

 SINDH UNIVERSITY RESEARCH JOURNAL (SCIENCE SERIES)

Multilingual Interface for C++

F. Q. KHAN, S. M.BUHARI*, G.TSARAMIRSIS*, M.BASHERI*,M.ASHRAF**,S.JAN**

Malaysian Institute of Information Technology (UniKL MIIT),Kuala Lumpur, Malaysia

Received 11th May 2018 and Revised 26th October 2018

I. INTRODUCTION

It is a fact that the language barrier makes it

difficult for the students to learn programming. This is

because, a student who is new to programming must

learn the keywords of the programming language, which

are usually written in English and the logic of

programming at the same time (John andChotirat2001).

Visual programming languages attempt to solve this
problem but they are not sufficient.According to

(Andrew et al., 2004), among the most common

problems affecting highly visual languages such as

visual basic are “Textual programming interfaces are

limited”, “code behavior is difficult to explain” and

invisible/hidden rules are difficult to show, understand

and explain.

In a number of non-English speaking countries, the

schools use programming languages with keywords in

the native languages to teach the students the logic of

programming instead of standard programming

languages such as C++ or Java and so on. This helps the

students to learn programming instead of English
language. However, there are two issues with this

approach.1) Not all the natural languages are coveredby

these languages, 2) Transferring the skills obtained to a

mainstream programming language may not bestraight

forward. To address these two issues, we take a

different approach. We propose the use of the C++ pre-

processor and the utilization of the “define” command

for the development of a natural language interface

or C++. Our interface offers a simpler and easier

to understand syntax, new inbuild functionality, for

doing more complex tasks such as lists and writing to

file. Some of the advantages of our approach are:

 Additional natural languages can easily added

 The students will learn programming using

keywords in native languages

 Supports code with statements written in different

natural languages and/or C++

 Easier transition to C++

 Wide support as it is based on C++

 Can be used for any type of applications as it is

using the C++ compiler

Currently our approach can directly support natural

languages where the selected keywords can be written

in ASCII. Keywords from other natural languages must

first be converted according to the way they sound and

then be used in our approach. A major part of this

research is to test if this approach will actually help the

students or not.

The next section presents the related work. Section

three presents the new programming language. Section

four presents the experiment and the evaluation results

and section five concludes this paper.

2. RELATED WORK

The use of natural language for programming was

considered long since 1966 (Sammet,1966). Widespread

teaching of computation skills in different disciplines

Abstract:Themultilingual interface for C++project aims to help students at the early stages to learn programming while bypassing

the language barrier. Additionally, it can aid in the transfer of skills gained by the students to C++. The proposed interface utilizes

the pre-processor commands of C++ and offers a simplified syntax and translate the keywords to natural language.The problem

however is that keywords from some natural languages cannot be written in ASCII and there are multiple words for some

keywords.The outcome of the experiment reveals that the presence of multiple natural language words to cater for a specific

traditional programming language keyword causes confusion among novice programmers. The Syntax and keywords were

formulated by a three phased workshop on school children and teachers.The multilingual interface for C++ was evaluated by a

study on KG to 7thGrade children and novice programmers.The findings showed that natural language-based programming is not a

complete solution for the difficulties faced by novice programming language learners. But, it could assist in elimination of certain

syntax errors, while adding to the complexity of natural language constructs.

C++, Teaching Programming, Programming Language

SindhUniv. Res. Jour. (Sci. Ser.) Vol. 50 (004) 613-620 (2018)

http://doi.org/10.26692/sujo/2018.12.0086

++Corresponding Author Email: fazal.qudus@s.unikl.edu.my

*Department of IT, Faculty of Computing and IT, King Abdulaziz University, Jeddah, Saudi Arabia
**Faculty of Electrical and Computer Engineering, University of Engineering and Technology, Peshawar, Pakistan

mailto:fazal.qudus@s.unikl.edu.my

(Bundy,2007)has motivated the initiative towards

natural language based programming. Computing has

become an integral part of both theory and practice of

various diversified disciplines. Thus, the medium of

traditional programming languages as the best choice is
questioned (Cortina, 2007)(Bell, et al., 2009).(Lu, and.

Fletcher, 2009). Also, the complex syntax and structure

of traditional programming languages act as stumbling

blocks for novice programming language learners.

Interaction of human with computers through

natural languages have been studied in more depth since

1980s (Eduardo and Slamecka, 1984). Support of native

languages and/or script other than English and/or

Roman/Latin scripts have been studied. Authors have

indicated about the non-feasibility of one-to-one

mapping of mnemonic from English to Spanish, which
is also considered as a highly formalized language.

(Judith and Howland, 2007) studied the usage of natural

language for programming, instead of traditional

programming languages. Study reveals that some

difficulties, like code generation from unconstrained

format, are introduced by natural languages. Studies

have also analyzed the impact on teaching

computational thinking through programming

languages. For novice programmers, design guidelines

are provided to help them handle these difficulties.

Three design strategies were followed: unconstrained
natural language for code generation, language

interpretation, language primitive set. The presence of

language primitive set to construct computational rules

achieved better results. Meanwhile, role of variables

within a programming language have been studied using

visualization of variables to novice programmers

(Nianfeng et al., 2017) The motivation stated for this

study is that about 26.4% computer science students at

Luoyang Institute of Science and Technology failed the

advanced programming course. Probable reason for this

situation is due to applying programming constructs and

not understanding the language. Results reveal that
providing visualization of variables assisted novice

programmers to design programs from a holistic point

of view. Instead of writing the codes in native

languages, Live Robot Programming (campusano &

Fabry, 2017) indicates that difficulty of debugging

codes that are deployed on robotic simulators and run.

This is because the error should be mapped from the

behaviour to the code segment. Live Robot

programming provides a state machine representation

along with visualization of the live processing of the

robot and thus enabling the programmers to debug as
well as rectify the code while the robot is actually

working.

Electron based game development toolset has

NWScript which makes coding complex. Meanwhile,

participants of the workshop were able to develop the

preliminaries of the game development using natural

language easily (Good & Howland, 2017). Authors have

also highlighted the confusion caused due to the use of

unconstrained natural language for code generation.
This is mainly due to when to use natural language and

when to use traditional language syntax.

Researchers in (Capindale & Crawford,

1990)identified that natural language is effective for

database queries, when the programmer is aware of the

database contents. Visual programming, using

narrations, has also been suggested and studied in the

literature. Computational concepts could be well

understood using natural languages but at the same

time, it brings many other difficulties into coding. To

make natural language based programming better, we
have enhanced existing programming languages with

support from different natural languages. Thus, the

motive was to enhance the understanding while making

sure that the transition as well as learning should be

smooth and productive. The status of such a motive was

tested using different groups of people, with and

without any programming experience. A research

challenge is how to make it easier to understand with

the keywords used in the language. We assume that the

learning process will be improved and quick.

3. MODIFICATION TO THE ORIGINAL SYNTAX

Our approach modified the standard C++ syntax in the

following ways.

 Loop

 Cout

 Cin

 Public void main

 File operations

 List operations
The syntax of the three loops, “for”, “while”, “do”

where replaced by the new command “loop” originally

introduced in (Tsaramirsis,et al., 2014). The loop can be

overloaded in three ways as shown below:

loop(number){ // do something }

In the above, the body will be executed a number of

times without checking any condition. A hidden

variable called “loopCount” can be used for accessing

the current iteration.

loop(condition){ // do something }

The above is similar to C++’s while loop. The condition

will be checked prior to executing the body of the loop.

loop(number,condition){ // do something }

The last version of the loop is going to execute the

body, a number of times, prior of checking the

condition. Similar to the “do while” loop but with a

variable number of initial executions rather than just

one.

F. Q. KHAN et al., 614

The second modification to the original syntax of C++

was done to the “Cout<<” command, that is responsible

for output stream. The command was simplified and

replaced by the word “print” followed by the what it

should be outputted (e.g. a string or the value of a
variable).

print ”hello”;

Similarly, the “Cin>>” command was replaced by the

keyword “read”.

input myVariable;

The “public void main” that is the most usual starting

definition for the “main” method of C++ was replaced

by the keyword “start”.

start()

{

// do something

}
The file operations were also simplified as it can be seen

below.

writetofile(“hello”,”myfile.txt”);

readfromFile(“myfile.txt”);

The “writetofile” takes as parameters two variables,

what needs to be stored and the destination file. On the

other hand, the “readfromfile” method takes as

parameter the file name and return a string.

The new syntax also includes a list class that allow users

to add, find and remove elements. The list has methods

for adding new nodes, removing nodes, set data in
nodes, get data from nodes and printing the list.

However, this part is not covered in this paper.

4. MULTILINGUAL SUPPORT

Apart from the above modification to the original

syntax, a template for adding new languages was also

developed and included below.

#define * loop

 #define * start

#define * if

 #define * else

#define * print
 #define * read

#define * string

 #define * int

#define * double

 #define * true

#define * false

 #define * new

#define * return

 #define * void

#define * break

 #define * class
#define * delete

 #define * public

#define * private

 #define * writetofile

#define * readFromFile #define *

List

#define * printlist

 #define * addnode

#define * deletenode

 #define * setdata
#define * getdata

New natural languages can be supported simply by

replacing the * symbol with the corresponding keyword

of the desired language. However, it must be ensured

that each word is used only once and that no reserved

keywords are used.

Table 1, shows the corresponding Urdu words for every

English keyword. While the proposed approach

supports keywords from any language we decide to map

the keywords to their corresponding Urdu words but

written in ASCII, based on the way the words are

pronounced. This was done because Urdu is not
naturally written using ASCII so this provides the

opportunity to test if ASCII representation of non-Latin-

based languages helps the novice non-English speaking

programmers to perform better in programming. The

experiment is explained in a following section.

Based on the translation from Table1, the “hello”

word using the Urdu keywords will look like:

#include "mLToCPP.h" // include the head file with

our definitions

shorukar() // equivalent to public void main

{
chaap “salam”; // print salam to the screen

}

Seting up a string in a variable “in”, reading from the

keyboard and assigning the input to “in” and output it to

the screen:

#include "mLToCPP.h"

shorukar()

{

huroof in; // string in

lekoo in; // reading from keyboard, equivalent to

cin>> in;

chaap in; // print in
}

The syntax of an “if” statement where if a variable “x”

is more or equal than one the system should print “a”,

else it should print “b” would look like:

#include "mLToCPP.h"

shorukar()

{

 number x=0; // setting an integer x=0

 agar (x>=1) // if x is more or equal to 1

chaap “a”; // print a

 warna // else
 chaap “b”; // print b

}

The syntax of a loop printing the numbers from 0 to 5 in

different lines will be:

#include "mLToCPP.h"

Multilingual Interface for C++ 615

shorukar()

{

 number x=0;

 barbar(5) // loop five times

chaap x++ nayaline; // print x plus one and the
new line character.

}

Write and reading to and from files is also very simple

following simplified syntax from Section 3 and the

corresponding Urdu keyword from table 1.

#include "mLToCPP.h"

shorukar()

{

 // write to file “myFile.txt” the word “salam”

filekoleko(“salam”,”myfile.txt”);

// print to the screen the content of file “myfile.txt”

chaapfilesepadho(“myfile.txt”);
}

Functions can also be easily defined. The following is

an example of a function that returns the sum of two

integers.

#include "mLToCPP.h"

// defining the function

number sum(number x,number y)

{

 wapaskarx+y; // return x+y

}

shorukar()
{

// calling the function

sum(1,1);

}

Classes are also fully supported by our approach.

#include "mLToCPP.h"

// defining the class

tabqaclassName // define a class

{

khula: // public

number a; // int a;

khufia: // private
number b; // int b;

};

As explained at an earlier part of this paper, it is

possible to have more than one languages and even

different syntax within the same code. The following

code presents such example:

#include "mLToCPP.h"

shorukar()

{

chaap “Urdu”;

cout<< “C++”;
print “English”;

}

The following section describes the experiment and the

results that tested if the proposed approach can help

Urdu speaking students with no experience with

programming or English language to learn

programming. The experiment tested how well the

students could understand the commands described in

this section using English keywords and how well using

the Urdu keywords.

5. EXPERIMENT AND RESULTS

5.1 The experiment

This study attempts to find answer for the

following:

1. How effective is the usage of natural language

involvement within traditional programming languages?

2. Does the usage of natural language in

traditional programming languages make the learning of

novice programmers easier? Like, reducing the

syntactical errors.

Experiment: In our study, novice programmers were

given the necessary construct of our natural language

based programming language. Workshop was conducted

in three phases: Phase 1 was for school teachers; Phase

2 included five school-aged children (2 female and 3

male, aged 4-12); Phase 3 was with Information

Technology fourth year undergraduate students at our

university. Participant to these workshops was made

through contacts with the school and our department

undergraduate students. Information about the workshop

was presented to the potential candidates through a brief
presentation and letting know about the need of such a

research element.

Phase 1 teachers were with 4 to 10 years of

experience from Albarka International School, Jeddah,

Saudi Arabia. Their experiences varied from English,

Computing, General Studies as well as Islamic studies.

Even with diversified background, they were able to

accomplish the requirements of the workshop based on

the initial introduction given.

Phase 2 children were asked for their proficiency in
English, Urdu (the natural language under

consideration) and Programming. A minimal

proficiency of about 10-15% in programming did not

hinder much in understanding the language structures

after the initial introduction to the workshop. At the

same time, the absence of any programming skill caused

the children unable to respond to Questions, Q1B to Q2.

For Phase 3, our target was to make sure that the

students have substantial programming background and

are of similar level of expertise or theoretical
knowledge.

During the workshop, initially students were asked

about their current educational background and some

basic personal information. Candidates were made

F. Q. KHAN et al., 616

aware that this workshop is looking forward towards

their concerns or thoughts or any other difficulties they

face. Three researchers were involved in this process,

with one of them conducting the workshop and the other

two monitoring or observing the progress of the
participants. In an introduction, the newly developed

natural language based programming was explained.

Following the introduction, the subjects went through

the following sessions:

1. Q1A: Use of basic “print” statement.

2. Q1B: Presence of conditional statement like

“if”.

3. Q1C1: Handling loops within the programming

structure.

4. Q1C2: File Handling.

5. Q1D: Invoking Functions.
6. Q2: Keywords and syntax verification.

During Q2, subjects were provided with “cheat

sheet” that contains suggested mappings between

natural language and traditional programming language

keywords.

At the end of the workshop, all participants,

including both the subjects and the researchers, were

allowed to have an open-ended discussion so as to

identify the shortcomings and concerns in this research.

5.2 RESULTS AND DISCUSSION

(Table 2) summarizes the proficiency of the

participants involved and their performance in the

experiment. Excluding the kindergarten students, other

participants were mostly successful in answering all the

questions. This reveals that the presence or absence of

prior programming skills did not affect their
performance.

Table2: Student Performance in the Experiment

 Participants

Criteria 1 2 3 4 5 6 7 8 9

Age
7th

Grade

4th

Grade

4th

Grade
UKG LKG

English

Teacher

English + Social

+ Computing
General

Islamic

Studies

English

Proficiency
80% 80% 80% 50% 20%

4 Years

Exp 6 Years Exp 10 Years Exp

8 Years

Exp

Urdu

Proficiency
80% 50% 70% 20% 20%

Programming

Skill
50% 10% 30% 0% 0%

Q1A: Print 100% 100% 100% 100% 100% 100% 100% 100% 100%

Q1B: If 100% 100% 100% NO NO 100% 100% 100% 100%

Q1C: Loop 100% 50% 100% NO NO 100% 100% 100% 100%

Q1C: File 100% 100% 100% NO NO 100% 100% 100% 100%

Q1D:

Function
100% 100% 100% NO NO 100% 100% 100% 100%

Q2: Keywords

and Syntax
100% 100% 100% NO NO 100% 100% 100% 100%

Keywords 100% 100% 100% 50% NO 100% 100% 100% 100%

The outcome of the experiment reveals that the

presence of multiple natural language words to cater for

a specific traditional programming language keyword

causes confusion among novice programmers. We

distilled these findings and moved towards enhancing
our programming language to cater for multiple

keywords, a common error indicated in to perform a

similar task. The support for keyword selection from

IDE could solve this confusion effectively. The

following indicated by could be effectively handled

using an IDE:

1. Expression should be restricted during

programming.

2. Different colour coding for keywords and other

comments.

3. Syntactical completion using help.
As the whole workshop was paper based, the

subjects did not have the opportunity to correct or

rectify these mistakes with the help of an IDE. Also, it

could be observed that natural language speakers are

asked to use natural language, but in a different

approach than the way they are used to.

Common shortcomings or errors or misconceptions

in the learning of programming through natural

language are:
1. Actual natural language structure impacts on

natural language based programming language:

a. Usage of pronouns or verbs, that are included

in programming.

Multilingual Interface for C++ 617

b. Combination of words with different usage of

suffix or prefix.

c. Impact of redundancy in natural language on

the programming language.

2. Issues due to natural language based
programming language:

a. Multiple keywords that mean the same

semantically. For example, using “say” instead of

“print”.

b. The order of keywords.

c. Syntactical errors.

The overall rate of performing Q1A to Q1D was

high for student bound children aging from 9 to 12. The

keyword usage was questionable to many of the

participants, both in Phase 1 and 2. This was mainly due

to the order of prefix or suffix for a certain word in the

natural language.

As a conclusion, it could be stated that natural

language based programming is not a complete solution

for the difficulties faced by novice programming

language learners. But, it could assist in elimination of

certain

syntax errors, while adding to the complexity of natural
language constructs.

Out of 28 keywords suggested in the chosen natural

language, Urdu, subjects suggested alternatives for 12

of them. Out of the 12 suggested alternatives, one of

them is mainly due to the order of arrangement of the

parts of the word.
Table 3: The twelve keywords for which the respondents

answered differently

Original Alternatives

Warna ziada

Leeko paro Parhoo

Bandkar rukna Rako

Saafkar khatamkar Metana

Barnaumber dugna Dockhand

Datatakrasai datahasilkaro hasilkardadata

Barbar duhrana

Shorukar agaz

Ziyadakar Badhaana

Khula Saafzahir

Khufia chupahowa

Drust saheh

6. CONCLUSION

This paper introduced and utilized a natural

language interface for C++ that was used to study the

impact of writing code in natural language to the

students. The proposed syntax and keywords were

selected based on feedback from a focus group that was

conducted during a three-phase targeted workshop. The

impact of the proposed approach to the learning

efficiency of programming was also tested during the
workshop. Experimentation study reveals that even

without prior programming knowledge, subjects were

able to learn the programming using their native

language. The main concern was the confusion of

keywords over the selected words in the native

language. As the selected language is non-Latin in

nature, it causes difficulties in choosing the right

alternative for the programming keywords. While the

proposed approach does not solve all the learning

inefficiencies, it has a positive impact to the learning

process.

In the future, the interface can be extended to

support more natural languages and evaluated with

more complex experiments and higher number of test

subjects.

APPENDIX AND THE USE OF SUPPLEMENTAL FILES

The code used in this research can be found below:

The definitions of the loop can be found.

7. ACKNOWLEDGMENT

This work would not have been possible without

the support of Albarka International school, Jeddah,

Saudi Arabia, that allow us to perform our research

work with their students and staff.

REFERENCES:

Andrew J. Ko, B. A. Myers and H. H. Aung, (2004)

"Six Learning Barriers in End-User Programming
Systems," 2004 IEEE Symposium on Visual Languages

Human Centric Computing, Rome, 2004, 199-206.doi:

10.1109/VLHCC.2004.47

#define loop(...) LOOP_MACRO_CHOOSER(__VA_ARGS__)(__VA_ARGS__)

#define start int main

#define print cout <<

#define read cin >>

// write to file

void writetofile(string text,char* file){

 ofstream myfile (file);

 if (myfile.is_open())

 {

 myfile << text;

 myfile.close();

 }

 else cout << "Unable to open file";

}

// read from file

string readfromfile(char* file){

 ifstream myReadFile;

 myReadFile.open(file);

string output;

if (myReadFile.is_open()) {

while (!myReadFile.eof()) {

 myReadFile >> output;

 return output;

}

}

myReadFile.close();

return "";

}

F. Q. KHAN et al., 618

Bell, T., J. Alexander, I. Freeman, and M. Grimley,

(2009) Computer science unplugged: school students

doing real computing without computers, N.Z. J. Appl.

Comput. Inf. Technol. 13 (1) 20–29.

Bundy,A. (2007) Computational thinking is pervasive,

J. Sci. Pract. Comput. 1 (2) 67–69.

Capindale, R.A.,and R.G. Crawford,(1990) Using a

natural language interface with casual users, Int. J. Man

Mach. Stud. 32 (3) 341–361.

Cortina, T.J. (2007) An introduction to computer

science for non-majors using principles of computation,

in: ACM SIGCSE Bull., vol. 39, ACM, 218–222.

Eduardo M. S., and V. Slamecka, (1984)“Toward

Native Language Software for Information

Management”, Information Processing and

Management, Vol. 20, No. 4, 527-534.

John F., and P. Chotirat (2001) “ANN”

Ratanamahatana, Brad A. Myers, Studying the language

and structure in non-programmers' solutions to
programming problems, International Journal of

Human-Computer Studies Vol. 54, Issue 2, 237-264.

Judith G., and K. Howland, (2007) "Programming

language, natural language? Supporting the diverse

computational activities of novice programmers",

Journal of Visual Languages and Computing archive,

Vol. 39 Issue C, 78-92.

Judith G.(2017) Kate Howland, Programming language,

natural language? Supporting the diverse computational

activities of novice programmers, Journal of Visual

Languages and Computing, Elsevier, 39 78–92,

Lu, J.J.,and G.H. Fletcher, (2009) Thinking about

computational thinking, in: ACM SIGCSE Bulletin,

Vol. 41, ACM, 260–264.

Miguel C., and J. Fabry,(2017) "Live Robot

Programming: The language, its implementation, and

robot API independence”, Science of Computer

Programming, 1331–19.

Nianfeng S., Z. Min, and P. Zhang, (2017) "Effects of

visualizing roles of variables with animation and IDE in

novice program construction", Telematics and

Informatics archive, Vol. 34 Issue 5, 743-754.

Sammet, J. E. (1966) The use of English as a

programming language, Commun. ACM 9 (3) 228–230.

Tsaramirsis, G., S. Al-jammoor, and S. M. Buhari,

(2014). Proposing a New Hybrid Controlled Loop.

International Journal of Software Engineering and Its

Applications, 8(3), 203-210.

Multilingual Interface for C++ 619

	I. INTRODUCTION
	 Additional natural languages can easily added
	 The students will learn programming using keywords in native languages
	 Supports code with statements written in different natural languages and/or C++
	 Easier transition to C++
	 Wide support as it is based on C++
	 Can be used for any type of applications as it is using the C++ compiler

	2. RELATED WORK
	3. Modification to the original syntax
	 Loop
	 Cout
	 Cin
	 Public void main
	 File operations
	 List operations

	4. Multilingual support
	5. experiment and Results
	6. CONCLUSION
	This paper introduced and utilized a natural language interface for C++ that was used to study the impact of writing code in natural language to the students. The proposed syntax and keywords were selected based on feedback from a focus group that was...
	In the future, the interface can be extended to support more natural languages and evaluated with more complex experiments and higher number of test subjects.

	Appendix and the use of Supplemental files
	7. ACKNOWLEDGMENT
	REFERENCES:

