part of the middleware. The

initial specification specifies the components and the

connectors used as well as their interconnection. At

runtime when the application needs to evolve, the
software architecture of the application represented in

the model is recomposed to reflect the new behavior.

The configuration commands are highly declarative

in nature. The provided list of those commands is small

yet sufficient to compose and recompose the application.

The commands and their description follows.

- Add command. This command is used to add the

components as well as connectors in the application

architecture. This command can be used both to specify

the composition of the initial architecture and to modify

the application architecture at application runtime. The

syntax of the command is as follows.

add component className as identifier

Where the add, component, and as are

keywords. The class Nameneeds to be the fully qualified

name of the Java class that implements the component.

The identifier is the reference to a component in model.

Likewise, the syntax to add a connector is as follows.

add connector className as identifier

Where the add, connector, and as are

keywords. The class Nameneeds to be the fully

qualified name of the Java class that implements the

connector. The identifier is the reference to a

connector in model.

Making the Software Architecture… 543

- Bind command. This command specifies the

interconnections of components through connectors. It

binds together two components with a connector. Where

one component provides the service and another

component requires that service. The connector is the
intermediary for the communication between provider

and receiver components. The command syntax is as

follows.

bind identifier1 at port1 to identifier2 at port2 using identifier3

Where the bind, at, and using are keywords.

The identifier1 is the reference to the component

providing the required service at port1.The

identifier2 is the reference to the component

requiring, at port2, the provided service. The

identifier3 is the reference to the connector to be

used as intermediary for communication between

provider component and the component requiring the

service.

- Replace command. This is the command primarily

providing the dynamic evolution of the application

architecture. This essentially replaces the old

components with new components, thus effectively

changing the behavior of running application. The

command syntax is as follows.

replace component identifier1 with identifier2

Where the replace, component, and with are

keywords. The identifier1 is the reference to a

component to be replaced andidentifier2is the

reference to the new component.

Start command. This command is intended to execute

the application. Application entry point is the component

that implements I Runner. The command syntax is as

follows.

start identifier

Where the start is keyword and identifier

is refers to the startup component.

Component Model

As the applications are composition of software

components and connectors, they need to be modeled.

Both the component and connector are first class

entities. The components provide the core services. Each

component implements a particular task. Some

components can provide services while others can

require them. On the other hand, a connector facilitates

the interaction between components. A component is
supposed to export its service through provided interface

and use external services at the required interface.

Currently, the component is able to provide a single

service, yet it can require many services as per need.

A connector has two interfaces, the provider

component is plugged in at one interface while the other

component requiring the service is plugged in at another

interface. The connector facilitates the communication

through method invocations via connector. The
middleware accompanies a Java API with basic

interfaces and classes to implement both components

and connectors. The details of these are provided in next

section.

Component Model API

The API is collection of some basic interfaces and

classes which are written in Java.

- Component interface and Class. The interface to

implement in a component class is I Component. It

has signatures for following methods.

 voidinitialize().

This method is to be used for component initialization

such as connecting to the database server etc. are

accomplished.

 Output do Required(Stringport, Input
in).

By implementing this method, a component can provide

service to other components. Where port is

connection point and in is an object of type Input.

Input is used to pass the data to the method.

Similarly, the return type Output models data to be

returned back by the method. Both Input and

Output are interfaces.

 void do Provided(String port).

Similar to previous method, in this method a component

can use services of another component implemented in

do Required.
 void set Connector(I Connector

connector, String port).

This method is used to bind the component and

connector.

 Hashtable<String,
IConnector>getConnectors().

This method can be used to get a list of all

theconnectors where the component is plugged in.

Moreover, the API, also comes with a default

implementation of I Component as a Component

class.

- Connector Interface and Class. The interface to

implement the connector is I Connector. It has

signatures for following methods.

 void setProvided(IComponent provided).

Using this method, the provider component is plugged in

to the connector.

 setRequireded(IComponent required).

Likewise, the component requiring the service is plugged

in to the connector using this method.

 I Component get Required().

G. LAGHARI et al., 544

The reference to the component requiring the service can

be acquired via this method.

 I Component get Provided().

Likewise, the reference to the provider component can
be acquired via this method.

 Output do Required(String port, Input
in).

This method delegates the calls from one component to

do Required(String port, Input in)in another

component.

 void do Provided(String port).

Similarly, this method delegates the calls from one

component to do Provided(String port)in another

component.

Moreover, the API, also comes with a default

implementation of I Connector as a Connector

class. This default implementation only delegates

massage passes between components, though any

protocol for communication can be enforced.

Input and Output Interfaces. The interfaces provide

the pertinent tags to the objects that need to be passed to

or returned from doRequired(String port, Input

in).

- IRunner Interface. This interface extends the

Runnableinterface from Java API. This is desirable for

the component that needs to get control after the

application initialization.

Example Application

Here we describe an example scenario and discuss

how it can be implemented in architecture-centric

approach and how it can be evolved.

Consider an application of message delivery based

on the location where user's messages from remote

service are presented on device preferably selected by
the user. The user might select the mobile device for

message or select TV.

In this application, there are three software

components. Message Receiver component to receive

the messages from remote service has only one provided

interface where it provides the messages received from

remote service. Message Forwarder component retrieves

messages from Message Receiver component to send

them to the selected device—SmartTV or SmartPhone.

This component has two required interfaces, one

interface to retrieve the messages from provided

interface of Message Receiver and another interface to

send retrieved messages to provided interface of the

selected device. Lastly, third component represents the

device. (Fig. 3) shows the architectural diagram of the
application. Initially the application architecture can be

described as shown in (Fig.4).

Fig. 3 Diagram of message delivery application.

When the application is initialized at executing, the

messages are displayed on smart TV. If they need to be

displayed on smart phone service, the component for

smart phone can be added dynamically to replace the

smart TV component. Following two command are

needed to do it. This dynamic change is shown

diagrammatically in Fig. 5.add component my.

components. Smart Phone as phone replace

component tv with phone

This dynamic change does not require to halt the

system and restart it again, rather it is applied while the
application is running.

Fig. 5 Dynamic change in message delivery application.

4. RELATED WORK

This section provides some related work on

architecture-based development.

The C2-style (Taylor, et al. 1995) approach to

runtime software evolution defines the system as

configuration of software components and connectors

(Oreizy, et. al.1998). The event-based and layered style
exploits connectors to mediate communication between

components. The runtime modification in applications is

1. add component my.components.SmartTV as tv

2. add component my.components.Forwarder as forwarder

3. add component my.components.Receiver as receiver

4. add connector middleware.api.connectors.Connector as receiverConnector

5. add connector middleware.api.connectors.Connector as deviceConnector

6. bind tv at devicePort to forwardPort at devicePort using deviceConnector

7. bind receiver at receiverPort to devicePort at receiverPort using receiver Connector

8. start forwarder

Fig. 2 Initial architecture of example application.

Making the Software Architecture… 545

done with architectural changes that include add,

remove, and replace components to reconfigure the

application.

Building upon this approach, also outline a

software architectural framework for software self-

adaptation (Oreizy, et al. 1999). Adaptation

management monitors the running application, its
operating environment, and plans corresponding

changes to be applied.

ArchJava, an extension to Java, provides Java like

language constructs to support application development
at architectural level with seamless mapping between

software architecture of the application and its

implementation (Aldrich, et. al. 2002). Software

architecture is specified in the form of composite

components comprising subcomponents connected with

one another. Components are connected together with

connect construct effectively binding required and

provided methods. Hence, connectors are not first-class

entities. As ArchJava provides a compiler to translate

the architectural definition into implementation, thus it

does not support dynamic evolution of the application,

also it does not have even mechanisms to remove
components rather relies on garbage collector.

SOFA 2.0 component system build on SOFA and
provides component model with a specific goal to

support dynamic reconfiguration meaning dynamic

modification of application architecture (Bures, et. al.

2006). SOFA 2.0 provides language independent

abstraction yet generates implementation code in Java.

The application executes in distributed environment

comprising of deployment docks, which are containers

containing JVM and SOFA 2.0 runtime. Dynamic

reconfiguration is mainly the dynamic update of a

component in terms of component replacement. SOFA

2.0, however, favors to reflect dynamic reconfiguration
at the design time.

5. CONCLUSION

Software architecture provides the basis to develop

and understand software applications. Conventionally,

software architecture has been described

diagrammatically as box-lines model. This box-line

schematic does not provide true mapping of the

architecture and implementation.

To overcome this, the research on software

architecture emerged which views the software

architecture as configuration or composition of

components at high-level of abstraction. However, these

notions are not directly supported in programming

languages.

In this paper, we have provided an architecture-

centric approach to application development in Java.

Owing to the use of high-level architectural

abstractions, this also supports dynamic evolution of

applications while they are executing. We achieved this

with the help of an architecture-centric middleware, a

component model, and small set of configuration

commands. We also demonstrated the use of this

approach by building and modifying an example
application at architectural level. Initial experience

indicates that this is a viable approach at small scale

projects.

REFERENCES:

Abdelkrim, A., and M. Oussalah. (2009) First-Class

Connectors to Support Systematic Construction of

Hierarchical Software Architecture. The Journal of

Object Technology, Chair of Software Engineering, 8

(7), 107-130.

Aldrich, J. and D. Notkin, (2002). ArchJava: connecting

software architecture to implementation. In Proceedings
of the 24th International Conference on Software

Engineering. ICSE, 187-197. IEEE.

Bures, T., P. Hnetynka, and F. Plasil, (2006). Sofa 2.0:

Balancing advanced features in a hierarchical

component model. In Fourth International Conference

on Software Engineering Research, Management and
Applications (SERA'06) 40-48. IEEE.

Garlan, D. (2000). Software architecture: a roadmap.

Proceedings of the Conference on The Future of

Software Engineering. Limerick, Ireland, ACM: 91-101.

Garlan, D. and B. Schmerl (2002). Model-based

adaptation for self-healing systems. Proceedings of the

first workshop on Self-healing systems. Charleston,

South Carolina, ACM: 27-32.

Oreizy, P., M. M. Gorlick, R. N. Taylor, D. Heimbigner,

G. Johnson, D. S. Rosenblum and A. L. Wolf (1999).

"An Architecture-Based Approach to Self-Adaptive

Software." IEEE Intelligent Systems 14(3): 54-62.

Shaw, M. and D. Garlan (1996). Software architecture:

perspectives on an emerging discipline, Prentice Hall

Englewood Cliffs.

Taylor, R. N., N. Medvidovic and E. M. Dashofy

(2009). Software Architecture: Foundations, Theory,

and Practice, Wiley Publishing.

Taylor, R. N., N. Medvidovic, K. M. Anderson, J. E.

James Whitehead and J. E. Robbins (1995). A

component- and message-based architectural style for

GUI software. Proceedings of the 17th international
conference on Software Engineering. Seattle,

Washington, United States, ACM: 295-304.

Wang, J., Y. Yang, and W. Su, (2017). Identifying key

classes of object-oriented software based on software

complex network. 2nd International Conference on

System Reliability and Safety (ICSRS) 444-449. IEEE.

G. LAGHARI et al., 546

	Making the Software Architecture Explicit in Java Programs to Enable Dynamic Evolution
	1
	2

