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1.         INTRODUCTION  

The partial differential equations arise in many 

phenomena of science and engineering. Most of these 
being second order partial differential equations. Two 

classes of second order parabolic partial differential 

equations had been under consideration by the authors 

in past, one with nonlocal initial conditions, while 

others consisting of nonlocal boundary conditions. This 

paper focusses the first type of parabolic partial 

differential equation with nonlocal initial conditions. 

Partial differential equations involving nonlocal initial 

conditions arise in the study of inverse heat conduction 

problems for determining the unknown physical 

parameters (Cannon and Yin, 1990, 1991, 1988)  
(Chadam,  and Yin, 1990)  (Karimi, and Vafapisheh, 

1993) (Bysezewski, 1991,1992,1994) and study of 

diffusion in atomic reactors (Dehghan, 2004). discussed 

schemes for the solution of one dimensional parabolic 

partial differential equations, based on forward time and 

centered scheme explicit formula, FTCS is conditionally 

stable, backward time and centered space implicit 

formula, BTCS is unconditionally von Neumann stable 

Moreover, in same work, Dehghan developed two new 

explicit schemes using Saulyev’s first kind and 

Saulyev’s second kind formula and compared with 

former schemes, these two new schemes Saulyev’s first 
and saulyev’s second kind are unconditionally stable 

(Dehghan, 2004). In (Dehghan, 2005), Dufort–Frankel 

(1,3,1) was also used by Dehghan to find solution of 

equations (1-4), this Dufort-Frankel scheme is 

unconditionally stable, this scheme is modification of 

Richardson scheme with average time at n-1 and n+1 

level was also used. (Dehghan, 2005) Richardson 

scheme uses central difference of both time and space 

which was found unconditionally unstable, a Finally, 

Dehghan gave two more, a three level forth order and 

three level sixth order explicit schemes for 

approximation of this problem, these two schemes are 
von Neumann conditionally stable (Dehghan, 2005). In 

(Beibalaev, 2015), authors approximated the solution of 

a fractional heat diffusion-wave equation without initial 

conditions by finite difference method, using central 

difference for space derivative and forward difference 

for time. In (Rahaman, 2015) used finite difference 

approximation for solution of one-dimensional diffusion 

equation by using forward time center space method.  

Crandall’s implicit scheme, this Crandall’s scheme is 

unconditionally von Neumann stable (Crandall,1955) 

and Crank-Nicholson implicit technique using strong 
maximum principle with weighting averages (Crank,  

and  Nicolson, 1974), this Crank-Nicholson scheme is 

unconditionally von Neumann stable (Crank,  and  

Nicolson, 1974).  
 

2.       MATERIAL AND METHODS 

2.1. General description: 

In this paper, we consider the problem of finding 

unknown 𝑢(𝑥, 𝑡) in the parabolic partial differential 

equation. 
 

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
+ ∅(𝑥, 𝑡),      0 < 𝑥 < 1, 0 < 𝑡 ≤ 𝑇,      (1) 

With Dirichlet boundary conditions. 

𝑢(0, 𝑡) = 𝑔0(𝑡),      0 < 𝑡 ≤ 1,                (2) 

𝑢(1, 𝑡) = 𝑔1(𝑡),      0 < 𝑡 ≤ 1,                (3) 

Nonlocal time weighting initial conditions. 

𝑢(𝑥, 0) = ∑ 𝛽𝑗(𝑡)𝑢(𝑥, 𝑇𝑗) + 𝜑(𝑥)

𝑁

𝑗=1

,      0 < 𝑥 < 1,

0 < 𝑇1 , 𝑇2, … , 𝑇𝑁

= 𝑇,                         (4) 
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2.2. Existing schemes:  

Various explicit and implicit schemes are present to 

solve the model problem (1-4). The FTCS, Duke-

Frankel, Saulyev’s First Kind Formula, Saulyev’s 

Second Kind Formula, (1,3,1) Fourth Order and (1,3,3) 
Sixth Order, are among explicit schemes. We present 

the Saulyev’s First kind formula and its new 

modification in the section. 

 

2.2. Saulyev’s First Kind Formula: 

The direct substitutions of finite difference 

approximation for derivatives in (1) for subjected 

schemes resulted the following. 

 

𝑢𝑖
𝑛+1 =

1

1 + 𝑠
[𝑠𝑢𝑖−1

𝑛+1 + (1 − 𝑠)𝑢𝑖
𝑛 + 𝑠𝑢𝑖+1

𝑛

+ 𝑘∅𝑖
𝑛]           (5) 

This scheme is unconditionally stable for all s > 0, .  
 

2.3. Proposed scheme:  

In this scheme, we use forward difference quotient 
for time derivative approximation and average of 

Saulyev’s First kind formula and its modification for 

space derivative approximation given as;  

 

𝑢𝑡 =
𝑢𝑖

𝑛+1 − 𝑢𝑖
𝑛

𝑘
                                  (6) 

𝑢𝑥𝑥

=
1

2

𝑢𝑖−1
𝑛+1 − 𝑢𝑖

𝑛 − 𝑢𝑖
𝑛+1 + 𝑢𝑖+1

𝑛

ℎ2

+
1

2

𝑢𝑖−1
𝑛−1 − 𝑢𝑖

𝑛 − 𝑢𝑖
𝑛−1 + 𝑢𝑖+1

𝑛

ℎ2
        (7) 

 

Now, substituting (6) and (7) in (1) yields the following; 
 

𝑢𝑖
𝑛+1 =

1

(2 + 𝑠)
[𝑠𝑢𝑖−1

𝑛+1 + (2 − 2𝑠)𝑢𝑖
𝑛 + 2𝑠𝑢𝑖+1

𝑛

− 𝑠𝑢𝑖
𝑛−1 + 𝑠𝑢𝑖−1

𝑛−1 + 2𝑘∅𝑖
𝑛]   (8) 

 

3. COMPARISON AND NUMERICAL 

EXAMPLES: 

To examine our new modified scheme with 
Saulyev’s first kind formula, we perform a numerical 

test in this section with following example. 

 

∅(𝑥, 𝑡) = (−1 + 𝜋2) sin(𝜋𝑥) exp(−𝑡), 
𝑢(𝑥, 0) = 𝛽1𝑢(𝑥, 𝑇1) − 𝛽2𝑢(𝑥, 𝑇2) + 𝜑 , is Initial 

Condition, 

 

𝜑(𝑥) = sin(𝜋𝑥) (1 − eT1 + eT2) , 

𝑔0(𝑡) = 0, 𝑔1(𝑡) = 0,   are boundary condition, 0 <
𝑇1 < 𝑇2 = 𝑇 = 1. 
 

Note that:𝐿2 error norm is defined as 𝐿2 = ‖𝑢 − 𝑢̃‖2 =

√
1

𝑚
∑ |𝑢𝑖 − 𝑢𝑖̃|

2𝑚
𝑖=1                                                  (9)in (9), 

u is exact solution and 𝑢̃ is approximate solution 

 

4.     RESULTS AND DISCUSSION 

In this section, we have summarized the results 

regarding the values of s=1/4, 1/3 and 1/2, and 

regarding time 𝑇1 = 0.5 𝑎𝑛𝑑 𝑇2 = 1.0,𝑇1 =
0.5 𝑎𝑛𝑑 𝑇2 = 0.75. The 𝐿2 error norm in (9) are 

obtained for the numerical example at T=1 with 

different values of h. 

 

4.1. Tables Regarding 𝒔 =
𝒌

𝒉𝟐 

Table: 01 

𝐿2error norm at T=1, withs =
1

4
, 𝛽1 = 1 𝑎𝑛𝑑 𝛽2 = −1 , 𝑤ℎ𝑖𝑙𝑒 𝑇1 = 0.5 𝑎𝑛𝑑 𝑇2 = 1.0 are given in this table. 

Number of 

time steps n 

Step size  

‘h’ 
𝐿2 Norm 

Saulyev’s First Kind  

𝐿2 Norm 

New Modified 

Maximum 

Saulyev’s First kind 

Maximum 

New Modified 

400 0.1 8.6953e-003 7.4326e-003 3.9763e-003 3.3240e-003 

1600 0.05 3.0981e-003 2.5289e-003 1.0566e-003 7.9972e-004 

6400 0.025 1.1374e-003 7.4375e-004 3.0099e-004 1.6631e-004 

25600 0.0125 5.1269e-004 3.4478e-005 8.7516e-005 5.4514e-006 

 

Table 02 

𝐿2error norm at T=1, withs =
1

3
, 𝛽1 = 1 𝑎𝑛𝑑 𝛽2 = −1 , 𝑤ℎ𝑖𝑙𝑒 𝑇1 = 0.5 𝑎𝑛𝑑 𝑇2 = 1.0 are given in this table. 

Number of time 

steps n 

Step size 

‘h’ 

𝐿2 Norm 

Saulyev’s First Kind 

𝐿2 Norm 

New Modified 

Maximum 

Saulyev’s First kind 

Maximum 

New Modified 

300 0.1 9.1175e-003 7.3935e-003 4.2297e-003 3.3065e-003 

1200 0.05 3.3325e-003 2.5162e-003 1.1673e-003 7.9569e-004 

4800 0.025 1.3296e-003 7.3939e-004 3.5714e-004 1.6533e-004 

19200 0.0125 6.8156e-004 3.2957e-005 1.1533e-004 5.2110e-006 
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Table 03 

𝐿2error norm at T=1, withs =
1

2
, 𝛽1 = 1 𝑎𝑛𝑑 𝛽2 = −1 , 𝑤ℎ𝑖𝑙𝑒 𝑇1 = 0.5 𝑎𝑛𝑑 𝑇2 = 1.0 are given  in table 03. 

Number of time 

steps n 

Step size 

‘h’ 

𝐿2 Norm 

Saulyev’s First Kind 

𝐿2 Norm 

New Modified 

Maximum 

Saulyev’s First kind 

Maximum 

New Modified 

200 0.1 1.0005e-002 7.3143e-003 4.7336e-003 3.2711e-003 

800 0.05 3.8568e-003 2.4906e-003 1.4045e-003 7.8758e-004 

3200 0.025 1.7511e-003 7.3065e-004 4.7112e-004 1.6338e-004 

12800 0.0125 1.0196e-003 2.9916e-005 1.7095e-004 4.7301e-006 

 

4.2. Tables Regarding 𝑻𝟏 𝒂𝒏𝒅 𝑻𝟐 

Table 04 

L2error norm at T=1, withs = 0.25, 𝛽1 = 1 𝑎𝑛𝑑 𝛽2 = −1 , 𝑤ℎ𝑖𝑙𝑒 𝑇1 = 0.25 𝑎𝑛𝑑 𝑇2 = 1.0 are given in this table.  

 

Number of time 

steps n 

Step size 

‘h’ 

𝐿2 Norm 

Saulyev’s First Kind 

𝐿2 Norm 

New Modified 

Maximum 

Saulyev’s First kind 

Maximum 

New Modified 

400 0.1 8.7129e-003 7.4487e-003 3.9840e-003 3.3311e-003 

1600 0.05 3.1096e-003 2.5407e-003 1.0600e-003 8.0345e-004 

6400 0.025 1.1440e-003 7.5216e-004 3.0253e-004 1.6819e-004 

25600 0.0125 5.1372e-004 4.0438e-005 8.8160e-005 6.3938e-006 

 

Table 05 

𝐿2error norm at T=1, withs = 0.25,  𝛽1 = 1 𝑎𝑛𝑑 𝛽2 = −1 , 𝑤ℎ𝑖𝑙𝑒 𝑇1 = 0.5 𝑎𝑛𝑑 𝑇2 = 0.75 are given in this table.  

 

Number of time 

steps n 

Step size  

‘h’ 

𝐿2 Norm 

Saulyev’s First Kind  

𝐿2 Norm 

New Modified 

Maximum 

Saulyev’s First kind 

Maximum 

New Modified 

400 0.1 8.6661e-003 7.4061e-003 3.9636e-003 3.3121e-003 

1600 0.05 3.0792e-003 2.5095e-003 1.0509e-003 7.9358e-004 

6400 0.025 1.1266e-003 7.2989e-004 2.9845e-004 1.6321e-004 

25600 0.0125 5.1115e-004 2.4650e-005 8.6497e-005 3.8976e-006 

 

4.3. Table Regarding Computational Times 

Table: 06  

Using Processor:Intel(R) Core (TM) M-5Y10c CPU @ 0.80GHz 1.00 GHz, Installed memory (RAM): 4.00 GB. 

 

Number of time 

steps n 

Step size  

‘h’ 

Computation Time of  

Saulyev’s First Kind  

Computation Time of 

New Modified 

400 0.1 0.025 seconds 0.037 seconds 

1600 0.05 0.094 seconds 0.134 seconds 

6400 0.025 0.763 seconds 0.949 seconds 

25600 0.0125 6.052 seconds 7.536 seconds 
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Fig. 1-a 

 
Fig. 2-a 

Fig. 1-b 

 
Fig.2-b 

 
Fig. 3 

 

The results for different values of s are shown in 

Tables 1-3. For s=1/4 in (Table 1), it can be seen that 

the𝐿2 error norm at T=1 with h=0.05 for the new 

modified method is less than that of Saulyev’s First kind 

formula. With h = 0.025 in Table 1 under same 

conditions, the L2 norm for new modified method is 
7.4375e-004, which is also less than the corresponding 

norm of the  Saulyev’s First kind formula. 

 

Similarly, for s =1/5 and s=1/3, respectively, it is 

evident from (Tables 2 and 3) that the error norms for 

the new modified method are smaller than those by the 

Saulyev’s First kind formula. The errorfurther becomes 

smaller as values of h decrease.For a fixed T=1, the 

maximum error norms across all x values are also 

described in Tables 1-3. It is clear that the maximum 

error norms obtained at each step size h by New 

Modified step size are also smaller than Saulyev’s first 
kind. For  a fixed value of s=1/4,  results  with  different 

values of time 𝑇1and 𝑇2  in nonlocal initial condition 

(17) such as 𝑇1 = 0.25, 𝑇2 = 1.0 and 𝑇1 = 0.5, 𝑇2 =
0.75 are shown in Table 4-5 respectively, it can be seen 

that the 𝐿2 error norm at T=1 with h=0.05 for the new 
modified method is less than that of Saulyev’s First kind 

formula, however the maximum error at the same tables 

also provide the sufficient evidence for the New 

modified method is better approximation for the 

unknown u(x, t). 

 

(Table 4-6) compares computational times by 

Saulyev’s First kind and New modified methods. It can 

be seen that there is little difference in CPU times by 

Saulyev’s First kind and New modified methods. 

Whereas the accuracy of new method is better than the 

Saulyev’s method (Tables 1-5). 
 

(Fig 1a and b) show the over-all errors by 
Saulyev’s First kind and New modified methods. There 
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is a little difference in the peak errors across t = 1000-

1500. This can be seen from Figures 2 (a and b), where 

the z-axis is reversed. To observe the error difference, 

the absolute errors of the final iteration, i.e. at T =1 are 

shown in (Fig. 1-2 and Fig. 3), in particular, show the 
improved performance of the new method.  

 

5.                             CONCLUSION 

In overall comparison of Saulyev’s First kind and 

New modified methods regarding 𝑠, 𝑇1, 𝑇2  , 𝛽1  𝑎𝑛𝑑 𝛽2, 
the performance of New method is quite satisfactory 

leading to more accuracy. The errors obtained are 

smaller than at each step size h. The accuracy also 

depends of values of 𝑠, 𝑇1 , 𝑇2  , 𝛽1 𝑎𝑛𝑑 𝛽2. It has been 

observed that the errors in the new method are always 
smaller than the errors of Saulye’s First kind formula, 

moreover the 𝐿2 error norm of new method also smaller 

than Saulyev’s first kind formula in all conditions. So 

the new method can be used in place of saulyev’s first 

kind formula to achieve better accuracy. 
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