

 SINDH UNIVERSITY RESEARCH JOURNAL (SCIENCE SERIES)

A Tool for Query Normalization and Elimination of Redundancy

M. S. VIGHIO++, T. J. KHANZADA, M. KUMAR

Department of Information Technology, Quaid-e-Awam University of Engineering, Science & Technology,
Nawabshah, Sindh, Pakistan

Received 10th June 2018 and Revised 15th September 2018

1. INTRODUCTION
Database (DBMS) are complex programs which

allow users to enter queries, translate these queries in a
format required for data access, and produce
meaningful results efficiently i.e., results which take
less processing time and consume fewer resources
(Connolly et al., 2004). Developing efficient DBMS
software has always been a challenge for software
developers because there are many factors which
influence on the performance of DBMS software. These
factors include design approaches, optimization
strategies, redundancy, response time and throughput.
The DBMS developers have to make intelligent
decision making in order to develop better software.
This decision making involves which design
approaches to use for designing the DBMS software,
which optimization strategies to implement, how to
control the redundancy in data and queries, how to
decrease the response time, and how to increase
throughput. Among all these factors, redundancy and
complexity is the direct result of users' interaction with
the DBMS software. Redundancy refers to the
unnecessary or duplicate information. Redundancy is a
source of risk and creates unpredictable problems for
the DBMS software at the time of executing queries
(Chaudhuri et al., 2004). Redundancy may occur at the
level of data and queries. Redundancy in data is a much
researched topic in the literature, see for example
(Darwen et al., 2012, Vincent, 1995, Date, 2003). On
the other hand, this paper focuses on redundancy in
queries and also investigates its effects on the
performance of relational database systems. As a result
of redundancy, queries become more complex and put
extra burden of simplification on DBMS software.
Thus, the overall performance of the system is reduced

(Vardi, 1982, Papadimitriou et al., 1997). Redundancy
and complexity result in the following:

 Wastage of space
 Increase in response time
 Maximum resource consumption
 Search may fail due to complexity
 Overall performance may be reduced.

This indicates that redundancy and complexity are
big problems for database systems. Moreover,
eliminating them may even be a bigger problem which
requires additional time and resources for simplification
(Jarke et al., 1984). However, this problem can be
resolved by developing better algorithms and
techniques. The main objective of this paper is to
highlight the effects of redundancy and complexity in
user queries on the performance of relational database
systems. For this purpose, we have developed a tool
that automatically detects and eliminates redundancy
from input SQL queries and produces a simplified
query along with the statistics of cost incurred on
simplification process. The tool implements an
algorithm and mathematical rules (idempotent and
equivalence rules) to normalize queries in the initial
phase of processing. As a result, an equivalent query is
achieved that can be useful for further processing and
optimization more efficiently. The paper also presents a
detailed comparison of execution time and consumption
of resources when redundant and complex queries are
executed with and without the tool support.

Related Work:
Query processing and optimization has been

discussed in much detail in the literature (Antoshenkov
et. al, 1996, Kossmann, 2000, Ceri et al., 1985, Molina

Sindh Univ. Res. Jour. (Sci. Ser.) Vol. 50 (3D) 143-147 (2018)

Abstract: Redundancy and complexity in user queries reduce the performance of database software. A remedy is to simplify
queries before their processing. This paper presents a tool that automatically simplifies queries in the initial phase of their
processing. Simplification process is implemented using idempotent and equivalence rules for simplification. Also, the tool
automatically performs normalization of complex and redundant queries, and as a result provides a simplified query along with
the cost incurred on simplification process. The paper also presents a detailed cost comparison of executing redundant and non-
redundant queries. Experimental results show that the queries involving redundancy and complexity take more time and consume
more resources as compared to executing non-redundant queries.

Keywords: Relational DBMS, Normalization, Structured Query Language.

++ Corresponding Author: Email: saleem.vighio@quest.edu.pk

et al., 2008). However, query normalization and
elimination of redundancy still requires much attention
as it directly effects on the performance of the database
systems. In (Chan et al., 1999), the importance of query
complexity as a determinant of user performance when
retrieving information from a database has been
examined. Using the classification of simple versus
complex queries, the authors in (Chan et al., 1999)
found that the complexity in user queries significantly
affects the performance of the database. (Bendre, 2015)
has developed a tool that translates relational algebraic
statements to Structured Query Language (SQL). By
extending the work presented in (Bendre, 2015), the
authors in (Memon et al., 2015) have implemented few
optimization strategies in their tool. The
implementation ideas presented in (Bendre, 2015) and
(Memon et al., 2015) remained helpful for developing
our query simplification tool. (Ozsu et al., 2007) and
(Elmasri et al., 1999) have provided a detailed
introduction of query normalization and elimination of
redundancy using idempotent and equivalence rules.
However, cost of simplification and effects of
redundancy and complexity on the performance of
DBMS have not been discussed. To fill in that gap, the
tool presented in this paper implements the techniques
presented in (Ozsu et al., 2007) and (Elmasri et al.,
1999) in order to highlight the adverse effects of
redundancy and complexity on the performance of
DBMS software. The tool is expected to help in
understanding query processing concepts and
elimination of redundancy in a better way. Further, the
tool may also be helpful for the development of
efficient DBMS software with a particular focus on
query simplification.

The rest of the paper is organized as follows:
Section 2 presents methodology followed for the
development of the tool. Section 3 gives tool details and
elaborates the actual procedure for performing
simplification of redundant and complex queries.
Section 4 gives detailed comparison of performance
results achieved after executing redundant and non-
redundant queries with and without the tool support.
Section 5 gives conclusive remarks and suggestions for
the future work.

2. METHODOLOGY
The tool is implemented using Visual Studio C#

language and allows connectivity with SQL Server
databases. As it is evident from the literature that the
WHERE clause of any SQL query is considered as the
most complex part of the query as it may involve
redundant predicates (Ozsu et al., 2007). Therefore, we
have also focused on the WHERE clause of the input
SQL query for simplification purpose. Query
simplification has been performed by applying both
equivalence and idempotent rules together, because

only solely combination of these rules allows to detect
and eliminate redundancy and complexity of queries
spontaneously.

It is worth mentioning that these standard rules are
implemented with few minor simplification because
empirical implementation in programming language is
entirely tricky. The complete implementation of the tool
is available at (Vighio et al, 2017a).

Fig. 1. System Model

(Fig 1), the tool works in the following seven steps:

Step 1: Input query in SQL from the user,
Step 2: Transformation of SQL query in internal
representation i.e., normal (logical) form suitable for
applying simplification rules,
Step 3: Decomposing query into tokens,
Step 4: Replacing tokens with predicates (e.g.
POSITION = PLAYER as P1),
Step 5: Applying Depth-First-Search (DFS) technique
for searching suitable simplification rule(s),
Step 7: Producing simplified query in SQL format
along with the statistics of cost incurred on the
simplification process.

The idea of implementing DFS algorithm for
finding suitable simplification rule(s) is based on its
property of linear memory requirement with respect to
the search space (Cormen et al., 2001). Under this
strategy, the search starts from the root and explores
each rule along each branch before backtracking, see
(Fig 2). The rules implemented are idempotent
and equivalence for simplification as given in (Table 1
and 2) below and provided in (Ozsu et al., 2007).

Fig. 2. Order of Visiting Rules Using DFS Algorithm

M. S. VIGHIO et al., 144

Table–1: Equivalence rules for simplification

1 P1 ˄ P2 ↔ P1˄ P2
2 P1 ˅ P2 ↔ P1˅ P2
3 P1 ˄ (P2 ˄ P3) ↔ (P1 ˄ P2) ˄ P3
4 P1 ˅ (P2 ˅ P3) ↔ (P1 ˅ P2) ˅ P3
5 P1 ˄ (P2 ˅ P3) ↔ (P1 ˄ P2) ˅ (P1 ˄ P2)
6 P1 ˅ (P2 ˄ P3) ↔ (P1 ˅ P2) ˄ (P1 ˅ P2)
7 ⌐(P1 ˄ P2) ↔ ⌐P1 ˅ ⌐P2
8 ⌐(P1 ˅ P2) ↔ ⌐P1 ˄ ⌐P2
9 ⌐(⌐P) ↔ P

Table–2: Idempotent rules for simplification

1 p ˄ p ↔ p
2 p ˅ p ↔ p
3 p ˄ true ↔ p
4 p ˅ false ↔ p
5 p ˄ false ↔ false
6 p ˅ true ↔ true
7 p ˄ ⌐ p ↔ false
8 p ˅ ⌐ p ↔ true
9 p ˄ (p1 ˅ p2) ↔ p1

10 p ˅ (p1 ˄ p2) ↔ p1

3. TOOL DETAILS

The tool is implemented in Visual Studio C#
language. The key features of the tool include:
 allowing connectivity with SQL server databases,
 correctly verifying syntax and semantics of each
input query,
 generating complete trace of applying simplification
rules, and

 producing simplified SQL query along with
statistics of time and resources used in the
simplification process.

Implementation details are provided as an extension of
our previous paper (Vighio et al., 2017b) for clear
understanding of the working of the tool. Simplification
rules are implemented using an array string rules
[]= newstring[]
{"!(!(A))=A","AVA=A","A^A=A","A^FALSE=FALS
E",…};

Since users are allowed to type queries in all formats, in
order to maintain the consistency of the text user query
is converted to lower case

query = query.ToLower();
where "query" is a string variable used to hold user
query typed in rich text box

string query = richTextBox1.Text;
The entered query is checked to contain the WHERE
clause and if it is found, the query is transformed into
normal (logical) form and stored in Tra_query
variable; otherwise, the same input query is printed as
final output as it does not requires simplification. if
(query. Contains("where"))
 {

 //query is transformed into
 relational algebra and stored
 in Tra_query variable.

 }
else
 {

 //print query
 }
 Once the query is transformed into normal (logical)
form, simplification rules are applied on query using a
loop. The loop continues till all the rules are applied
and the query is simplified.

for(int i = 0; i<Rules.Length;i++)
{
 string lhs =
 rules[r].Substring(0,rules[r].IndexOf("="));
 string rhs = rules[r].Substring(rules[r].IndexOf("=") +
1);

if (Tra_query.Contains(lhs))
 {
 Tra_query=Tra_query.Replace(lhs,rhs);
 }
}

Inside the loop body each rule is divide into two
parts i.e., before and after the "=" sign and stored in lhs
and rhs variables respectively. The query expression is
searched for lhs expression and if it is found it is
replaced with equivalent rhs expression as provided in
the list of rules. This process continues till no further
rules are applicable. In that case, the final query is
returned as a simplified query along with the statistics
of CPU execution time and memory usage. For that a
built-in Performance Counter() function is used with
the following commands:
Performance Counter cpu Counter = new Performance
Counter();
Performance Counter ram Counter = new Performance
Counter();

The initial and final CPU execution time and RAM
values are set as delimiters. After the simplification
process completes, the final values are subtracted from
the initial values in order to obtain the cost incurred on
the simplification process. As provided in (Vighio
et al., 2017), the procedure for translating SQL query in
normal form and eliminating redundancy is explained
with the help of the following query example that finds
locations of students whose name is HARRIS.

Select Location
From Student

Where (NOT (Location like ’New York’) and (Location
like ’New York’ or Location like ’Texas’)

and not (Location like ’Texas’)) or
Name like ’Harris’

Redundancy and complexity can be seen in the
WHERE clause of the query (repeating same statements
with the use of multiple AND, OR, and NOT
operators). Once the query has been entered and
simplification process is started, the tool finds

A Tool for Query Normalization... 145

predicates from the WHERE clause of the query and
converts query in logical form connected with AND,
OR, or NOT operators as provided in the query.

Based on the above example query, following
predicates are found:

P1 Location like ’New York’
P2 Location like ’Texas’
P3 Name like ’Harris’
Further, based on the predicates found, following

query qualification is achieved:
(⌐ p1 ˄ (p1 ˅ p2) ˄ ⌐ p2) ˅ p3

 The tool scans the qualification expression, finds
and applies suitable simplification rule(s) as provided in
Table 1 and 2 using DFS search strategy, and produces
a simplified query such that no further simplification is
possible.
 The simplification proceeds as follows: By applying
rule 5 of Table 1 the new qualification achieved is:

(p1˄ ((p1 ˄ p2) ˅ (p2 ˄ p2))) ˅ p3
Further, the new expression is scanned again and

simplification rule 3 of Table 1 is applied to obtain:
(p1 ˄ p1 ˄ p2) ˅ (p1˄ p2 ˄ p2) ˅ p3
By Applying rule 7 of Table 2, the new expression

is:
(false ˄ p2) ˅ (p1 ˄ false) ˅ p3
By Applying rule 5 of Table 2, we obtain:
(false ˅ false) ˅ p3

By applying rule 4 of Table 2, the expression
produced is:

p3
Since no further simplification rule is found

applicable, the tool converts the final expression to its
equivalent SQL form and produces the simplified query
as given below:

Select Location
From Student
Where Name like ’Harris’
Fig. 3 shows the user interface of the tool along with

input query in SQL form, trace of applying rules, and
generating final query in SQL form. Furthermore, the
tool also shows the cost of simplification process.

4. EXPERIMENTAL RESULT

 Using this tool support, the cost of executing
redundant and non-redundant queries can be measured
separately in terms of CPU time and memory usage.
Furthermore, the time it takes to eliminate redundancy
has also been calculated. The key objective is to
highlight the effects of redundancy and complexity in
user queries on the performance of database. The tests
are performed on Windows 10 Home Single Language,
64-Bit Operating System, Intel (R) Core(TM)i5-3230M
CPU, 2.60 GHz. Microsoft Visual Studio 2012 version,
and connectivity has been provided with Microsoft SQL
Server 2012. For experimental results, we have created

University database containing STUDENT relation as
shown in (Table 3).

As shown in (Fig. 3), query for finding student
locations whose name is Harris has been simplified at
CPU cost of 5.96%, memory cost of 0.26Mb, and total
simplification time of 7.27 micro seconds. In total 11
steps are used including also translating WHERE clause
to normal form and using the simplification rules.

Table – 3: Student relation

StId Name Class Location
17CS25 Harris 2 Texas
17CS21 Julian 1 Texas
17CS22 Robert 2 Utah
17CS23 Rehana 1 Utah
17CS24 Joseph 2 Indiana
17CS34 Harris 2 New York

Fig. 3. Tool Interface with Query Execution

The non-redundant version of the same query has
also been experimented and in that case, the cost of
CPU was 3.06%, memory usage remained 0.07Mb, and
0.28 micro seconds were used for translating SQL
query to normal form and translating it back to SQL
form after no simplification was found applicable.

Furthermore, the experiments have also been
performed in SQL server environment directly both for
redundant and non-redundant queries; the results of
which are shown in (Table 4).

Parameter

Average Cost
Improvem

ent
in %

Redund
ant

Query

Simplifie
d Query

Query profile statistics
Number of SELECT
statements

1 1 0

Rows returned by SELECT
statements

2 2 0

Network statistics
Bytes sent from client 566 192 374
Bytes received from server 1214 1031 138
Time statistics
Client processing time 23 13 10
Total execution time 67 14 53
Wait time on server replies 44 1 43

M. S. VIGHIO et al., 146

As it can be seen from Table 4, there is a clear
difference in average cost of executing redundant and
non-redundant queries in terms of processing time and
resources. The cost of executing redundant queries can
be even more higher if complexity and redundancy is
increased.

5. CONCLUSION
In this paper, we presented a tool that checks

redundancy and complexity in SQL queries and
automatically provides simplified query along with the
statistics of CPU and memory incurred on the
simplification process. The tool has been tested to
provide:
 connectivity with SQL server databases,
 correctly verifying syntax and semantics of each
input query,
 generating complete trace of applying simplification
rules, and
 producing non-redundant SQL query along with
statistics of CPU and memory used in the simplification
process.

Based on the experimental results, it is concluded
that the execution of redundant and complex queries
require more processing time and resources as
compared to simple and non-redundant queries.
Furthermore, redundancy and complexity in SQL
queries puts extra burden of simplification on DBMS
software and ultimately effects on the overall
performance of the DBMS. In order to develop better
DBMS software, it is suggested and complexity in user
queries must be eliminated in initial phase.

REFERENCES:
Antoshenkov G. and M. Ziauddin (1996). “Query
processing and optimization in oracle rdb,” The VLDB
Journal, vol. 5, no. 4, pp. 229–237, Dec. 1996. [Online].
Available: http://dx.doi.org/10.1007/s007780050026

Bendre M. (2015). “Relational algebra translator (rat)
[accessed: Oct 10, 2015],”
 http://www.slinfo.una.ac.cr/rat/rat.html.

Ceri S. and G. Gottlob (1985) “Translating sql into
relational algebra: Optimization, semantics, and
equivalence of sql queries,” IEEE Trans. Softw. Eng.,
vol. 11, no. 4, pp. 324–345, Apr. 1985. [Online].
Available: http://dx.doi.org/10.1109/TSE.1985.232223

Chan H. C., C. Tan B. and K.-K. Wei (1999). “Three
important determinants of user performance for
database retrieval,” Int. J. Hum.-Comput. Stud., vol. 51,
no. 5, pp. 895–918, Nov. 1999. [Online]. Available:
http://dx.doi.org/10.1006/ijhc.1999.0272
Darwen Hugh, Data C. J. and R. Fagin (2012), A
Normal Form for Preventing Redundant Tuples in
Relational Databases, In Proceedings of the 15th

International Conference on Database Theory
(ICDT'12), is bn = 978-1-4503-0791-8, 114-126,
Publisher ACM, USA.

Date, C. J. (2003), An Introduction to Database
Systems, isbn = 0321197844, edition = 8, publisher =
Addison-Wesley Longman Publishing Co., Inc., address
= Boston, MA, USA.

Elmasri R. A. and S. B. Navathe (1999). Fundamentals
of Database Systems, 3rd ed., C. Shanklin, Ed. Boston,
MA, USA: Addison-Wesley Longman .

Jarke M. and J. Koch (1984). “Query optimization in
database systems,” ACM Comput. Surv., vol. 16, no. 2,
pp. 111–152, June. 1984. [Online]. Available:
http://doi.acm.org/10.1145/356924.356928.

Kossmann D. (2000). “The state of the art in distributed
query processing,” ACM Comput. Survey. vol. 32, no.
4, 422–469, [Online]. Available:
http://doi.acm.org/10.1145/371578.371598.

Memon N., M. S. Vighio S. Nizamani N. A. Memon
A. R. Memon and U. R. Shaikh (2015). “Analysis of
query processing and optimization,” Bahria University
Journal of Information & Communications Technology
(BU-JICT), vol. 8, no. 1, 14–20.

Molina H. G., J. D. Ullman and J. Widom (2008),
Database Systems: The Complete Book, 2nd ed. Upper
Saddle River, NJ, USA: Prentice Hall Press.

Ozsu M. T. (2007). Principles of Distributed Database
Systems, 3rd ed. Upper Saddle River, NJ, USA:
Prentice Hall Press,

Papadimitriou C. H. and M. Yannakakis (1997). “On
the complexity of database queries,” in Proceedings of
the Sixteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, ser.
PODS ’97. New York, NY, USA: ACM, 1997, pp. 12–
[Online]. Available:
http://doi.acm.org/10.1145/263661.263664

Vincent M. W. (1995), "Redundancy Elimination and a
New Normal Form for Relational Database
Design", In proceeding of Semantics in Databases,
Selected Papers from a Workshop, Prague, Czech
Republic, 1995, 247-264.

Vighio M. S., T. J, Khanzada M. Kumar (2017a).
“Query Simplification Tool. [Online]. Available:
https://sites.google.com/a/quest.edu.pk/saleem/tool

Vighio M. S., M. Kumar (2017b). “Analysis of the
Effects of Redundancy on the Performance of
Relational Database Systems, In proceedings of the 3rd
International Conference on Engineering, Technologies
and Social Sciences (ICETSS'17), held AIT, Bangkok.

A Tool for Query Normalization... 147

