

 SINDH UNIVERSITY RESEARCH JOURNAL (SCIENCE SERIES)

Training for Agile Transformation at Universities: A Case Study Analysis

S SHAHZAD, A KEERIO*, S NAZIR**

Department of Computer Science, University of Peshawar, Pakistan

Received 17th December 2017 and Revised 2nd September 2018

1. INTRODUCTION

Developing professional Software Engineering

(SE) and project management skills is a multifaceted

task. The students need to learn not only programming
skills but they also need to visualize how to actually

apply them in professional software development.

Along with programming skills software engineers need

emotional intelligence (Kosti et al., 2014), knowledge

management (Schneider, 2009), and many soft skills

like communication and team work to survive in

software development industry (Capretz and Ahmed,

2010), (Ahmed, 2012). Agile methodologies inherently

focus on all these crucial aspects of software

development. Many people have studied Agile

knowledge management in class room and many case

studies have been presented where students learn
together and share their knowledge. The acceptance of

Agile methodologies in class room is as challenging as

it is in software development industry (Chan and Thong,

2009). The reason is that working with an Agile

methodology not only requires to follow a different

development process but also demands change in work

habits and to learn new skills. The same thing happens

when Agile methodologies are taught in class rooms.

Here, both parties (students and instructor) must drop

traditional pedagogy, and move towards a more open,

self-organizing, and knowledge sharing environment.
Agile methodologies in class room have proved to be

practical pedagogy instrument not only for the instructor

but also for the students (Rodriguez, 2015).The students

are less dependent on the instructor and more to the

knowledge being delivered. It is an ideal tool for

making the students learn more in less time.

This paper presents output of an action research

carried out while organizing Agile software

development course(s) at a university level. The output

of the research is presented in the form of a framework

of guidelines for using Agile methodologies in class

room which emphasizes on imperatives of Agile

training at universities.

2. AGILESKILL DEVELOPMENT

Agile software development methodologies have

their roots in “Agile Manifesto" (Highsmith and Fowler,
2001), and have become of greatest interest as they

provide a flexible way of tackling with the problems in

software development while maintaining basic

requirements of completeness and timely delivery of

software. of all Agile methodologies, Extreme

Programming, known as XP (Beck, 1999) has been

practiced and researched both by practitioners and

academics, and both parties agree on the importance of

XP methodology in training for SE skills.

With a wide spread acceptance of Agile
methodologies in the software industry, universities are

also challenged with providing appropriate training to

Abstract: With the wide spread use of agile methodologies in software development industry proper training of software engineers to

cope with the diversity of agile development process has become more crucial than before. One solution for development

organizations is to train and prepare their teams for agile acceptance. Although it is the most common scenario for organizations who

wish for agile transformation, but this process is slow and lengthy as teams with zero prior agile exposure feel the burden of agile

practices and sometimes become defiant. Another solution is to groom perspective software engineers with agile practices in

universities and other training institutions. This solution is less expensive, widespread, and long lasting. The following paper analyzes

the proceedings and retrospective of a graduate level course of agile software development delivered at a public sector university. The

course is based on Agile skill development using Extreme Programming practices in project based training environment. The course

was designed and taught with a research goal to establish applicable and realistic guidelines for organizing and delivering an agile

methodology training. Such guidelines are of fundamental importance; as agile methodologies require a profound skill development so

that perspective software engineers can accept the technological as well as social transformation that is an integral part of an agile

development setup.

Keywords: Agile Training, Knowledge Management, Team Development, Emotional Intelligence.

SindhUniv. Res. Jour. (Sci. Ser.) Vol. 50 (004) 575-582 (2018)

http://doi.org/10.26692/sujo/2018.12.0093

 Emails: sara@uop.edu.pk, ayaz.keerio@usindh.edu.pk, snshahnzr@gmail.com

*Institute of Mathematics and Computer Science University of Sindh

**Department of Computer Science, University of Swabi, Pakistan

mailto:sara@uop.edu.pk
mailto:Ayazkeerio@gmail.com
mailto:snshahnzr@gmail.com

perspective software engineers, as the Agile paradigm

has a different approach from traditional development

methodologies (Barroca et al., 2018) To have an

effective learning outcome from an Agile methodology

course, the traditional lecture based pedagogy style also
needs to be revolutionized to suit the Agile culture

(Sidky, 2007), just as we need to change organizational

culture and developer mindset for Agile adoption in

industry (Fuchs and Hess, 2018).Also, to create better

Agile teams it is necessary to groom students according

to their personalities so that they can play an appropriate

role in professional life accordingly (Capretz and

Ahmed, 2010).

(Dubinsky and Hazzan, 2007) emphasizes that

universities must include Agile methodologies in SE

training. Žagar (Žagar, et al., 2008) discussed
knowledge management and social issues related with

SE. These studies have discussed several important

things but do not provide a collective framework for an

Agile course structure and organization. XP is different

from traditional dogmatic SE as it promotes a

humanistic approach by following a set of values,

principles and practices, that cultivate the social

relationships, communication, and emotional

intelligence among development teams, obligatory for a

productive environment (Henry and LaFrance, 2006).

Research in the field of SE training and that of XP

skill development have both now taken a common

ground. Hazzan and Dubinsky have used the concepts

of XP to exemplify these principles (Hazzan and

Dubinsky, 2006), (Missiroli, 2016). Recently Judd et al.

(Judd, 2019) have published a study emphasizing the

advantages of use of agile for appropriate and efficient

skill development for the dynamic and fast growing

software industry. Ochodek has defined a way of using

Scrum methodology practices for perspective skilled

software engineers (Ochodek, 2018).

In general, many approaches have been adopted for

strengthening SEskills. One of these which is widely

used and researched is university industry collaboration.

Macias (Macias, 2004) proposed that small projects

based training is not enough to teach practical aspects of

software development. A detailed, close to real

representation of real-world software development is

needed for students to visualize professional software

development process. This can be achieved using

university- industry collaborations, team based learning,

(Van et al.,2000), (Rico, 2009) and knowledge
management in within teams (Bjørnson and Dingsøyr,

2009).Bjørnson and Dingsøyrhave identified that Agile

companies achieve knowledge management at an upper

level due to explicitly defined team roles and clear

separation of duties (Milenkovic, 2011).

Hence, the concepts of self-organizing controlled teams,

writing of program code in pairs and developer

switching among pairs, maintaining sustainable

development pace, use of product and process metrics in

the form of velocities provide a suitable course structure
and design in which student evaluation is also pre-

designed. Considering this structure, a university level

formal SE skills development course is designed and

analyzed (Shahzad, 2010), as described in the following

sections.

3. METHODOLOGY

The following sections provide details of the SE

skill development Agile course and its research

outcomes.

3.1 XP coaching using Agile practices
The course was offered to both graduate and

undergraduate students at a university in Austria and

was attended by about 100 students. The large number

of course attendees allowed the instructor to do

experimentation with student teams as well as with

course structure. The course was allocated one full

working day per week which provided the students

consecutive eight hours to work for the course. Students

were distributed in 10 teams. Whole course was divided

into two distinct phases. Error! Reference source not
found.provides an outline of course organization and

structure including the amount of time spent on each
topic covered in the class. The time is mentioned as

"XP-days", each of which is equivalent to eight hours

(Shahzad, 2010).

3.1.1 Teams formation. Before forming teams

participants’ personalities and their personal likeness for

specific roles were identified using a personality

analysis questionnaire. The questionnaire included

questions regarding general aptitude, social and
communication habits, programming experience and

knowledge. The teams were then made by equally

distributing expertise in all teams, and XP roles of

customer, coach, manager, and developer were assigned

as per likeness and personality analysis of the students.

Extra care was taken to distribute the female students

among the teams as they were only the 15% of the total

course participants.

3.1.2 Phase 1 – XP Visualization. The objective of this

phase was to introduce XP practices in most meaningful

and constructive way, and at the same time to provide

the students with an opportunity to get ahands-on

experience of XP methodology. Knowledge

management concepts associated with XP practices
were elaborated so that the students get optimal learning

benefit from the course. All XP practices taught in

XP-Visualization phase were carried out as short

exercises using concepts of flipped class room and

S. SHAHZAD et al., 576

active learning (Herreid, 2013) which is essential for

faster distribution of knowledge among student. The

instructor’s own experience with learning XP

methodology (Shahzad, 2009, September), (Shahzad,

2009, April) prompted her to place emphasis more on
providing training in the XP practices than on scope of

the application to be developed in the second phase of

the course. The mode of active learning was further

enhanced by implementing role playing strategies

(Henry and LaFrance, 2006), use of training devices,

and use of simulation in SEskill development concepts

(Drappa and Ludewig, 2000)in all exercises carried out

in this phase. Each exercise was meant to teach
particular XP practices.

Table 1. XP Course structure

Phase 1: XP Visualization Phase Phase 2: XP realization Phase

Topic Duration Topic Duration

Introduction and orientation 1 XP day
Release 1

XP hour 1 XP day Iteration 1 2 XP days

Planning Game 1 XP day Iteration 2 2 XP days

Usability exercise 1 XP day
Release 2

Test Driven Development exercise 1 XP day Iteration 1 2 XP days

Mid-term examination ¼ XP day Project display Preparation 1 XP-day

Mini-project ¾ XP-day Final exam and project presentations 1 XP-day

Following is a brief description of the learning exercises

performed in visualization phase.

XP hour. This full day exercise involved students in XP
roles, imposing co-location, story writing exercise,

prioritization and estimation, demonstrating pairing

concepts, acceptance testing, concept of releases,

iterations, and velocity calculation. In XP hour a non-

programming but constructive assignment was given to

teams of students who completed the assignment in a

collaborative development manner.

Planning game. It was a one full day activity involving

planning process details, role of on-site customer,
feature identification, story template, and estimation.

The students were briefed about the concept of planning

according to previous iteration’s velocity. The aim was

to let the students understand all important details of

XP planning process. This is important as the

experience shows that novice XP teams are feared to get

lost in finding an appropriate and fitting planning

process for the project as well as for the team (Hussain,

et al., 2008), (Shahzad, et al., 2008). The planning game

exercise was carefully designed according to students'

present knowledge about XP. The story writing
guidelines provided them a quick understanding of

writing unambiguous stories.

Usability exercise. Concept of designing paper mock-

up and introduction to usability testing was provided.

The idea was to show the students how usability testing

process could be integrated into the XP life cycle.

Test Driven Development (TDD) exercises. TDD

workshop was arranged to teach basics of test driven

development and the concept behind test-first

programming. The idea was to make students

understand TDD to make them to understand organized

programming. The exercise involved clear introduction
unit testing, code sharing, and code integration

(Shahzad, 2010).

3.1.3 Phase 2-XP Realization. The teams became

more visible when they started working on the project.

Before starting with the original project the instructor

ran a mock project involving all teams. It demonstrated

the way the teams had to work for the rest of the course.

The mock project was a small programming assignment

to be completed in one day using XP methodology. The

actual project was worked on for the rest of realization
phase. The following notable activities were performed

during this phase.

Standup meeting. For the whole realization phase, each

XPday started with a standup meeting conducted by the

instructor along with all teams. All team managers

provided status report and proceeded to their respective

shared workplace, which each teams arranged for

themselves, in close vicinity to each other.

Training for Agile Transformation… 577

Common project definition. All teams worked on

same project with some preliminary design

requirements, but decision about the major functionality

was left up to the customers of the teams.

Visits by company CEO. As the idea was to simulate

industry environment, the teams were given the status of

small development companies and the instructor

designated herself as CEO of the companies. The

instructor payed many formal and surprise visits to each

team. The focus was on assessing teams’ overall

performance and members’ individual output, and to

check if the teams were facing any problems. The

instructor followed predesigned protocols to make the

visits productive and beneficial.

Changing requirements. The concept and effect of

changing requirements was introduced by the instructor

by changing basic important features of the desired

application after some time for which the teams had to

fix their planning accordingly.

Fig. 1: Learning curve of XP practices

Trade show (projects presentation). At the end of the
realization phase, a presentation day was arranged when

all teams formally presented their project. Managers,

customers, developers, and UI designers all came

forward and described their role. This provided the

students an experience of formal business presentations.

Seminars for managers and customers. To enhance

the knowledge about management and customer’s

responsibilities, the instructor invited a business person

working in a real software development company to

share his experience of working as a customer in an XP

team. Similarly, a seminar was conducted to discuss
software project managers’ duties. These seminars were

highly appreciated by the students.

Agile acceptance surveys. In the context of the

research interests of the author, three formal surveys

were conducted during the course. The questions of the

surveys were focused on gathering information

regarding the applicability of XP methodology as an SE

course and also the acceptance of the XP practices by

the students. The surveys were scheduled before starting

the course, after visualization phase and after realization

phase. A brief analysis of the surveys is provided in

(Fig. 1). Along with the surveys informal feedback from

students was also collected through planned and
unplanned discussion sessions, planning and

retrospective meetings during the whole semester, and

also from the course’s wiki forum which contributed to

promote the project management and industry

simulation concepts of the course (Shahzad, 2010).

3.1.4 Analysis of Agile acceptance surveys. From

(Fig. 1). it can be seen that generally the students

learning improved through the whole course. Forsome

practices learning trend was more visible and

encouraging, for example, the concepts of “whole

team”, “onsite customer”, and “small releases” was

well understood and accepted by the students after the

realization phase. The students already knew some

practices, for example, “simple design”, “test driven

development”. There were also practices which students
found hard to understand, for example, “metaphor”,

even after the XP realization phase.“Collective code

ownership” was a practice that made clear impact after

students worked on the project in realization phase. It

showed them the actual spirit of team work and sharing.

This course review showed that the students learned to

use the practices of XP more in realization phase than

after the visualization phase, which was the intention of

0
20
40
60
80

100
120

N
o

. o
f

st
u

d
e

n
ts

XP practices

Before training After Visualization After realization

S. SHAHZAD et al., 578

dividing course into separate phases of theory and

practice.

4. Framework of Agile course and course

management

The research goal of this course was to define a
framework for structure and organization of an Agile

software development methodology course to analyze

the learning issues of XP practices and Agile knowledge

management. The desired objective was to provide

students a meaningful experience with learning an Agile

software development methodology which becomes

useful and helpful for them professional life. The idea

was to develop an innovative way of XP training so that

the students not only learn XP as a software

development methodology but can also visualize the

development process as an organized activity to achieve

a goal. Another important aspect was to expose and

emphasize the knowledge management aspects of

individual XP practices and to demonstrate how formal

as well as informal knowledge management helps in the

learning process.

The course helped to build a culture of student

involvement in learning activities and a knowledge

sharing environment. It also highlighted the importance

of communication among students by integrating social

structure of XP practices and role playing activities with

pedagogical techniques of communication.

(Table 2) presents the proposed framework which

defines the impediments for the organization and

structure of an Agile development methodology course.

Table 2.Framework of Agile course management (Shahzad, 2010)

Course

Organization

Clearly distribute course content and time into theory and practice phases. It makes the course manageable, adaptable, and well

structured.

Instead of lecture based pedagogy use innovative training aids (board exercises, audio video presentations, project based

games, workshops) to make the class more interactive, this optimizes learning outcome.

Design lectures as short, to-the-point, and time boxed workshop style exercises, which makes it easy to teach fundamentals of

Agile.

Short on-spot programing exercises for pair programming and test driven development practices provide better training to the

students.

Follow a pre-set schedule for theory and practical exercises. Although it is against the spirit of agility but too much agility in

the class room will result in chaotic situation, especially during workshops, and the goals of the workshops will not be met.

Make sure that each student participates in workshops and exercises.

Assess student performance after workshops/exercises to make the students realize the significance of the exercise.

Team

distribution

Make small teams, of about five to eight students.

Make teams in such a way that expertise and knowledge is fairly distributed among all teams.

Make an even distribution of male and female students. Female students are usually good in general management of teamwork.

Instead of directly starting with fixed teams let the students know each other in the whole class by making random teamsin the

beginning. Working in fixed teams from the very beginningrestricts the knowledge distribution and is also againstthe general

philosophy of agility.

Roles Introduce roles in the teams. Roles defined by XP are ideal for programming as well as management related skill development.

It is better to take students' consent in assigning roles. Impose the role if one is not available in the team. Employ some general

technique for personality evaluation before assigning roles.

Assign roles before making teams.

Project

Organization

Define fixed time slots for iterations and releases. Make sure that each team follows that schedule.

Supervise the work of each team during project time and make sure all the practices are being properly followed. If any

practice(s) is not properly followed provide more training in this regard.

Clearly specify activities for each role. For example, in planning game explicitly define the roles of managers, customers, and

developers.

Make sure that all team members have tasks to do all the time. For example, when developers are busy in coding, arrange

special exercises for customers and managers.

Define a schedule of daily routines during project and make sure that all teams follow it. Specify the schedule as minimum

requirement and leave room for additional activities so that the teams can also learn to organize themselves.

Define protocols for the duties of managers, customers, coaches, and developers during project.

Closely supervise teams while they are working. The instructor must visit each team during project. A protocol defining what

to look for during visits to the teams will be helpful in comparing and evaluating activities of different teams.

Communicati

on and

Collaboration

Provide a collaboration platform for all students and teams so that they can communicate as well as share knowledge easily

and efficiently. For example, setting up the course wiki and allowing the students to manage personal as well as team portals.

It provides a way to supervise team activities.

In case of some social or communication related problem among team members ask the manager to work as moderator and

resolve small issues occurring in team work.

It is also ideal to have student assistants for supervising and guiding the teams during project. Define a protocol of duties for

the student assistants.

Simulating the corporate industry style communication link among the course organizer, managers and customers will also

provide a good learning and training experience for managers and customers.

Training for Agile Transformation… 579

5. CONCLUSION

The main purpose of this course was to disseminate

the importance and practice of Agile approach for

SEskills development. The usage of Agile
methodologies is an unnerving challenge. Attempt was

made to gradually impart the principles and

philosophies of Agile methods to the students in the

duration of 15 weeks. The course proved successful in

exposing various aspects of actual software

development environment in a simulated way. The

students learned how to organize themselves for a

productive team work using the technology and

practices which are a norm in industry. The course

provided an opportunity to students to analyze and boost

their expertise and skills related to technology as well as

soft skills and emotional intelligence. The
recommendations from that formal course organization

and implementation provided an opportunity to set

guidelines for providing such a productive and

conclusive learning experience to students. Finally, it is

conceived that a formal course design and organization

is necessary to teach Agile methodologies if the aim is

to teach Agile principles in full spirit.

REFERENCES:

Ahmed, F. C. (2012). “Evaluating the demand for soft

skills in software development. IT Professional, 14(1),

44-49.

Assassa, G. (2006). Extreme programming: A case

study in SE courses. Proceedings of the 1st National

Information Technology Symposium, NITS, Riyadh,

Saudi Arabia,. 233-240

Barroca, L., H. Sharp, D. Salah, K. Taylor, and P.

Gregory, (2018).Bridging the gap between research and
agile practice: an evolutionary model. International

Journal of System Assurance Engineering and

Management 9(2), 323-334.

Beck, K. (1999). Extreme Programming Explained:

Embrace Change (1st Edition). Addison-Wesley

Professional.

Bjørnson, F. O., and T. Dingsøyr, (2009). A survey of

perceptions on knowledge management schools in Agile

and traditional software development environments. XP,

94-103.

Capretz, L. F., and F. Ahmed, (2010). Making sense of

software development and personality types. IT

professional, 12, 6-13.

Chan, F. K., and J. Y. Thong, (2009). Acceptance of

Agile methodologies: A critical review and conceptual

framework. Decision Support Systems, 46, 803-814.

Drappa, A., and J. Ludewig, (2000). Simulation in SE

training. ICSE '00: Proceedings of the 22nd

international conference on SE. 199-208.

Dubinsky, Y., O. Hazzan, (2007). Why SE programs

should teach Agile software development. SIGSOFT

Softw. Eng. Notes, 32(2), 1-3.

Fuchs, C., and T. Hess, (2018). Becoming Agile in the

Digital Transformation: The Process of a Large-Scale

Agile Transformation. Proceedings of the 39th

International Conference on Information Systems (ICIS

2018), San Francisco, USA.

Hazzan, O., and Y. Dubinsky, (2006). Teaching

framework for software development methods. ICSE

'06: Proceedings of the 28th international conference

on SE, 703-706.

Henry, T. R., and J. LaFrance, (2006). Integrating role-

play into SE courses. J. Comput. Small Coll., 22, 32-38.

Herreid, C. and N. A. Schiller, (2013). Case Studies and

the Flipped Classroom. Journal of College Science

Teaching, 42(5), 62-66. 84

Highsmith, J., and M. Fowler, (2001). The Agile

Manifesto. Software Development Magazine, 9, 29-30.

Hussain, Z., M. Lechner, H. Milchrahm, S. Shahzad,

W. Slany, M. Umgeher, and T. Vlk, (2008). Optimizing

Extreme Programming. ICCCE 2008: Proceedings of

the International Conference on Computer and
Communication Engineering, Kuala Lumpur,

Malaysia1052-1056.

Judd, M. M., and H. C. Blair, (2019). Leveraging Agile

Methodology to Transform a University Learning and

Teaching Unit. In Agile and Lean Concepts for

Teaching and Learning, 171-185.

Kosti, M. V., R. Feldt, and L. Angelis, (2014).

Personality, emotional intelligence and work

preferences in software engineering: An empirical

study. Information and Software Technology, 56(8),

973-990.

S. SHAHZAD et al., 580

https://link.springer.com/journal/13198
https://link.springer.com/journal/13198
https://link.springer.com/journal/13198

Macias, F. (2004). Empirical Assessment of Extreme

Programming. Ph.D. dissertation, University of

Sheffield.

Milenkovic:, V. D. (2011, May). Teaching Agile

Software Development: A Case Study. IEEE

Transactions on Education, 54(2).

Missiroli, M. R. (2016). Learning Agile software

development in high school: an investigation.

Proceedings of the 38th International Conference on SE

Companion, 293-302.

Ochodek, M. (2018). A scrum-centric framework for

organizing software engineering academic courses.

In Towards a Synergistic Combination of Research and

Practice in Software Engineering, 207-220.

Rico, D. F. (2009). Use of Agile methods in SE

education.Agile Conference, 174-179.

Rodriguez, G. S. (2015). Virtual scrum: A teaching aid

to introduce undergraduate SE students to Scrum.

Computer Applications in Engineering Education,

147-156.

Schneider, K. (2009). Experience and knowledge

management in SE. Springer Science and Business

Media.

Shahzad, S. (2009). Knowledge Management Issues in

Teaching Extreme Programming. 9th International

Conference on Knowledge Management and Knowledge

Technologies, I-Know and I-Semantics, 278-288.

Shahzad, S. (2009). Learning from Experience: The

Analysis of an Extreme Programming Process. Sixth

International Conference on Information Technology:

New Generations, 1405-1410.

Shahzad, S., Z. Hussain, M. Lechner, and W. Slany,

(2008). Inside View of an Extreme Process. XP,

226-227.

Shahzad, S. (2010). Analyzing the Extreme

ProgrammingPractices and Knowledge Managementin

Software Engineering Education - Shrinking the Gap

between Industryand Academia.(Unpublished doctoral

dissertation). Technical University of Graz, Austria

Sidky, A. S. (2007). A structured approach to adopting

Agile practices: The Agile adoption framework. Diss.

Virginia Tech.

Van Solingen, R., E. Berghout, R. Kusters, and J.

Trienekens, (2000). From process improvement to

people improvement: enabling learning in software

development. Information and Software Technology, 42,

965-971.

Training for Agile Transformation… 581

