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1.                                    INTRODUCTION  
Climate change; almost every one now are agreed 

that climate is undergoing significant changes (Laghari 

et al. 2012); much attention being paid to analyze the 

effect of climate changes on hydrology and water 

resource management. Distributed hydrological models 

are one of the sources gaining enormous importance in 

featuring and examining overall impacts in mountainous 

environment (Viviroli et al 2009). The continuous 

regular spaced estimates of climatic variables are 

prerequisite input requirements for proper functioning 

of spatially distributed hydrological models (Laghari    

et al. 2012). Precipitation is the one and most critical 

input parameter in hydrological modeling. However, 

this input is subject to uncertainty, as a result of 

measurement errors, systematic error in interpolation 

techniques and stochastic error due to the random nature 

of rainfall (Buytaert et al, 2006). An accurate spatial 

estimate of precipitation is the key to the performance 

of the above models. Even a small bias resulting from 

the used interpolation method can drastically affect the 

conclusions, which are better addressed with a detailed 

knowledge of the spatial distribution patterns (Beven, 

2001a).   

 

This challenge increases many folds in mountainous 

environments, where topography is complex with 

enormous influence over variables; gauging stations are 

sparse and concentrated in the valleys. Gauging stations 

on higher elevations are typically poorly represented. 

The acquirement of accurate information for the 

mountainous range is therefore an uphill task, all this 

making it difficult to model pattern analyses. In such 

cases; when no single method is optimal nor superiority 

of a specific interpolation method has been established, 

the performance depends on the variable under study, 

spatial configuration, and the assumptions used (Creutin 

and Obled, 1982; Weber and Englund, 1992, 1994; and 

Prudhomme et al. 1999). To obtain the best 

representative precipitation mapping technique for this 

particular mountainous region, it is essential to compare 

the results by applying alternative methods to the same 

data set in rugged terrain. To achieve the above 

objective, this study examines a variety of stochastic 

and deterministic mapping methods to estimate the 

values at un-gauged locations.  

 

2.                              DATA AND MODELS 
2.1. The study area  

The study area of the greater Kitzbühel region 

located in the eastern part of the Austrian Province of 

Tyrol covers an area of about 2000 km2. A detailed 

description of the study area can be found in (Vanham 

et al., 2008). The basin has strong seasonal rainfall 

patterns and rugged topography with altitudes ranging 

from 400 m to 2400 m above mean sea level. Available 

mean annual precipitation time series of 30 years (1961-

1990) from 14 stations are used for the spatial 
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precipitation interpolation for the study area (fig.1). The 

resolution of all spatial georasters is 250m. 
 

 
 

Fig. 1: Terrain map of the area under study (resolution of 250 m) 

with locations of 14 rain gauge stations 

 

2.2. Spatial interpolation techniques   

The mapping methods used here can broadly be 

categorized into two approaches: deterministic and 

stochastic. The deterministic approaches used for 

precipitation interpolation are inverse distance 

weighting (IDW) and spline. Ordinary kriging (OK) is 

based on stochastic approach while regression kriging 

(RK) centers on both - the combination of linear 

regression and its kriged residuals (Odeh et al., 1994, 

1995; Knotters et al. 1995). The regression is based on 

the spatial correlation of predicted variable and the co-

variables (Moore et al., 1993; Richardson and Edmonds, 

1987; Chaplot et al., 2000a; Thompson et al., 2001). 

The model is assumed to be able to remove 

topographical drifts through regression and the intrinsic 

hypothesis still assumed valid and can produce high 

stationary field (Holdaway, 1996; and Prudhomme et al. 

1999).  The approach with different denominations is 

successfully used for climatic data mapping (Philips et 

al. 1992; Martinez-Cob 1996; Odeh et al. 1995; and 

Holdaway 1996). All techniques are briefly discussed 

here. The detailed description of algorithms can be 

referred to (Goovaerts, 1997; Hengl et al., 2003; Odeh 

et al., 1995).    

 

2.3. Variogram modeling  

The descriptive statistics of the average annual 

precipitation measurement data of all 14 weather 

stations showed that precipitation values were log-

normally distributed (Table-1). Subsequently, log-

transformation and a multiplied factor of 1000 for 

avoiding any numerical error during kriging were 

applied (Martinez-Cob, 1996).  
 

Table 1: Descriptive statistics of study area 
 

 
DEM 

(m asl) 

PREP 

(mm) 

LPREP 

(mm) 

Minimum 500 1206 7.09 

Mean 1264 1483 7.28 

Maximum 2427 2484 7.81 

Std. Deviation 387 332 0.19 

Median 1230 1363 7.22 

Skewness 0.4 2.031 1.50 

Kurtosis 2.2 6.947 5.14 

 

DEM-Digital elevation model, PREP-Precipitation, 

LPREP-log precipitation 
 

 

The geostatistical analyst of Arc-GIS 9.2 was used 

to compute sample direct-semivariogram of 

precipitation and residuals of linear regression of 

precipitation on geographical variables. After visual 

inspection of the sample semivariograms, a Gaussian 

model was chosen as best fit model for direct-

semivariogram. Model parameters (Table 2) and 

validity were checked through a trial and error 

procedure until satisfactory cross validation statistics 

were achieved.  
 

Table 2: Model parameters of direct semivariogram of 

precipitation (LPREP) and their residuals of linear regression of 

LPREP on geographical variables 

 

Mapping 

techniques 

Model Parameters 

Nugget1 Sill1 Range (km) 

LPREP 653 3127 43.560 

Residual of 

LPREP 
601 2080 28.535 

 
1 LPREP and residuals of linear regression of LPREP on 

geographical variables log (mm) 2* 10-6 
 

The theoretical model was fitted to the data and the 

anisotropy was checked in all directions. Up to a 

distance of 10 km, no deviations in variogram were 

observed in any direction. However, between about 10 

to 24 km, in (N-S) & (E-W) orientation, variograms are 

similar to the isotropic variogram. The same orientation 

starts increasing variance above 24 km and again 

follows the isotropic behavior from 32 km. At distances 

above 15 km, (NE-SW) orientation shows deviation 

than for isotropy till 32 km, while the inter-site variance 

in (NW-SE) orientation also does not become stable, 
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with a nugget-sill value (700-2930) reached at 44 km. 

The little fluctuation in variation of (E-W), (N-S) 

orientation clearly indicates that there are no big 

differences in annual rainfall estimates in these 

directions; however in NW-SE, and NE-SW directions, 

maximum difference of rainfall were observed between 

27 to 48 km. 

 
 

Fig.2. Gaussian variograms of LPREP and residuals of LPREP for different orientations 

 

The above analysis confirms that the stationary 

hypothesis does not hold for the whole region, but only 

locally. These trends violet the assumption of 

stationarity on which this ordinary kriging is based.  

Despite these evidences of non stationarity in the data, 

isotropy was considered, and an isotropic model was 

used in the final mapping of ordinary kriging with 

maximum neighborhood of interpolation of 27 km.  The 

same procedure was adopted for residual kriging. After 

trend removal through multiple linear regression of 

LPREP on geographical variables, overall behavior of 

variogram fluctuation matches with isotropic variogram. 

The anisotropic trial observations confirmed that after 

trend removal, the variability is reduced at great extent 

and closely matched to isotropic model in all directions. 

Finally the isotropic model of residuals was used for 

precipitation mapping. The model parameters are listed 

in (Table-2). The estimated kriged precipitation values 

were back-transformed before final estimates of 

precipitation.   

 

3.                PREDICTION PERFORMANCE  

The performance of mapping techniques was 

assessed by means of three strategies: 1) by cross-

validation statistics, 2) by spatial cross-consistency and 

3) by a water balance approach. The cross-validation 

procedure is based on removing one sample location 

(measurement station) from the data set at a time and 

calculating the value of the removed sample with 

remaining data points. This routine was followed for 

each measurement station. The comparative indices 

were then used as a measure of prediction quality by 

mean prediction error (ME) and root mean square error 

(RMSE), which are defined as follows: 
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Where n = Number of validation points, 

ii TT &ˆ  = Predicted and observed values at 

location i.  

 

The ME criterion is used to check the conditional 

bias property, while the RMSE criterion assesses the 

precision quality. A smaller value of RMSE indicates 

higher accuracy while the higher value indicates vice 

versa.  Cross validation statistics can be used to find 

optimal mapping technique, however, the presence of 

short range correlations in data may rise questions 

regarding the reliability of its statistical results 

(Hutchinson 1998 a).   

 

As second step to evaluate the reliability and 

consistency of predictions, spatial cross-consistency 

approach was adopted (Hofierka et al. 2002). All 

statistical parameters of different calculated 

precipitation mapping estimates were compared with a 

referenced precipitation map (RPM). This referenced 

precipitation map was carefully produced during a 4 

year project (www.waterpool.org) in which different 

experts from different institutes were involved, and 

results were consistent with water balance estimates.  

 

Finally all calculated precipitation maps including 

the referenced precipitation map were evaluated by 

means of a general water balance approach.  
 

Q (Discharge) = P (precipitation) – ET (evapotranspiration) – ΔS 

(storage changes) 
 

Gridded discharges were calculated for each 

mapping technique as a result of subtraction of actual 

evapotranspiration grid   estimates     from   interpolated  
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mapping precipitation grid estimates. The actual 

evapotranspiration values are obtained from the 

Hydrological Atlas of Austria. Storage changes can be 

ignored, as for long-range mean annual water balances; 

it was assumed that there is no sensible change in the 

water contents of different reservoirs, e.g. groundwater, 

snow cover (Hofierka et al. 2002; Kuhn & Escher-

Vetter 2004). The difference between the calculated 

discharges with observed discharges gives a measure for 

the reliability and consistency of the precipitation.   

 

 4.                  RESULTS AND DISCUSSION  

Mean error and root-mean-square error values 

suggested that the most biased methods were IDW and 

spline, with a bias almost 2 to 5 times higher than 

ordinary kriging (Table 3). According to mean error 

results, regression kriging (RK) is the best interpolation 

technique, producing about 42% less bias than ordinary 

kriging. RMSE results indicate that all four methods 

produce higher uncertainty in predicted values. 

However, regression kriging (RK) produced 

comparatively the least uncertainty. Thus there is clearly 

a significant improvement in the estimation of 

performance with taking co-variables into account 

(RMSE decreases from 111.3 to 72).  Due to the limited 

number of 14 stations, it is difficult to create a subset of 

stations for adopting a commonly used validation 

strategy.  
 

Table 3: Cross validation statistics of four mapping techniques 

applied in study region: mean estimation error (ME), root-mean-

square error (RMSE). 
 

Mapping 

techniques 

Cross-Validation Statistics 

ME RMSE 

IDW -14.24 111.3 

Spline 7.54 98.7 

OK 2.39 86.38 

RK 1.38 72.36 
 

Therefore, the results of the computed precipitation 

maps were assessed through spatial cross-consistency 

with a referenced raster map (RPM). The Custer et al 

1996 [38] adopted the similar approach for assessment 

of the cross-consistency between computed techniques 

and referenced precipitation maps.  
 

Table 4: Summary statistics of percent differences between 

referenced precipitations map (RPM) and computed precipitation 

estimates by IDW, Spline, OK and RK for entire region. Negative 

values indicate a lower value with respect to the referenced map 

value, while positive values indicate vice versa.   
 

Interpolation 

Techniques 
 IDW Spline OK RK 

Total Min.  9.00 -34.27 8.50 3.00 

Total Max  -14.31 10.89 -10.80 -19.60 

Std. deviation  -37.00 37.00 -14.00 3.00 

Variance  -60.00 86.00 -25.00 7.00 

Percentile 25 2.12 -6.00 -9.00 3.36 

Percentile 50 -12.25 -7.26 -16.60 4.92 

Percentile 70 -14.88 -9.84 -18.40 6.30 

Total Mean  -10.00 -8.00 -12.00 4.00 

The results of the comparison between all 4 

techniques and the referenced precipitation map (RPM) 

are presented in Table 4. The maximum visible 

distinction among interpolation techniques are statistical 

parameters of minimum, mean, standard deviation, 

variance and maximum. Although the RK method 

yielded the high range of maximum difference, the all 

other lowest statistical parameters indicate that the RK 

method gives the most promising results. The above 

results clearly show that the incorporation of 

topographical information has increased the range of 

maximum values. However, it has significantly helped 

in producing the matching estimates of standard 

deviation, variance range, mean and percentile ranges. 

The percentile differences show that the RK 

precipitation map is closer to the referenced map than 

all other technique estimates. The IDW and OK 

estimates are within the range of original sample values 

because only sample values were used for interpolation. 

The same distribution pattern follows for minimum and 

maximum values, whereas minimum and maximum 

values obtained for RK were generally outside the 

original sample value ranges, due to the incorporation of 

topographical information. To assess the performances 

of interpolation techniques at more detailed level (Table 

5); we evaluated performances at a) four basins and b) 

the whole region divided in four elevation zones. The 

location of stations is highly biased; i.e. 86 % of the 

stations are located below 1000 m, an elevation zone 

only representing 31.5 % of the total area. Zones 2 & 3 

each contain 39 % and 26.21% area respectively with 

one station each, whereas zone 4 contains 3.17 % area 

without any station. 
Table 5: Comparative statistics of percent differences between 

referenced precipitations map (RPM) and computed precipitation 

estimates by IDW, Spline, OK and RK at four basins & elevation 
zones. Negative values indicate the less value from the referenced map 

and positive values indicate vice versa.   
 

 
 

The mean annual values at four basin levels almost 

follows the same pattern of mean annual values of 

whole region. A basin-wise result clearly shows the 

superiority of RK method in three basins, while in basin 

four, Kitzbüheler Ache; all the other three techniques 

produced the better estimates. The better estimates of 

RK over OK, at one side endorse the improvement in 
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results after trend removal, while on other side justifies 

RK application in sparse network high altitude regions. 

The results of Kitzbüheler Ache, which contain directly 

five stations and 3 other stations just surrounding 

boundary also strengthen the many other study’s 

conclusions; the superiority of conventional techniques 

i.e. IDW, spline over geostatistical techniques in areas 

of concentrated network stations. The above 

conclusions were further cemented in altitude-wise 

analysis; where the techniques without elevational 

information, IDW, spline and OK comparatively 

performed well below 1000 m, the zone comprising 

86% of all stations. The same time all these three 

techniques proved their ineffectiveness at higher 

elevational zones, where the increasing consistency in 

under estimation between all these three techniques 

reaches from 8% at zone-2 to 33% at higher altitude 

zone-4, clearly marginalize their abilities in higher 

sparse data zones.  

 

The relative poor performance of OK at higher 

zones was also realized during semivariogram 

modeling, where it was observed that the spatial 

dependence was much higher when stations in zone 1 

were only considered and weakened when station in 

zone 2 and 3 included one by one respectively, but due 

to comparative analyses of mapping techniques and 

importance of each station, we included all stations in 

final mapping. The increasing good results of RK over 

other technique at respective higher zones also proves 

the usefulness of geographical information in mapping 

estimates at higher sparse data zones, where co-variable 

values were almost the only ones used for interpolation. 

In other words, RK technique provides the excellent 

recipe of precipitation and topographical features that 

can be realized in RK map (figure 3), where regional 

structural information was incorporated through linear 

regression, while OK accounted for precipitation 

patterns. The structured contrast can also be seen in RK 

and other techniques produced maps.  

 
Fig.3. The mean annual precipitation maps developed through 

interpolation of 14 gauge station values using Ordinary Kriging 

(OK), (IDW), SP, and (RK). 

 

To further verify the authenticity of the referenced 

precipitation map (RPM) and its usefulness for the 

comparative analyses of the four different interpolated 

precipitation maps, a water balance approach was 

adopted. Mean annual evapotranspiration estimates of 

whole region were taken from hydrological atlas of 

Austria. The runoff was calculated by subtracting the 

evapotranspiration estimates from each computing 

precipitation map estimates. The percent difference 

between computed runoff for each mapping technique 

and gauged runoff clearly proved the validity of 

referenced precipitation map results with just 0.4% 

difference, followed by RK runoff difference with 2.7%. 

The runoff difference produced within the other three 

techniques ranged from 13% to 20%.  These findings 

through the water balance approach pacify the cross-

validation and cross-consistency results, i.e. the overall 

superiority of the RK technique in this high altitude 

region with sparse data.   
 

5.                                 CONCLUSION 

The wide-ranging evaluation demonstrates that the 

simple, easy to use RK technique offers reliable and 

reasonably accurate estimates of mean annual 

precipitation. The superiority of RK were observed in 

high altitude sparse data zones, especially proves the 

usefulness of geographical information in areas of 

unobtainable mapping variable, while on the other side, 

comparative good results of conventional techniques i.e. 

IDW and spline over geostatistical techniques also 

justifies their applications in low elevational 

concentrated zone of network stations. 
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