

SINDH UNIVERSITY RESEARCH JOURNAL (SCIENCE SERIES)

State-Full Virtual Machine Live Data Migration For Improved Load Balancing

M. SHAIKH, A. SHAIKH*++, M. A. MEMON**, A. A. SHAH** R. H. SHAH**

Department of Computer Systems, Mehran University of Engineering and Technology, Jamshoro,Sindh, Pakistan

Received 30th January 2017 and Revised 4th March 2018

1. INTRODUCTION

The term Cloud resembles to the Internet in

network diagrams. In simple words, the cloud can be

defined as any computer entity which is being

hosted on the web as a service (Maohua 2009).

Internet has various parts of schematic clouds.

Through Cloud computing many applications of

different types and services are being delivered

through the internet cloud. The idea of cloud

computing is gaining a lot of success in

entertainment and business applications due to its

virtualized softwares, which enables the sharing of

infrastructure such as physical services, storage,

provision of services according to users demand,

network access and other networking capabilities

etc. (Sagar et. al., 2007)

Despite the success, popularity and availability

of providers of the virtualized cloud computing

paradigm, there are significant number of involved

challenges and risks as well. User can face privacy

issues, data unavailability, attenuation of network,

lack of resources, performance lack, scalability clash,

huge work load complexity, non-robustness, slow up

migration and programmability issues. In this

work work, the issues are discussed and analyzed

are listed below:

– Network availability

– Resources availability

– Data Integrity and Consistency

– Prescribed storage available on the sink VM

during the migration

– Seamless Migration process to the end user

– State Maintenance of the VM

– Attack detection

 Easy to enhance and upgrade a Virtual Machine

– Real-time Availability in data context

– Facilitates for fault Diagnosing and its

management

2. LIVE MIGRATION

Virtualization is an essential element for the

shared environment and cluster, distributed

computing. One of the main key points of the

shred environment is the high availability of the

computing resources at any time with the least

cost and sometimes free. Also in the shared

computing the resources are always be there for

any guest in the cloud based distributed

environment in the operational form. This can be

done by several ways but one of the main

motivation of this sharing of the shared resources

between the multiple guests is known as virtual

machine live migration. By taking the advantage

Abstract: Cloud resembles with Virtualization to achieve the shared environment and shared resources. In virtualized shared environment,

the availability of the shared resources for the shared multiple clusters/Virtual Machines is always matters. To provide the better
performance to the end users of the cloud VMs and for the always availability of shared resources, virtual machine migration is always a

challenging task in virtualized environment. The aim of this research is to investigate various parameters of live data migration between

the shared clusters/virtual machines in state-full context and overall load balance level. The proposed migration strategy ensures the
avoidance of attacks/anomalies which causes the load increase on the VMs which effects the entire system. This could be done by the

resource allocation from one cluster to another via checkpointing method of VM to maintain the state of the VM, load of the VM

including resource availability. Using Xen hypervisor memory technique which dynamically allows the migration of the configured
memory while the allocated memory could be discarded for a while. By this the bad memory remains un-migrated only the good

memory consisting the used data would be migrated by means of Real-time.

Keywords: Cloud, VMM,VM, VM MIgration, Xen, Linux

++Corresponding Author Email: shaikhasad@hotmail.com; Tel.: +92-333-2859550 muhammad.ali@usindh.edu.pk

*++Department of Software Engineering, ILMA University, Korangi Creek, Sindh, Pakistan

**Institute of Information and Communication Technology, University of Sindh, Pakistan

Sindh Univ. Res. Jour. (Sci. Ser.) Vol.50(001) 107-114 (2018)

http://doi.org/10.26692/sujo/2018.01.0018

live migration of the guests systems the shared

computing made quite easy without any load

balancing and expensive computing and processing

power. The factors involved in motivation leads to

the virtual machine migration in Real-time are:

– Optimization of Migration Downtime in Multiple

data context

– Network Congestion

– Recovery from Host/Guest failure

– Seamless Maintenance of Virtual Machines to the

user

– Virtual Machine/Guest Robustness

3. RELATED WORK:

3.1 MIGRATION WITHOUT VIRTUAL MACHINE

 MONITOR

 Most of the hypervisors likewise KVM, VMware,

Xen ensures hypervisor-based migration elucidation (Jin

Heo, et. al., 2009). However, quite a few demerits that

has recently get significant attention due to rely on the

hypervisor (DSN 09, 2009). The main issue is that the

virtual machine monitor plays a very vital role

throughout the whole migration procedure, and

considers many “responsibilities” form the beginning

till end of the entire migration process. This innermost

role of the hypervisor has widely turn out to be source

of several foremost security apprehensions. Szefer et al.

shows that the hacker or attacker can easily access

memory, expose authenticated information as well as

make modification in the software used by a host VM if

the malicious party attacks on hypervisor successfully.

Note that inspection of such security threads is outside

form scope of this study. Thus, the possible security

issues caused by hypervisor reflect us to discover the

VM live migration techniques that do not involve any

hypervisor for migration.

As far as these issues are concerned, for their

solutions a technique such as migration without

hypervisor is required. Besides pointing out the security

concerns, in an attempt to solve these issues, the

solution must involve use-case developments that come

up from the VM common practice. One of them is

known as data center setting, which represents and

offers to each user with an isolated VM. Likewise in

this setting, a wholly customized VM is often initiated

and created for every user, with custom application and

environment. Also in this setting, there are numerous

reasons to show why a system administrator needs to

take decision of VMs migration, like as for fault-

tolerance and load balancing purposes. In such cases,

what are the required metrics that should be considered

to provide always resources huge availability?

 As discussed earlier, the downtime occurrence

by the usey ensures the time intervals on which the user

cannot access the system, is a transparent essential

metric. Downtime should be as less as possible.

Although the minimal downtime ensures by most of the

hypervisor-based migrations. In accumulation with

downtime, another essential metric is total waiting time

to accomplish the migration, as it involves the provision

of resources on both of the sink and target backup

host(Maohua Lu, 2009). For instance, for hardware

updates, load-balancing and policies of energy savings

etc., a host with running state is usually be shut down.

In these cases, the alert and active VMs should be

migrated to other backup VMs and also ensures their

resumptions on the target hosts before the replacement

of the resources on the sink and target host machines.

Most previous reviews only focus to provide minimal

downtime. Besides downtime, this wok proposes for the

optimization of minimization of total migration time.

 3.2 Method For Vc Checkpointing

Checkpointing methods for multiple VMs—a

challenging target space—have also been discussed.

The efforts in this space, the awareness of including

VCCP,VirtCFT, VNsnap. VirtCFT ensures the always

availability by checkpointing of individual VMs for

virtual clusters to additional backup host. A two phase

commend coordinated blocking algorithm by predicting

FIFO-based communication channels as the

checkpointing global algorithm Michael (Litzkow,

et. al., 2009). Thus, checkpoints request broadcasts to

all the VMs by checkpoint coordinator and waits for a

while to ensure two-phase acknowledgments. Since due

to use of the FIFO-channel based checkpointing

algorithm, in compatibility the network also must be

FIFO, which must make scope of the work limited and

or such channels must be eliminated which uses

overlays i.e. increasing overheads. In addition, as

VirtCFT by using a checkpoint coordinator which

enables communication and make contact with VMs

several times with each individual VM during the

checkpointing, due to the additional communications

delays the downtime is increased for checkpointing.

VCCP also depends upon the trustworthy FIFO

transmission to deploy the algorithm blocking

coordinated checkpointing. VCCP faces the problems of

overheads of checkpointing before the coordination with

VM and detaining in-transit frames of Ethernet, due to

the coordination algorithm.

VNsnap captures the global snaps of virtualization-

based networked systems and no any reliable FIFO data

transmission required, and it is completely based on

unblocked distributed snapshot algorithm (Litzkow, et.

al.,2009). VNsnap works outside from the shared

networked environment and one of the key ideas is no

any modification is needed in the software running in

the VMs. The VNsnap presents the two daemons for

M. SHAIKH et al., 108

checkpointing, one is VNsnap-disk and another is

VNsnap-memory. These daemons produce a large

checkpoint size, which is equal to the guest memory

size. Also, checkpoints will stored in memory by

VNsnap-memory, which copies the memory in

duplicate snapshot of memory, resulting of memory

overhead roughly of up to 100%. In addition, its

distributed algorithm by using the receive-but-drop

approach, which caused the back off for a while of the

TCP connections suite at the virtual network level after

the checkpointing. And the back off of the TCP is

completely intolerable and critically changes the

downtime.

4. CONTRIBUTIONS:

4.1 Live Migration with Load Balancing

One of the common and generic problem in

live migration of VMs is load balancing, which

have also been studied and discussed at the

different levels, at multiple and different decades

by using a range of strategies (Elmore, et. al., 2011)

(Singh, et.al., 2008). Our goal and a general

motivation is t h e optimization of the use of

computing resources i.e., CPU (processing power),

memory storage in a shared computing

environment. Conventionally the process migration

is used to share the workload form the heavy loaded

processors to light load processors in the cluster

systems. By taking the advantage of changes in

execution of process of utilization of network process

migration allows to perform its functions at the user

level and/or kernel level. Strategies at the user level

by using checkpointing allow the dynamic migration

of processes (Michael et. al., 1999) . According to

few proceedings, the successful implementation of live

migration always needs strong cooperation between

the co elements of migration and process (Freedman,

1991). A common trouble faced by this user level

implementation is to access without kernel support,

they are incapable for the process migration with

inter-process communication and location aware

information. On the other hand, implementation at

the kernel level enables the process migration quite

quicker as well as capable to migrate multiple

types of processes (Christopher et. al., 2005) (Carlo

et.al., 2011). In comparison with user level

strategies, kernel level ensures better performance.

Thus kernel level strategies are more efficient process

migration techniques, they needs some modification

at the kernel level of operating system.

As nowadays virtualization turn out to be

more and more common, these limitation can be

overcome during process migration by making an

individual VM as a load balancing unit. In the

virtualized and shared world, a VM runs all the

processes and applications, so now it could quite

probable to carry the load balancing based on

entire-system replication (DSN 09, 2009), (Freedman,

1991). At present multiple existing techniques are

available for the live migration on virtualization

based system (Ellard T Roush, 1995), (Fred et. al.,

1991). By using live migration, lots of new findings

have been proposed by many researchers in the

cluster based systems to improve the performance

of load balancing. Some of them work by using the

prediction technique to anticipate the future

resources and their demands based on the current

resources utilization (Jin et. al., 2009) (Xu, et.al.,

2008). Though, to get accurate prediction, these

multiple works requires to attain and analyze the

performance response all the time, which

establishes overhead. As in comparison of this work,

this work does not predict and make predication in

advance, instead, our goal is to always refer and

update the past record to help in order to achieve

the final decisions. Some other previous literatures

highlights on the designing a set of instruction

(algorithm) to investigate where and what to

migrate and amount of resources allocated after

migration (Zhang, et. al., 2010) (Michael et.al.,

1999). Conversely, they do not care about the

migration cost and also not consider the downtime

and migration performance time which are not

evaluated in experimental results.

4.2 Adaptive Live Migration To Overcome

 Load Balancing

In virtualization based shared environment, there

are numerous physical machines i.e., VMs in the

running state are virtually inter-connected via high

data rate internetworking technologies. T h e y a r e

capable to provide increasingly on demand high

availability of computational resources and services.

One of most motivating feature is lake of available

computing resources i.e. (CPU processor, Secondary

Disk storage and virtual memory storage, processor

state etc.). They could be shareable through the

active interconnections between all the VMs.

Many previous researchers have observed that

multiple computational resources are r e m a i n e d

unused for a substantial quantity of the operational

time (Maohua et. al., 2009) (Sagar et.al., 2007).

Hence, avoidance of load balancing gained huge

interest in order to avoid some more critical

situations of overloading where some machines are

running with huge load and others are in idle state

i.e. under or within workload limit.

Usually, there are multiple existing methods to

gain load balancing in interconnected systems. One

of the simple and attractive methods is static load

State-Full Virtual Machine Live Data Migration… 109

balancing solution, and this allocates to machines

with applications at the be- ginning. The efficiency

of this type of strategy relies on accuracy

dependency of prior prediction of load. While,

another strategy i.e. dynamic load balancing could be

exploited by run-time migrating applications and

processes among different physical machines. A

dynamic load balancing approach is more effective

and efficient than it limits some applications to

process or run on the VMs where those were initially

assigned. However, because of the applications

strongly bounds to the host operating system (i.e.

sockets and file descriptors) as well as platform

dependent (i.e. natively compiled codes and device

drivers), so due to these it is too much a complex

task to implement a mechanism for process

migration. Moreover, for communication some kind

of process may relies on shared memory, which

suffers from residual dependencies problems and

founds further complications.

Limitation coming from process migration are

overcome by through virtual machine live migration.

In contrasts with process migration, VM live

migration migrates CPU virtual state, guest OS

data and memory and state of emulated devices,

which removes platform or OS dependencies. A

guest VM with multiple running applications, which

is heavy in load can be migrated to the hypervisor of

another machine. The same machine can be

considered as idle machine in order to utilize huge

resources availability. Furthermore, in contrast to

VM migration sop-and-resume strategy, natively

VM live migration guarantees minimal downtime as

well as minimal interruption in VM users

interaction. Therefore, a better strategy of load

balancing must also ensures minimal down- time to

users.

5. VIRTUAL MACHINE SAVE AND RESTORE

MECHANISMS: VM CHECKPOINTING

In order to provide some benefits such as rapid

and dynamic resource allocation, high availability

with improved load balancing, a functional feature in

virtualization is the saving and restoring of VM is

presented in this work. The proposed strategy

ensures an entire virtual machine by using the

transparent checkpointing is captured by taking

snapshot of the VM. After that the snapshot will be

restored in the target VM and the restore mechanism

with the configured memory. Many latest

virtualization systems gives very basics of

resumption and VM checkpointing mechanism for

saving the current running state of an active guest

VM in the form of a checkpoint file, and also, then

to resume that the same saved VM by from

checkpoint file to correct and same consistent

suspended state (for e.g., KVM, Xen, VMware).

From figure 4, we also summarize, for the

effective VM-level checkpointing and suspension;

the hypervisor should have ability to resume the

VM rapidly from the check-pointed state. Users

and clients of network based applications are more

tending to suspend an idle guest VM if the

latency magnitudes for VM resumption are leads

to in order as seconds than minutes. The

capability to quick and rapidly restore a VM from

a pre saved checkpointed image could also make

possible many other effective features, including

quick recovery form crash, quick reallocation of

VM, debugging, and testing etc.

Traditional virtual machine resumption techniques

can be classified in two solutions. First solution

initially restores each and everything whatever saved

in checkpoint state, and then starts guest execution.

As the VM memory size and checkpoint size

dominates with each other, this type of solution

works well for less memory sizes (i.e. in MBs). On

the other hand, whenever size of memory becomes

large (i.e., in GBs), the time of VM resumption

significantly increases (i.e. in 10s of seconds). From

figure 1 (a) it is illustrated the time consumed by

native mechanisms for save and restore of Xen

VMM as a function of memory size. We observed

that time consumed by save/restore mechanisms of

Xen are in the form of multi-digit order when the

size of memory approaches to 1GB.

To start the VM as soon as possible, an

alternative mechanism is to restore the device and

CPU states that are necessary for VM booting,

and after that restore the saved memory data

from checkpoint file after VM starts. In this

manner, suspended VM can start very quickly.

Figure 1 (b) illustrates time consumed Xen for VM

resumption when only necessary device/CPU states

have been restored. We observed that, with 1GB

RAM configuration it takes 1.3 seconds to resume

a VM.

Fig. 1. Comparison of mechanisms for VM resumption.

M. SHAIKH et al., 110

Since while restoring the memory data the VM

state is still running, so its performance would not

be get influenced by the size of VM memory;

However, while using this approach, performance

degrades immediately due to faults of cascaded

paging, because no any page available and loaded

for use. Figure 1 (c) illustrates responses achieved

per second for Apache server running in the Xen,

after the VM has b e e n restored using this

mechanism. We observed that, to resume normal

activity the VM must needs to wait for 14 seconds.

Therefore, in order to further reduce the downtime,

a check-pointed VM should be resumed rapidly,

while degrading performance congestion after the

start of VM.

6. EXPERIMENTAL SETUP:

We have designed an experimental setup which

includes two hosts. One host is primary or master

and second one is used as backup. The two hosts are

Intel core 2 Duo processor 2.6 GHz and 4 GB RAM.

The two hosts are connected through a 2 Mbps

network connection. The network connection is used

for migration of the Primary host to the second

host.

Live migration can be done by so many ways i.e.

by using XEN Hypervisor, KVM Hypervisor, and

Qemu Hypervisor etc. To perform live data

migration, we prepared a XEN cloud based

environment. In the XEN cloud based environment

we have created a host VM of size 5 GB, with 1

GB RAM, running Ubuntu Server 12.04 OS. The

host VM can execute all the services and

applications just as our desktop system. The host

VMs runs PV (Para-Virtualized) guests. The PV

guests are known as Guest VMs. Three guest virtual

machines (VMs), based on Ubuntu sever 12.04 OS,

are created in the Host VM of the system. The VMs

are named as Testvm1, Testvm2 and Testvm3. The

VMs are of size 1GB, 2 GB and 3 GB respectively.

We assigned RAM as 256 MB for Testvm1; 512 MB

RAM for Testvm2 and RAM 1024 MB for Testvm3.

The file system due to which an image file consist

of 3 GB could be shared by two machines by using

NFS. The (Table 1) shows the detailed specifications

of the guest VMs.\

 6.1 PERFORMED EXPERIMENTS AND RESULTS

 ANALYSIS:

VM Migration with Load Balancing Apart

from previous work, here the intention is to provide

load balancing with negligible downtime by virtual

machine live migration. In our earliest

investigations, we observed that a common VM live

migration technique doesn’t work in all situations,

for instance, when dealing with memory-intensive

application. Thus, we purposed a workload- adaptive

migration mechanism.

Here DCbalance, OSVD and DLB are our

workload-adaptive live migration mechanisms. OSVD

depends on VM live migration and incorporates

performance estimate technique. DLB implements a

dynamic load balancing algorithm (Minjia et. al.,

2010) which is installed on Xen original live

migration mechanism. We fragment the performance

evaluation of load balancing and downtime of

migration mechanism in the succeeding.

As we have discussed earlier, Apache is a static web

application. While having different loads, the hosts

will be down till the state and memory migration

takes place.

Fig. 1 demonstrates the downtime results of

workloads for the Apache benchmark with different

sizes of VMs. We note that all mechanisms

sustain slightly low downtime i.e. within 1 second.

Also we observed that the OSVD system

experiences additional time due to the prediction

overhead. The total migration time is from when

Parameter / VM Guest vm1 Guest vm2 Guest vm3

ID: 2 3 4

Name: Testvm1 Testvm2 Testvm3

Hypervisor: Xen Xen Xen

OS Type: Hvm
(Ubuntu)

Hvm
(Ubuntu)

Hvm
(Ubuntu) State: Running Running Running

CPU: 1 1 1

CPU Time: 11.2 s 12.5 s 14 s

Virtual Memory

(RAM):

524288 KiB 524288 KiB 524288 KiB

Allocated Memory
(ROM):

1048576 KiB 2097152 KiB 3145728 KiB

Disk Space: 1 GB 2 GB 3 GB

UUID: 192.168.0.60 192.168.0.30 192.168.0.20

State-Full Virtual Machine Live Data Migration… 111

the migration is activated to when the resumed

VM is entirely operational by users. the findings of

total migration time are mostly similar to the

previous ones. We observe that our proposed

mechanism reduce the total migration time in DLB

and OSVD by up to 33% and 38%.

Fig. 2. Downtime comparison under Apache

The VMs are of different sizes. Greater the

virtual hard disk, longer the time will taken by Xen

Hypervisor to migrate. When migration is in process,

VMs are idle. This is known as the VM downtime.

VM downtime is the time from when the VM

pauses to save for the checkpoint to when the VM

restarts. Here downtime is calculated in two

situations:

– When the VM is idle i.e. does not have any

workload.

– When the VM runs the Apache web server

workload (Aaron et. al, 2011).

Since downtime is also part of total migration time

and our proposed mechanism incurs smaller

downtime.

From the Experimental results, we observed

that for live migration, high speed networks are

required, so that the live migration can be done

efficiently. Live migration through Xen Hypervisor

depends on the size of virtual RAM and virtual

hard disk. Larger the virtual disk is, longer the time

Xen Hypervisor takes for live migration. We have

used Xen Hypervisor because it transfers the whole

configured memory even though the least memory is

used. Xen Hypervisor also maintains the state of the

VM during migration. Live migration consists of

three parameters: Real, User and Sys. The

parameters maintain the live migration, state of

VM and memory migration.

In other case, migration is initiated when the VMs

are running Apache and have some workloads of

different applications. DCbalance is the load which

uses history record to support scheduled VM

migration. It is very efficient load balancing

strategy. Our estimation illustrates that DCbalance

speed up the load balancing decision process.

DCbalance is capable to attain minimal downtime

for different kind of applications with different sizes

of memory.

In figure 2, here results illustrates that the

suggested migration mechanism shrinks the

downtime by up to 73% and reduces the total

migration time by up to 38% as compared to other

techniques.

6.2 OBSERVATIONS

After setting up the environment, the hosts

VMs are forced to run some applications like web

service, simple file editing service etc. The

applications that run in the system are specified

below. Besides applications that run on the guest

VMs, some other benchmarks are also used.

Static web application: Apache 2.0 is used as

static web application. Apache is the world’s most

widely used web server. It provides the network

connection between the guest VMs. The hosts have

10 simultaneous connections, and repetitively

downloaded a 256KB file from the web server.

– Dynamic web application: SPECweb99 is a

Dynamic web application which is used for

calculating workload on the web servers and on the

host systems. This benchmark includes a web server

which serves static and dynamic requests. The two

host VMs in our system create a workload of 10

immediate connections to the web server

(Christopher Clark, et. al., 2005).

 NPB-EP: This benchmark is a standard

technique designed for estimating parallel

programs. NPB consists of 5 kernels, from which

the Kernel EP program is selected (Fred Douglis,

et. al., 1991). Therefore, this example comprises

great workloads on the guest VM.

 SPECsys: It is a Memory-intensive Application,

used to evaluate the load on the RAM. This

benchmark is used to measure output of NFS file

server. It also calculates response time when the

M. SHAIKH et al., 112

load is increased due to NFS operations (i.e.

lookup, read, write, etc.).

 7. CONCLUSIONS

The summary of this paper aims to describe the

primary phenomenon of the implemention live

migration from the sink VM to the backup destination

VM through checkpointing of VMs. Multiple

mechanisms for the VM checkpointing at the decades of

the abstraction exits earlier and discussed briefly along

with the some previous preceding and finding in order

to measure the checkpointing performance. Furthermore

the checkpointing for the multiple VMs such as VC is

also discussed in related work of this paper. Also we

discussed the few ways to implement the live migration

in enhanced and efficient manner. To get the better

optimization and performance measure during the live

migration of VMs, Load balancing is the important

parameter and the main motivation, for its avoidance

and control some methods are also discussed here. As in

our proposed strategy, live migration provides always

availability of the resources by means of shared and

clusters system of VMs, to achieve the minimal load.

We will consider some directions for the future

work on strategies for load balancing exploits the

live VM migration exits. Adding some knowledge of

net- work design and topology in the DCbalance

algorithm and joining the current implementation

with sniffer (network monitor), it will enable

DCbalance with mapping based on network-

awareness to overcome the network traffic while per-

forming the migrations. Another problem that is

worth to consider in migrations that how to tackle

faulty control nodes in virtualized internetworking

environment i.e., recovery form fault and some

techniques for the fault tolerance.

REFERENCES:

Aaron J., S. Das, D. Agrawal, and A. El Abbadi.

(2011) Zephyr: live migration in shared nothing

databases for elastic cloud platforms. In

Proceedings of the 2011 ACM SIGMOD

International Conference on Management of data,

SIGMOD 11, 301312, New York, NY, USA, ACM.

Aameek S., M. Korupolu and D. Mohapatra. (2008)

Server-storage virtualization: integration and load

balancing in data centers. In Proceedings of the

ACM/IEEE conference on Supercomputing, SC

08, 53:153:12, Piscataway, NJ, USA,. IEEE.

Anna H., (1989) Load balancing in distributed systems:

a summary. SIGMETRIC Perfor Eval. Rev., 16

(2-4):1719.

Bobro, A. K and K. Beaty. (2007) Dynamic placement

of virtual machines for managing sla violations. In

Integrated Network Management, 2007. IM 07.10th

IFIP/IEEE International Symposium on, 119128,.

Christopher C., K. Fraser, S. Hand, J. G. Hansen,

E. Jul, C. Limpach, I. Pratt, and A. War_eld. (2005)

Live migration of virtual machines. In Proceedings of

the 2nd conference on Symposium on Networked

Systems Design and Implementation - Volume 2,

NSDI05, 273286, Berkeley,CA, USA, USENIX

Association.

Carlo C., E. Jones, (2011) Raluca Ada Popa, Nirmesh

Malviya, Eugene Wu,Samuel Madden, Hari

Balakrishnan, and Nickolai Zeldovich. Relational

Cloud: A Database Service for the Cloud.In 5th

Biennial Conference on Innovative Data Systems

Research, Asilomar, CA.

Changbin L., B. T. Loo, and Y. M.. Declarative (2011)

automated cloud resource orchestration. 26:126:8.

DSN 09. IEEE/IFIP International Conference on,

534543, 2009.

Freedman. D. (1991) Experience building a process

migration subsystem for unix. In USENIX Winter

91, 349356.

Feldmann A., R. Bradford, E. Kotsovinos and H.

Schioeberg. (2007) Live wide-area migration of virtual

machines including local persistent state. In VEE07:

Proceedings of the third International Conference on

Virtual Execution Environments, 169116, San

Diego,CA, USA,. ACM Press.

Ellard T R., (1995) The freeze free algorithm for

process migration. Technical report,

Champaign,IL,USA.

Fred D. and John (1991). Ousterhout. Transparent

process migration: design al- ternatives and

the sprite implementation. Softw. Pract. Exper.

21(8):757785.

Jin H., X. Zhu, P. Padala, and Z. Wang. (2009) Memory

overbooking and dynamic control of xen virtual

machines in consolidated environments. In Proceedings

of the 11th IFIP/IEEE INM, IM09, pages 630637,

Piscataway, NJ, USA, IEEE Press

Jing X., M. Zhao, J. Fortes, R. Carpenter, and

M. Yousif. (2007) Autonomic resource anagement in

virtualized data centers using fuzzy logic-based

approaches. Cluster Computing, 11(3):213227,

State-Full Virtual Machine Live Data Migration… 113

Jing X., M. Zhao, J. Fortes, R. Carpenter and M. Yousif.

(2008). Autonomic resource management in virtualized

data centers using fuzzy logic-based approaches, Cluster

Computing, 11 (3): 213-227,

Minjia Z., H. Jin, X. Shi, and S. Wu. (2010.) Virtcft: A

transparent vm-level faulttolerant system for virtual

clusters. In Parallel and Distributed Systems (ICPADS),

2010 IEEE 16th International Conference on, pages

147-154.

Michael Litzkow and M. Solomon. (1999) Mobility.

chapter Supporting checkpointing and process

migration outside the UNIX kernel, pages 154162.

ACM Press/Addison-Wesley Publishing Co.,

New York, NY, USA,.

Maohua L. and T. Cker (2007) Chiueh. Fast

memory state synchronization for virtualization-

based fault tolerance. In Dependable Systems

Networks.

Sagar D., M M. Hayat, J. E. Pezoa, Cundong

Yang, and D. A. Bader. (2010.) Dynamic load

balancing in distributed systems in the presence

of delays: A regenerationtheory approach. IEEE

Trans. Parallel Distrib. Syst., 18(4): 485-497 .

Timothy W., P. Shenoy, A. Venkataramani, and

M. Yousif (2007) Black-box and gray-box strategies

for virtual machine migration. In Proceedings of the 4th

USENIX conference on Networked systems design and

implementation, NSDI07, 1717, Berkeley, CA, USA.

USENIX Association.

Wei H., Q. G. J. Liu, and D. K. Panda. (2007) High

performance virtual machine migration with RDMA

over modern interconnects. In CLUSTER 07:

Proceedings of the, IEEE International Conference on

Cluster Computing, 1120, Washington, DC, USA,.

IEEE Computer Society,

M. SHAIKH et al., 114

