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1.              INTRODUCTION 

The spacetime admitting the three-parameter group 

of motions of the Euclidean plane is said to possess a 

plane symmetry and is known as plane-symmetric 

spacetime. Many properties of this spacetimes are similar 

to those of spherically symmetric spacetime. Many 

researchers have studied plane-symmetric spacetime in 
different ways. Taub (Taub, 1951), Bondi (Bondi, 1957), 

Bondi and Pirani-Robinson (Bondi, et al., 1959) 

investigated plane-wave solutions. 

 

Nowadays, f(R) theory of gravity has become an 

active field of research. Researchers believe that the 

modification of Einstein’s theory with some inverse 

curvature terms may cause an increase in gravity that 

justifies the accelerated expansion (Capozziello, et al., 

2003) and (Carroll, et al., 2004). 

 

Recent literature (Sotiriou, 2006), (Amendola, et al., 
2007), (Sharif and Shamir, 2010), (Shamir and Raza, 

2015), (Felice and Tsujikawa, 2010), (Sotiriou and 

Faraoni, 2010), (Clifton, et al., 2012), (Nojiri and 

Odintsov, 2011), (Bamba, et al., 2014), (Bamba, et al., 

2010), (Bamba, et al., 2011), (Capozziello and Vignolo, 

2011), (Capozziello, et al., 2011) and (Elizalde, et al., 

2010) shows deep interest in exploring different problems 

in f(R) theory of gravity. Spherically symmetric solutions 

are the most widely explored exact solutions in f(R) 

gravity. Spherically symmetric vacuum solutions were 

studied in (Multamaki and Vilja, 2006) and it was found 
that the set of the field equations in f(R) theory of gravity 

gave the Schwarzschild de- Sitter metric. Nonvacuum 

plane symmetric static solutions of Einstein’s field 

equations in the metric of f(R) theory of gravity with the  

 

condition of constant and non-constant curvature was 

explored in (Shamir, 2016). These solutions provide 

Taub’s universe with a singularity at 0,x  which shows 

the presence of Black Hole. It can be noticed that with 
constant curvature assumption, the solution of EFEs 

becomes similar to Taub’s metric (Bedran, et al., 1997). 

  

Here, we are interested to find the curvature 

collineations (CCs) or curvature vector fields of plane 

symmetric static spacetime in f(R) theory of gravity with 

both constant and non-constant curvature assumptions and 

then we can compare it with curvature vector fields in 

general relativity (GR). A vector field X is called a 

curvature collineation (CC) if it satisfies the relation 

(Katzin, et al., 1969): 

 

0, (1.1)a

X bcdL R   

Or equivalently,  

; ;

; ;

;
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b c
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Where Lx denotes the Lie derivative of Riemann 

curvature tensor Ra
bcd along the vector field X and (;) 

denotes the covarient derivative. 
 

The vector field X is said to be proper curvature 

collineation if it is not affine (Hall and da costa, 1991). 

One can expand the above equation in a set of 22 

coupled CC equations (Shabbir, et al., 2003) given 

below  
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here comma (,) denotes the partial derivative. There 

is no summation over the repeated indices in above 

equations. The energy-momentum tensor acts as the 

source of spacetime curvature. It can be studied in 
the context of Einstien field equations  

 

1
. (1.2)

2
ab ab abR Rg T   

where Rab is the Ricci tensor, R is the Ricci scalar, gab is 

the metric tensor and 
4

8
,

G

c


  is the coupling 

constant. 

 

The paper is organized as follows. In section 2, 

brief introduction of f(R) gravity is given. In section 3, 

we introduce the metric with constant curvature 

assumption and discuss the curvature vector fields in 

detail. In section 4, curvature vector fields are discussed 

of given metric with non-constant curvature condition. 

The Results are summarized and concluded in the last 

section.   

2.       INTRODUCTION TO f(R) GRAVITY 

The f(R) theory of gravity is actually a 

generalization of general relativity. The action for 

f(R) gravity is given by (Multamaki and Vilja, 2006) 

 

41
( ) . (2.1)

16
mS g f R L d x

G

 
   

 
   

 Here, f(R) is a generic function of Ricci scalar (R) and 

,mL is called matter Lagrangian. This action is obtained 

by replacing R by f(R) in the standard Einstein-Hilbert 

action. The field equations can be found by varying the 

action with respect to the metric ,g  

1
( ) ( ) ( )

2

( ) , (2.2)

F R R f R g F R

g F R T

   

 

  

 

   

whereT is the standard energy-momentum tensor and  

( )
( ) , (2.3)

df R
F R

dR



     

where  is the covariant derivative. These modified 

field equations given in (2.2) are fourth-order partial 
differential equations in the metric tensor. If we take 

( )f R R in (2.2), we can get the field equations in 

GR. 

After contracting (2.2), we get  

 ( ) 2 ( ) 3 ( ) . (2.4)F R R f R F R T     

In the case of vacuum 

 ( ) 2 ( ) 3 ( ) 0. (2.5)F R R f R F R    

 

The above equation gives the relation between 

F(R) and f(R), which can be used to simplify the 

field equations and to evaluate f(R). it can be seen 

from equation (2.5) that any metric with a constant 

Ricci scalar R=R0 is a solution of contracted 

equation (2.5) if the following condition holds: 

 0 0 0( ) 2 ( ) 0. (2.6)F R R f R   

This condition is known as the “constant-curvature 
condition”. By differentiation (2.5) with respect to R, 

we get 

 ( ) ( ) 3( ( )) 0. (2.7)F R R R F R F R       

The conditions given in (2.6) and (2.7) were first 

formulated in 2005 (Cognola, et al., 2005).  

  

3. CURVATURE COLLINEATIONS OF 

PLANE SYMMETRIC STATIC SPACETIME 

WITH CONSTANT CURVATURE 

ASSUMPTION 

Here we take the metric of considered 
spacetime in f(R) gravity with the constant curvature 

assumption as given in (Shamir, 2016). We find CCs 

of this metric by solving 22 coupled equations of 
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Riemann tensor. We use direct integration technique 

to solve these equations.  It is found that the CCs 

turn in to Killing vector fields in this case. 

Metric of plane symmetric static spacetime with 

constant curvature in f(R) theory of gravity (Shamir, 
2016) is  

2 2 3 2 2 4 3 2 2( ). (3.1)ds x dt dx x dy dz    

 Here, nonzero Riemann tensors are  
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4
.

9
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x x

R
x

     

 

Here all components of Ricci tensors become zero. 

So, in this case scalar curvature is zero (R=0).  

The 22 coupled curvature equations reduced to be 
1
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Now, we will solve the above set of equations by using 

direct integration technique. Here, we can see that the 

equations (3.1.6) and (3.1.7) are trivially satisfied.  

Consider the equations (3.1.1) to (3.1.4), we get  

0

1

1

2

3

,

0,
(3.2)

( ),

( ).

X c
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X E y
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Now, consider the equation (3.1.5), differentiating 

with respect to z and integrating twice we get 

2 3( ) .D z c z c    

Using the above value in (3.1.5) and then by solving 

it, we get  

2 4( ) .E y c y c     

 

Final solution of system of equations (3.1.1) to 
(3.1.7) is 

0
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Here, Ci’s are the constants of integration. We can 

see that CCs have become Killing vector fields. 

Where the Killing vector fields with respect to the 

metric given in (3.1) are 

 

, , ,z y
t y z y z

    

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We can see from equation (1.2) that all the 

components of energy momentum tensor are zero as 

0, 0,1,2,3.abT a b    

It shows that energy density and pressure is zero.  

 

4. CURVATURE COLLINEATIONS OF 

PLANE SYMMETRIC STATIC SPACETIME 

WITHOUT CONSTANT CURVATURE 

ASSUMPTION 
We consider the metric of plane symmetric 

static spacetime for non-constant curvature that is 

given in (Shamir, 2016). After finding the CCs, we 

can see that they become Killing vector fields. 

Metric of plane symmetric static spacetime with 

non-constant curvature in f(R) theory of gravity 

(Shamir, 2016) is 

2 2 2 2 2

11 3

1 1
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x x
    

Here, the nonzero components of Riemann and 

Ricci tensors are    
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Here 
2

55
,

2
R

x
   represents non constant 

curvature. 

According to these values, the 22 coupled curvature 

equations take the form 
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 Now, we will solve the above set of equations by 

using direct integration technique. Here, we can see 
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that the equation (4.1.6) and (4.1.7) are trivially 

satisfied.  

Consider the equations (4.1.1) to (4.1.4), we get  
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Now, consider the equation (4.1.5), differentiating 

with respect to z and integrating twice we get 

6 7( ) .G z c z c   

Using the above value in (4.1.5) and then by solving it, 

we get  

6 8( ) .H y c y c     

Final solution of system of equations (4.1.1) to (4.1.7) 

which shows the curvature vector fields are 
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The above result shows that the curvature vector 

fields turn to Killing vector fields. Following are the 

Killing vector fields with respect to the metric given 
in (4.1) 

 , , ,z y
t y z y z

    

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Here by using (1.2), we get the components of 

energy momentum tensors as 

00 11 223 2 17 3

55 187 247
, , ,

4 36 36
T T T

x x x
      

33 17 3

247
.

36
T

x
   

which represent that energy density of considered 

spacetime can not be zero but can be maximized to 

infinity. 

 

5.              SUMMARY AND DISCUSION 
In this paper, we have taken the plane 

symmetric static solutions of Einstein’s field 

equation in f(R) theory of gravity with both constant 

and non-constant curvature assumption that are 

given in (Shamir, 2016). We find the CCs by solving 

22 coupled curvature equations in both cases. We 

see that in both cases CCs become Killing vector 

fields. The energy momentum tensors in the case of 

constant curvature become zero but in the case of 

non-constant curvature, the components of energy 

momentum tensor are non-zero and T    at the 

singular point means that energy density is 
maximum. In the non-constant curvature case the 

rank of 6x6 Riemann matrix is six which shows that 

no proper curvature collineations are admitted (Hall 

and da Costa, 1991) in the considered plane 

spacetime. In the light of f(R) theory of gravity the 

CCs are the isometries for the given spacetime. The 
existence of Killing vector fields or Isometry in the 

modified theory of gravity imply the conservation 

laws which show the physical importance of the 

theory. 
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