
 
 
 
                        SINDH UNIVERSITY RESEARCH JOURNAL (SCIENCE SERIES)  
 
 
 

 

 

CUDA: A new paradigm for parallelization and computational efficiency 
 

 
 

J. DEVI, J.  KUMAR, S. PARVEEN 
 

Department of Information Technology, Quaid-E-Awam University of Engineering Science and Technology, 
Nawabshah , Sindh Pakistan 

Received 10th June 2018 and Revised 15th September 2018 

 
 
 
 
1.                           INTRODUCTION 

CUDA or Compute Unified Device Architecture is 
essentially a sophisticated and state-of-the-art 
programming model and computing platform with 
parallel processing capabilities. CUDA allows smooth 
execution and implementation of parallel programming 
codes like compilation of a simple C++ algorithm and 
allows conceptualization and development of systems 
that can run on a wide range of devices such as laptops, 
embedded systems, processor clusters and even smart 
phones and tablets. For execution, modification and 
development of CUDA programming codes, 
programmers can utilize the standard C software 
development tools facilitating easy usage. In order to 
properly appreciate the significance of CUDA 
programming architecture it is prudent that there is a 
brief discussion on the concept of parallel programing, 
especially due to the fact it significantly improves 
algorithm performance and decrease latency (Cheng,   
et. al, 2014). 

In the recent times the concept of parallel 
computing has been the subject of focus primarily due 
to the prospect of speeding up the computational 
process and improving performance. When seen in 
context of computational calculations, the processes are 
carried out in tandem across multiple processors. The 
inherent logic is to simplify the problem by breaking 
down a big task into small parts and solving those 
separately using different processors. The fundamental 
constituents of a parallel computing architecture are its 
hardware and software components and it is necessary 
that there is a cohesive relationship between the two. 
From a technical perspective, the computing 
architecture represents the hardware component and the 
parallel programming aspect represents the software 
component. In the present times, the concept of parallel 
processing is almost becoming standard in the sense 

that it drives or influences the process of computer 
architecture development (De Donno, et. al, 2010). 
Parallel processing can be described in terms of the task 
and the data that is being processed. Parallel processing 
of the task, indicate processing of multiple tasks in a 
parallel manner concurrently across multiple processor 
cores. Similarly, parallelism of data means 
computational processing of multiple data types at any 
given point of time. When seen in context of CUDA 
programming, the inherent logic is more suited towards 
data parallelism (De Donno, et. al, 2010). 
 

2.       EASE OF THE CUDA MODEL AND 
PROGRAMMING ARCHITECTURE  

The inherent model of any programming logic serves as 
an abstraction layer that acts as a mediator between 
computer applications and their hardware mediated 
execution. (Fig. 1) below nicely illustrates the 
abstraction layer between the programs and their 
hardware execution (Cheng, et. al, 2014). 

 

 
Fig.1. Abstraction between hardware and programs 

 

The abstraction becomes possible through the use of 
a software compiler along with the hardware and a 
dedicated operating system. The software program is 
developed in a manner that there is coherence between 
its multiple components with regards to data processing 
and sharing and the manner in which the processes are 

Abstract: This paper will present a comprehensive evaluation of the CUDA programming model and discuss it efficacy with 
regards to the parallelization of the highly resource-intensive computational processes. The paper also presents a comprehensive 
discussion on the architecture of the CUDA programming model and its utilization for the purpose of digital image processing. 
Keyword: CUDA programming model and discuss 

++ Corresponding author:  jhernadevi@hotmail.com, jagdesh.k24@gmail.com, engr_sajida@hotmail.com 

Sindh Univ. Res. Jour. (Sci. Ser.) Vol. 50 (3D) 01-05 (2018)



carried forward. While there could be multiple 
abstraction layers in any given parallel computing 
models, the CUDA model paradigm offer solutions or 
functionalities that facilitate optimum utilization of 
Graphics processing unit (GPU) processing capabilities. 
Graphics processing units or GPUs are known for their 
computational resourcefulness with regards to 
performance and speed. Originally developed for use in 
video cards, the graphics processing units integrate 
multiple processor cores in their architecture. This 
architectural characteristic allows processing of 
multiple threads concurrently with high performance 
and minimal software latency. The CUDA 
programming model allows optimal exploitation of 
GPU computational resources through a user-friendly 
and familiar programming environment such as C 
(Sharp, et. al, 2007). Software programmers can write 
simple C codes to implement the CUDA programming 
model and invoke parallel processes in millions 
concurrently (Vetter, et. al, 2007), (Gu, et. al, 2006). 

 

The CUDA programming model allows complete 
unlocking of the parallel programming capabilities of 
the GPU based graphic cards through the use of 
customized programming language called CUDA C. 
Programs written in CUDA C can be seamlessly 
executed on any Graphics processing units that is 
compatible with the CUDA paradigm (Abecassis, et. al, 
2015). It has already been mentioned that the strength 
of CUDA with regards to programming efficiency lies 
in the possibility of parallelization. In order to exploit 
the advantages of the CUDA programming model it is 
necessary to segment the executed algorithm in small 
processes with very little dependencies. Once this is 
done, the segmented tasks are mapped to separate 
process threads that are simultaneously executed on 
multiple processor cores of the Graphics processing 
units. The CUDA paradigm facilitates formation of 
units called wraps that consist of 32 different process 
threads. Wraps that are homogeneous or similar in 
nature are executed together in parallel and the 
efficiency increases further if the 32 process threads 
have similar instructions and dependencies. The wraps 
are further grouped into blocks that come together to 
form program grids. The parallel processing model is 
illustrated in (Fig. 2) below (Abecassis, et. al, 2015). 

 

 
Fig.2. CUDA programming architecture 

One of the most fundamental unit of the CUDA 
programming paradigm is the kernel which is 
essentially a program that is executed on the Graphics 
processing unit of the hardware. The Kernel can also be 
described as a program code that runs in a sequential 
manner and is managed by the CUDA programing 
model with regards to its segmentation and assignment 
into multiple GPU process threads. During the 
execution of CUDA, the primary CPU of the computing 
architecture acts as a main host and facilitates initiation 
of a single kernel at a time. For every kernel there are 
multiple processes threads that are executed 
concurrently on different processor cores. It has already 
been mentioned that homogeneous threads are grouped 
into wraps and it is important that all the threads have 
similar instructions. This is because for every wrap a 
single common instruction is executed at a single time 
and if instructions are different for different threads the 
efficiency is lost. Furthermore, individual threads 
within a wrap may conditions programming conditions. 
In such cases the execution process is diverted towards 
the condition branches till the end before they return to 
the main branch. This can also reduce the efficiency 
that is expected from the parallelization of the threads. 
In this context, non-inclusion of branch paths during the 
design process of the kernels is a good programming 
optimization strategy (De Donno, et. al, 2010). 

 
Another advantage of the CUDA programming 

model lies in the fact that it allows execution of 
applications on computing systems that are highly 
heterogeneous in nature. This is possible through 
simple annotation of the programming code in the form 
of extensions towards the C programming convention. 
In a typical heterogeneous computing architecture, there 
are highly competent Graphics processing units that are 
integrated with the system CPUs. Each CPU and GPU 
units come with their own memory and the architecture 
can be distinguished into the following: 

 
 The host that comes with its own CPU and memory 

unit called the host memory. 
 The device which is essentially the Graphics 

processing unit that comes with its own memory 
unit called the device memory. 

The host unit of the architecture is entirely 
independent from the device unit with regards to the 
execution of majority of the processes. Once a kernel 
process is initiated, the inherent control of the same lies 
with the host and this approach allows utilization of the 
CPU resources for carrying out other ancillary 
processes. The CPU is further assisted with the 
execution of the ancillary processes by data 
parallelization algorithms that are being executed on the 
system. Another noteworthy aspect of the CUDA 
paradigm is that it allows overlapping of GPU 

J. DEVI et al.,                                                                                                                                                                                                             02 



processes with the host-device interaction or data 
exchange processes. An introspection of a standard 
CUDA code reveals that it is composed of a primary 
serial code that is supported by optimizing parallel 
code. (Fig. 3) below nicely illustrates the execution 
protocol of the serial code and the parallel code in the 
host and the GPU unit respectively (Cheng, et. al, 
2014). 

 
Fig.3. Execution of the serial and parallel code 

 
While the code that is implemented on the host is 

written in C the GPU parallel code that optimizes the 
performance is written in CUDA C. The execution of a 
standard CUDA code is carried out in the following 
steps: 

1. Transfer of data from the memory of the CPU 
to the GPU. 

2. Initiation of the kernel code to process data 
present in the GPU memory 

3. Transfer of data from the memory of the GPU 
to the memory of the CPU after the processing 
is complete. 

 
3.                 CUDA AND IMAGE ANALYSIS 

Another domain that can greatly benefit from the 
CUDA programming model is image analysis. The 
pixel content of any modern high definition digital 
image can be in the excess of three million and the 
current image processing software utilities may need 
multiple computations per pixel. This creates a massive 
computational load on the processors and could easily 
lead to inefficient run time and high latency. Such 
massive processing loads could seriously affect the 
processing capabilities of the CPUs leading to decrease 
in productivity. The CUDA programming model can 
dedicate a single process thread per pixel and can 
greatly decrease the image processing runtime and 
increase efficiency. The single thread that is assigned to 
a single pixel will be responsible for processing its final 
color output. Considering the fact that the digital 
images are 2D in nature, CUDA allows process thread 
wraps and blocks to be two dimensional as well. As a 
result, a standard process thread block could be in the 
size of 32X16 and this will allow concurrent running of 
512 different process threads at any given point of time. 

Furthermore, it is possible to add or start as many 
thread blocks as required in both the dimensions to 
ensure that the entire image is processed. 

 
A natural inquisitiveness at this stage could be on 

the size of thread blocks as to why they are not 32X32 
instead of the 32X16 size as mentioned above. A simple 
answer to this question lies in the architecture of the 
CUDA systems that only accommodates 512 different 
process threads. So it will not be possible to handle 
1024 threads that would come with the 32X32 size. 
However the above is only true for CUDA versions 1.3. 
With the CUDA system version 2, it is possible to 
accommodate 1024 process threads per block, thanks to 
extensive enhancement of the CUDA 2 hardware 
architecture. Due to the fact that the standard CUDA 
systems does not come with the hardware 
enhancements of version 2, it is always safe to 
implement 512 process threads per block to ensure 
efficiency and productive of the parallelization that 
comes with the CUDA programming model. 

 
Implementation of CUDA paradigm for digital 

image processing is relatively simple to implement and 
requires only minimal annotation of the code to invoke 
the parallelization process. A simple code snippet that is 
typically executed by image processing algorithms is 
shown below: 

 
for (int i=0; i < height; i++) 
 { 
for (int j=0; j < width; j++) 
    { 
result[i*width+j] = ProcessPixel(j,i); 
     } 
} 

Annotation of this code for invoking CUDA 
requires replacement of the for loops in the above code 
with the thread and block id calculations shown below:  
int i = blockIdx.y * blockDim.y + threadIdx.y; 
int j = blockIdx.x * blockDim.x + threadIdx.x; 
 

During image processing on a CUDA system, a 
copy of the data of the digital image is made in the 
Graphics processing unit memory. This is followed by 
another copy of the image data in another location in 
the Graphics processing unit memory followed by the 
invocation of the kernel code. Once the processing is 
complete and the final image data is ready, it is copied 
back to the host memory. 

 

In the last decade there has been a lot of interest in 
exploiting the capabilities of the CUDA programing 
model for image processing and analysis. Most of them 
are focused on image edge detection and digital image 
segmentation that are extremely resource and time 
intensive. A good example of CUDA implementation 

CUDA: A new paradigm for parallelization and computational efficiency                                                                                                          03 



for image analysis and processing was presented in a 
study where the authors carried out histogram 
equalization, edge detection, cloud removal and 
encoding/decoding of DCT on digital images (Yang,   
et. al, 2008). For this purpose the researchers carried 
out the segmentation of the image data that was sent as 
the input into process threads followed by the 
computation of the probability density function. The 
density function is required for digital image 
equalization and the same is calculated for input data 
that comes in the form of a subset. Processed results for 
every thread is finally collated to form the output data 
and presented to the programmer. The CUDA approach 
that was utilized in this study to carry out the image 
histogram equalization is illustrated in (Fig, 4) below. 

 
 

Fig.4. CUDA mediated histogram equalization. 
 

It is interesting to note that majority of the studies 
that focus on image analysis processes are based on the 
approach described above when it comes to integrating 
the same to the CUDA implementation process. The 
fundamental step is to split the input data into multiple 
threads as in the study above followed by processing 
and assembly of individual thread results into the final 
result. Another study that is based on this philosophy 
focussed on the efficacy of parallelization in detecting 
the image contours while others presented unique 
implementation of edge detection algorithm proposed 
by Canny through the CUDA approach (Catanzaro,     
et. al, 2009), (Luo, et. al, 2008), (Park, et. al, 2008). 
With regards to the Canny's edge detection algorithm 
using CUDA one study presented a comparative 
evaluation of the different CPU implementations while 
the other showed efficacy in the edge detection process 
brought about by the CUDA mediated parallelization 
(Luo,     et. al, 2008), (Park, et. al, 2008). 

 

Given the phenomenal increasing in the parallel 
processing capabilities of the Graphics processing units 
in the recent years, another domain that is a witnessing 
a massive surge in CUDA mediated application 
development is modern medical science. In this regard a 
study carried out by Boyer et al. demonstrated that 

white blood cell detection and tracking in microscopic 
images can be fastened by up to two hundred times 
through a Graphics processing unit implementing the 
CUDA programming model (Boyer, et. al, 2009). 
Another interesting approach presented in a different 
study involved an intuitive integration of the CPU and 
GPU architecture for the purpose of biological image 
analysis. The proposed image analysis application can 
invoke multiple kernel processes and contain operators 
for data streaming, image convolutions and even 
histogram processing (Hartley, et. al, 2008). Other 
studies presented interesting implementation of 
biological image segmentation applications through the 
use of the CUDA paradigm and CUDA compatible 
Graphics processing units (Pan, et. al, 2008), (Ruiz,     
et. al, 2008). It can be stated that the current CUDA 
approaches are facilitating the parallel processing of the 
standard image analysis operations but there is a 
pertaining need and scope for further development in 
the domains of biological image processing. 

 

Another important image processing technique is 
convolution filtering that can be utilized for smoothing 
of digital images and image edge detection. While 
convolutions find extensive mention and utilization in 
the engineering domain, they are also being used in blur 
filters and edge detection of digital images. A 
convolution filter that is two-dimensional in nature need 
the kernel height and width multiplication for every 
pixel that is sent as an output. When the convolution 
filters are separable in nature they integrate a one-
dimensional filter for the rows and another one for the 
image columns. 

 

For the purpose of utilizing the CUDA paradigm for 
implementing convolutions the first step is load an 
image data block to a memory allocation that is shared. 
This is followed by the height and width multiplication 
of a data section that is the size of a convolution filter 
and addition of the value to the output image data 
within the memory of the device as shown in (Fig. 5) 
below. As it can be seen in the figure, the execution of 
the convolution algorithm involves loading of an image 
pixel block onto an array located in a shared memory 
allocation. 

 
 

Fig.5. Schema of the convolution algorithm 

J. DEVI et al.,                                                                                                                                                                                       04 



For the calculation and deduction of an output pixel 
shown in red, a multiplication of an image section that 
is sent as an input and shown in orange is carried out 
within the kernel shown in purple. The output pixel that 
is retrieved is engraved back onto the main image. 

 
Notes under each table and figure should be used to 

explain and specify the source of all data shown. 
 
4.                        CONCLUSION 

The 21st century is witnessing a phenomenal rise in 
the generation of digital data and presenting unique data 
processing challenges to the scientific community. An 
innovative and effective approach to deal with the 
processing load of this massive data surge is 
parallelization of the computational processes. The 
strength of the CUDA programming model lies in the 
possibility of extensive parallelization of the 
computational processes in the form of threads, wraps 
and blocks and their concurrent processing across 
multiple cores. This not just decreases the 
computational load but also speeds up data processing 
and optimize performance. While CUDA finds 
application in multiple domains, exciting avenues are 
being explored in the area of image processing and 
analysis. This study presents an exhaustive review of 
the CUDA programming approach and the the 
implementation of CUDA for digital image processing 
and analysis, It is anticipated that the knowledge gained 
from this study will serve as an excellent know base 
that would stimulate conceptualization of innovative 
ideas in future. 
 

REFERENCES: 
Abecassis, F., S. Lavernhe, C. Tournier and P. Boucard, 
(2015). "Performance evaluation of CUDA 
programming for 5-axis machining multi-scale 
simulation", Computers in Industry, vol. 71, 1-9. 
 

Boyer, M., D. Tarjan, S. Acton and K. Skadron, (2009). 
"Accelerating leukocyte tracking using CUDA: A case 
study in leveraging manycore coprocessors", 2009 
IEEE International Symposium on Parallel & 
Distributed Processing. 
 

Cheng, J. M. Grossman and T. KcKercher, (2014). 
Professional CUDA C programming, 1st ed. 
Indianapolis: Wrox,. 2-110. 
 

Catanzaro, B., B. Su, N. Sundaram, Y. Lee, M. Murphy 
and K. Keutzer, (2009). "Efficient, high-quality image 
contour detection", 2009 IEEE 12th International 
Conference on Computer Vision 
 
 
 

De Donno, D., A. Esposito, L. Tarricone and                
L. Catarinucci, (2010). "Introduction to GPU 
Computing and CUDA Programming: A Case Study on 
FDTD [EM Programmer's Notebook", IEEE Antennas 
and Propagation Magazine, vol. 52, no. 3, 116-122. 
 
Gu J. and L. Gu, (2006). “Fast DDR Generation Based 
on GPU,” International Journal of Computer Assisted 
Radiology and Surgery. 
 
Hartley, T., U. Catalyurek, A. Ruiz, F. Igual, R. Mayo 
and M. Ujaldon, (2008). "Biomedical image analysis on 
a cooperative cluster of GPUs and multicores", 
Proceedings of the 22nd annual international 
conference on Supercomputing - ICS '08. 
 
Luo and R. Duraiswami, (2008)."Canny edge detection 
on NVIDIA CUDA", 2008 IEEE Computer Society 
Conference on Computer Vision and Pattern 
Recognition Workshops. 
 
Park, S., S. Ponce, J. Huang, Y. Cao and F. Quek, 
(2008). "Low-cost, high-speed computer vision using 
NVIDIA's CUDA architecture", 37th IEEE Applied 
Imagery Pattern Recognition Workshop. 
 
Pan, L., L. Gu and J. Xu, (2008). "Implementation of 
medical image segmentation in CUDA", 2008 
International Conference on Technology and 
Applications in Biomedicine. 
 
Ruiz, J. K., M. Ujaldon, K. Boyer, J. Saltz and             
M. Gurcan, (2008). "Pathological image segmentation 
for neuroblastoma using the GPU", 5th IEEE 
International Symposium on Biomedical Imaging: From 
Nano to Macro. 
 
Sharp, G., N. Kandasamy, H. Singh and M. Folkert, 
(2007). "GPU-based streaming architectures for fast 
cone-beam CT image reconstruction and demons 
deformable registration", Physics in Medicine and 
Biology, vol. 52, no. 19,  5771-5783. 
 
Vetter C.  and C. Guetter and C. Xu and R. 
Westermann, March, (2007). “Nonrigid multi-modal 
registration on the GPU,” Medical Imaging 2007: 
Image Processing, SPIE, vol. 65, 12. 
 
Yang, Z., Y. Zhu, Y. Pu, (2008). “Parallel Image 
Processing Based on CUDA”, 2008 International 
Conference on Computer Science and Software 
Engineering, 2008 Dec. 12-14, 198-201. 
 
 
 
 

CUDA: A new paradigm for parallelization and computational efficiency                                                                                                                05 


