

SINDH UNIVERSITY RESEARCH JOURNAL (SCIENCESERIES)

Optimized Scheduling for Parallel Computing Environment

A. AHMAD++, M. M. YOUSAF, S. SARWAR, W-UL-QOUNAIN, L. ASLAM, M. KHALID

Punjab University College of Information Technology (PUCIT), University of the Punjab, Lahore

Received 13th December 2017 and Revised 9th February 2018

I. INTRODUCTION

The availability of increasingly powerful machines

justifies the continuous progress of hardware vendors

but at the same time raises significant challenges for

software engineers. Now it is highly important to make

full utilization of the computing powers of state-of-the-

art machines by designing innovative scheduling

techniques. Generally, the most expensive resource of a

system is its processing units. Scheduling takes care of

the maximum utilization of these expensive resources.

Scheduling of computing resources has become more

complicated because current machines have many such

computing resources and these resources are quite

diverse in their nature.

It should be highly important to consider the

computational needs of parallel tasks, communication

patterns and data transfers among different tasks,

communication to computation ratio of overall parallel

algorithm, and load balancing issues during deployment

of parallel jobs on computational resources of a hybrid

computing infrastructure. Scheduling strategies vary

greatly with respect to the nature of problem. This work

explores scheduling of applications that may be

represented by a directed acyclic graph (DAG) and

propose an optimal algorithm for such problems.

After discussing background of this domain and

related work in section II and III respectively, the design

of proposed algorithm is presented in section IV.

Further, it has been evaluated and compared with

existing algorithms under varying scenarios in section V.

Finally, the discussion is concluded in section VI.

2. BACKGROUND

We assume that a parallel computing environment is

a set of heterogeneous processing elements that are fully

connected. Any processor can execute a task and

communicate with other processors at the same because

of overlapping computation and communication time.

Once a processor starts executing a task, it continues

without interruption and after completion, it

immediately sends the output data to all its dependents.

An application or problem to be solved is represented by

a weighted, directed, acyclic graph (DAG). Each node

of DAG represents a subtask that is executed

independently on a processor. Each weighted edge

represents the amount of data to be transferred.

Following sub sections discuss some common

calculations (Topcuoglu, et al., 2002) that are usually

performed by static parallel scheduling algorithms.

A. Communication Cost

Communication cost represents the time required to

transfer data from one processor to another over

network. Following is a simplified model for

communication cost to transfer m units of data from

processor i to processor j:

 𝑐𝑖,𝑗 = 𝑡𝑠 + 𝑚𝑡𝑖,𝑗 ()

Where 𝑡𝑠 denotes the startup time and 𝑡𝑖,𝑗 is network

speed from processor i to processor j. The startup

communication cost for all the processors is usually

assumed to be the same.

Abstract: The increasingly parallel, heterogeneous, and powerful computing infrastructure demands efficient scheduling of tasks over

computing nodes to fully utilize these computing resources. For an optimal scheduling strategy, it is important to consider all the

parameters that have an impact on the overall execution time of a problem having tasks that may run in parallel.This work proposes an
optimal scheduling algorithm for a class of problems that can be represented by a directed acyclic graph. The proposed algorithm is

static in its nature and considers heterogeneity of processing elements. A comparison with existing algorithms under different scenarios

also shows improvement in overall execution time.

Keywords: Directed acyclic graph (DAG; Heterogeneous computing; Scheduling communication

.

SindhUniv. Res. Jour. (Sci. Ser.) Vol. 50 (002) 295-302 (2018)

++Corresponding author: {mscsf08m003, murtaza, s.sarwar, swjaffry, laeeq.aslam, madiha.khalid}@pucit.edu.pk

http://doi.org/10.26692/sujo/2018.06.0050

mailto:madiha.khalid%7d@pucit.edu.pk

B. Average Earliest Start Time (AEST)

Average earliest start time of a task 𝑣𝑖 is computed

as:

𝐴𝐸𝑆𝑇(𝑣𝑖) = max
𝑣𝑚 ∈ 𝑝𝑟𝑒𝑑(𝑣𝑖)

(𝐴𝐸𝑆𝑇(𝑣𝑚) + 𝑤𝑚̅̅ ̅̅ + 𝑐𝑚,𝑖̅̅ ̅̅ ̅)

 ()

Where 𝑝𝑟𝑒𝑑(𝑣𝑖) is the set of immediate

predecessors of 𝑣𝑖 . 𝐴𝐸𝑆𝑇(𝑣𝑠𝑡𝑎𝑟𝑡)is 0. 𝑤𝑚,𝑗 is execution

time of 𝑣𝑖 on 𝑗𝑡ℎ processor and 𝑤𝑚̅̅ ̅̅ is average execution

time of 𝑣𝑚which is calculated as:

 𝑤𝑚̅̅ ̅̅ =
1

𝑝
∑ 𝑤𝑚,𝑗

𝑝
𝑗=1 ()

Finally, 𝑐𝑚,𝑖̅̅ ̅̅ ̅ is average communication cost.

C. Average Latest Start Time (ALST)

Average latest start time of a task 𝑣𝑖 is computed as:

𝐴𝐿𝑆𝑇(𝑣𝑖) = min
𝑣𝑚 ∈ 𝑠𝑢𝑐𝑐(𝑣𝑖)

(𝐴𝐿𝑆𝑇(𝑣𝑚) − 𝑐𝑚,𝑖̅̅ ̅̅ ̅) − 𝑤𝑚̅̅ ̅̅

 ()

Calculation of this time is started from the bottom of

the graph.

D. Earliest Start Time (EST)

Earliest start time of a task 𝑣𝑖 on processor 𝑝𝑗 is

computed as:

𝐸𝑆𝑇(𝑣𝑖 , 𝑝𝑗) = max(𝑎𝑣𝑎𝑖𝑙(𝑝𝑗), max(𝐴𝐹𝑇(𝑣𝑡 + 𝑐𝑡,𝑖))) ()

Where 𝑎𝑣𝑎𝑖𝑙(𝑝𝑗) is the time when processor 𝑝𝑗will

be available after the execution of parent task(s) of

𝑣𝑖 . AFT is the actual finish time for 𝑣𝑡 ∈
 𝑝𝑟𝑒𝑑(𝑣𝑖).𝐸𝑆𝑇(𝑣𝑠𝑡𝑎𝑟𝑡)is 0.

E. Earliest Finish Time (EFT)

Earliest finish time of a task 𝑣𝑖 on processor 𝑝𝑗 is

computed as:

 𝐸𝐹𝑇(𝑣𝑖 , 𝑝𝑗) = 𝑤𝑖,𝑗 + 𝐸𝑆𝑇(𝑣𝑖 , 𝑝𝑗) ()

F. Critical Path (CP)

Critical path (CP) of a DAG is longest path from

the entry node to the exit node in the graph. The length

of this path |𝐶𝑃| is the sum of the computation costs of

the nodes and inter-node communication along the path.

G. Algorithm Pattern for Static Scheduling

Most of the static scheduling algorithms follow a

pattern and according to this patter an algorithm is

divided into following three phases.

1) Level Sorting Phase

Level sorting is the starting phase of an algorithm,

as this will determine the relation between a task and its

sub tasks. Tasks on two different levels with a

communication like between them can never be

executed in parallel. A process can only be executed

when all of its predecessor tasks have been executed and

data required for this process has been transferred to it.

Entry node is the only node having no parent. All

the DAGs have one entry node and one exit node. The

exit node is the ending node and having no child. If

some DAG has more than one entry and exit nodes then

a new node with zero execution time and zero

communication cost is created and connected with them.

2) Task Prioritization Phase

This phase is most critical and heart of most of the

algorithms as it determines the execution flow and

priority to be scheduled on processor. In this phase,

using different heuristics, a sub optimal order is

determined. So, this phase actually prioritizes tasks

based on different calculations and assumptions. The

commonly used properties to assign priority are average

earliest start time, average earliest finish time, critical

path, up link cost, and down link cost.

3) Processor Assignment Phase

In this phase sub tasks are assigned to processors

based on the availability of processor. So, this phase

gets a list of prioritized sub tasks and schedules them on

processors.

3. RELATED WORK

In heterogeneous scheduling environment computing

nodes are not necessarily of the same specs. The systems

may have different hardware and operating system

running on them. In heterogeneous environment the

execution time of each sub process on each node will be

different and will affect the final execution time of

process.

Scheduling can be categorized as decentralized and

hierarchical. Decentralized scheduling model does not

require central leader responsible for scheduling.

Resources owners may apply some restrictions and

schedulers will have to follow them. Development of

scheduling algorithm becomes difficult if resource

owners and scheduler do not agree with respect to

resource management. In case of hierarchical scheduling

a resource owner can locally apply some policies for

external users. So, a scheduler can be designed

considering different layers of resource hierarchy

(Zhang, 2002)

A. AHMAD et.al., 296

Adaptive scheduling is suitable for dynamic

environments where real time status of the resources is

used. It evaluates the needs of tasks on the fly and tries

to fulfill it in order to achieve desired goals. It requires

an active resource manager that keeps track of the

available resources. The available resources can be

assigned dynamically (Huedo, 2004). In this case,

scheduling strategy and parameters can be replaced at

runtime.

Network aware scheduling considers the network

realities in a greater depth because data transfer cost

plays a vital role in scheduling tasks at distributed

locations (Yousaf, et al., 2014). It intelligently uses the

information of shared bottlenecks (Yousaf, et al., 2014)

for realistic estimation of communication time.

In static scheduling the execution order and

processor assignment is determined before the start of

execution of process. Flow of sub processes is

determined before the actual execution. Usually, the

calculations are based on the averages. It can be used

when resource requirements of all the tasks is known in

advance. Further, the knowledge of underlying

infrastructure is also assumed to be known in advance.

Obviously, it is not appropriate to situations where

dynamic changes are significant and frequent. Some

well-known static scheduling strategies are discussed in

the following sub sections.

H. Heterogeneous Earliest Finish Time (HEFT)

The level sorting phase of HEFT works in top down

fashion (Topcuoglu, et al., 2002). In this phase the given

DAG is to sort tasks at each level to group the tasks that

are independent of each other. As a result, tasks in the

same level can be executed in parallel. For assigning

priority to a task, three attributes are used which are

average computation cost, data transfer cost, and the

rank of predecessor tasks. Priority is assigned to all the

tasks at each level based on its rank. Tasks are ranked as

upward and downward. At each level the task with

highest rank value receives the highest priority. In the

processor selection phase, the processor, which gives

minimum EFT for a task is selected and the task is

assigned to that processor.

The upward rank of a task𝑣𝑖, which is actuallylength

of the longest path of𝑣𝑖 to the exit node, is recursively

defined as:

𝑅𝑎𝑛𝑘𝑢(𝑣𝑖) = 𝑤𝑖̅̅ ̅ + max
𝑣𝑗 ∈ 𝑠𝑢𝑐𝑐(𝑣𝑖)

(𝑐𝑖,𝑗̅̅ ̅̅ +

𝑅𝑎𝑛𝑘𝑢(𝑣𝑗)) ()

HEFT uses EFT to select the processor for each task.

I. Critical Path On a Processor (CPOP)

Level sorting phase of CPOP (Topcuoglu, et al.,

2002) works in similar way as it is done in HEFT. In

CPOP the priority is calculated using𝑅𝑎𝑛𝑘𝑢and 𝑅𝑎𝑛𝑘𝑑

where 𝑅𝑎𝑛𝑘𝑢 is computing using equation (7) and

𝑅𝑎𝑛𝑘𝑑 is calculated as:

𝑅𝑎𝑛𝑘𝑑(𝑣𝑖) = max
𝑣𝑗 ∈ 𝑝𝑟𝑒𝑑(𝑣𝑖)

(𝑤𝑗̅̅ ̅ + 𝑐𝑗,𝑖̅̅̅̅ + 𝑅𝑎𝑛𝑘𝑑(𝑣𝑗)) ()

The priority of a task is calculated as 𝑅𝑎𝑛𝑘𝑢(𝑣𝑖) +
𝑅𝑎𝑛𝑘𝑑(𝑣𝑖) . The processor selection phase has two

options:

1. If the current node is on the critical path it is

assigned to the critical path processor

2. Otherwise it is assigned to the processor that

minimize the execution completion time.

J. High Performance Task Scheduling (HPS)

In HPS, all the tasks are sorted according to their

level in DAG. The entry task is at the top level and all

other tasks in levels follow the following role:

“Level 𝑖 consist of all tasks 𝑣𝑘 such that, for all

edges(𝑣𝑗 , 𝑣𝑘), task 𝑣𝑗 is in a level less than 𝑖 and there

exists at least one edge(𝑣𝑗 , 𝑣𝑘) such that 𝑣𝑗 is in level

𝑖 − 1.”

The priority of tasks is calculated using down link

cost, up link cost, and link cost. For each task, from

highest to lowest priority, the processor, which gives

minimum EFT is selected.

K. Level and Branch Priority (LBP) (Ilavarasan,

et al., 2005)

This algorithm used the same level sorting technique

as used in HEFT. The attributes that are used to

calculate the priority of tasks are T–Level: the length of

the longest path from the entrance node to the task

node𝑣𝑖 and B–Level: the length of the longest path from

the task node𝑣𝑖to the exit node. Scheduling of a task 𝑣𝑖

is done on the host that optimizes its earliest finish time.

4. 4. DESIGN

This section discusses the design of optimized and

flexible scheduler for parallel computing environment

that schedules the sub tasks on processing elements to

minimize the total execution time of a parallel problem.

This algorithm is based on the communication with the

children of any node along with uplink cost. The

proposed algorithm depicted in (Fig. 1), is divided into

three phases and each of the phases is discussed in the

following sub sections.

Optimized Scheduling for Parallel Computing Environment 297

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

Read the DAG, associated attributes, and

infrastructure details for all tasks 𝑣𝑖 at each

level

begin

compute 𝑤𝑖̅̅ ̅ using equation (3)

compute 𝑅𝑎𝑛𝑘𝑢(𝑣𝑖) using equation (7)

compute 𝐷𝑉𝐶(𝑣𝑖) using equation (10)

prioritize the task based on 𝑅𝑎𝑛𝑘𝑢(𝑣𝑖) +
𝐷𝑉𝐶(𝑣𝑖)

for each processor 𝑝𝑘 in the processor set

begin

compute 𝐸𝐹𝑇(𝑣𝑖 , 𝑝𝑘) using equation insertion

(6)

𝑝𝑘 ← 𝑣𝑖 , which minimize the 𝐸𝐹𝑇(𝑣𝑖 , 𝑝𝑘)

end

end

Fig. 1. Proposed algorithm for scheduling.

L. Level Sorting Phase

In first step the DAG is divided into levels and then

the rank of each node is calculated using uplink cost

along with down vertices cost. Entry node is at level 1

and there should always be one entry point. If there are

more entries for a DAG (as it could be) then a new node

will be defined with zero execution time and it will be

connected to all of the entry points with zero

communication cost. Every node i connected to node j at

level n will be at level n+1 if there is a communication

link from node i to node j. The exit node is at the highest

level of graph and there should be only one exist node.

More than one exit nodes will be connected to a single

empty node.

M. Task Prioritization Phase

Priority of each node, in terms of its rank, is defined

level wise. The rank of a node 𝑣𝑖is sum of its upward

rank, as mentioned in equation (7), and down vertices

cost (DVC), which is represented as:

𝑅𝑎𝑛𝑘(𝑣𝑖) = 𝑅𝑎𝑛𝑘𝑢(𝑣𝑖) + 𝐷𝑉𝐶(𝑣𝑖) ()

DVC is the amount of collective data to be

transferred from a node 𝑣𝑖 to its child nodes.If 𝑣𝑖 has

𝑛child nodes and 𝑒𝑖,𝑗 represents the amount of data to be

transferred from 𝑣𝑖 to its 𝑗𝑡ℎ child node, then:

𝐷𝑉𝐶(𝑣𝑖) = ∑ 𝑒𝑖,𝑗
𝑛
𝑗=1 ()

After calculating the rank of each of node,

prioritization is started. The priority of each node is

calculated based on its level and rank. Nodes at each

level are sorted according to their rank and then priority

is assigned. And then processor selection is done based

on the priority.

N. Processor Selection Phase

In processor selection phase the prioritized list is

traversed in top down order and each node is assigned to

an available processor that minimizes the finish time of

respective node. The availability of the processor is also

maintained. A sub process can start its processing only if

all of its predecessors have finished their execution and

the required data has been transferred.

5. Evaluation and Comparison

We have evaluated our algorithm on three different

scenarios. Further, its performance has been compared

with the performances of HEFT and CPOP on these

scenarios.

O. Scenario 1

First scenario consists of eleven sub tasks and three

processors are available to execute this problem. The

execution time of each sub task on each of processor is

different and is provided in (Table I). The execution

time of each sub tasks is tentative but not actual.

The communication between two subtasks is the

amount of data transferred from one node to other. The

communication cost between any two processors is

assumed to be the same so we will ignore the data

transfer rate and will be only considering the amount of

data to be transferred. The complete DAG is represented

in (Fig. 2).

Table: 1. Execution Time of Tasks for Scenario 1

Tasks

Execution Time

P1 P2 P3

1 4 4 4

2 5 5 5

3 4 6 4

4 3 3 3

5 3 5 3

6 3 7 2

7 5 8 5

8 2 4 5

9 5 6 7

10 3 7 5

11 5 6 7

For task prioritization, first average execution time

for each of the sub task is calculated by summing up the

execution time on the processors and then divided by

number of processors. By adding upward rank and down

vertices cost, rank of each node is computed. Then the

final prioritized list is computed level wise. For each

level, all the tasks are sorted with respect to their

ranking. This process is conducted level wise. All the

computed results are presented in (Table 2).

A. AHMAD et.al., 298

1

4 3 2

8 7 6 5

9

2 2 2

4

2 2

2

1 3

2

1

3 2 2 2

10

11

Fig.2. Directed acyclic graph of scenario 1.

For process allocation, earliest finish time of all the

tasks is computed using equation (6). After that,

prioritized list is traversed and tasks are allocated to

suitable processors.

Execution flow of proposed algorithm is computed

and compared with the execution flow of HEFT and

CPOP. It has been observed that final execution time of

proposed algorithm for scenario 1 is better than HEFT

and CPOP by 10% and 25% respectively. Execution

flows for all three algorithms are depicted in (Fig. 3).

Table: 2. Prioritization Comutation for Scenario 1

Tas

ks

𝒘𝒊̅̅ ̅ 𝑹𝒂𝒏𝒌𝒖(𝒗𝒊) 𝑫𝑽𝑪(𝒗𝒊) 𝑹𝒂𝒏𝒌(𝒗𝒊) Le

vel

Prio

rity

1 4 34 6 40 1 1

2 5 28 4 32 2 2

3 4.67 27 1 28 2 4

4 3 28 4 32 2 3

5 3.67 20 2 22 3 5

6 4 21 4 25 3 6

7 6 23 2 25 3 8

8 3.76 22 3 25 3 7

9 6 14 2 16 4 10

10 5 15 4 19 4 9

11 6 6 0 6 5 11

P. Scenario 2

This scenario consists of 10 tasks that have relatively

large amount of data to be transferred and its tasks are

computational intensive in comparison to scenario 1. All

the tasks are spread over four levels. Tasks at each level

require data from the tasks of previous level. In this

way, tasks at a level are dependent on the complete

execution of tasks at their previous level.

This scenario has been also discussed in the

literature (Topcuoglu, et al., 2002) (Huedo, 2004) and it

also assumes three processing elements. The scenario is

depicted in (Fig. 3) and tentative execution times of all

the tasks on three processing units are presented in

(Table 3).

Table 3. Execution Time of Tasks for Scenario 2

Tasks

Execution Time

P1 P2 P3

1 14 16 9

2 13 19 18

3 11 13 19

4 13 8 17

5 12 13 10

6 13 16 9

7 7 15 11

8 5 11 7

9 18 12 20

10 21 7 16

1

3 4 5

7

8

9

12 9 11

2
1

1

3
2 2

10

62

18 14

2
2

1
3

Fig.3.Directed acyclic graph of scenario 2.

The prioritization of tasks for scenario 2 is calculated

and presented in (Table 4) Final execution time of

proposed algorithm for this scenario is found to be better

than HEFT and CPOP by 3.75% and 12.5%

respectively. Execution flows for all three algorithms are

depicted in (Fig. 4).

Table 4. Prioritization Comutation For Scenario 2

Ta

sks

𝐰𝐢̅̅ ̅ 𝐑𝐚𝐧𝐤𝐮(𝐯𝐢) 𝐃𝐕𝐂(𝐯𝐢) 𝐑𝐚𝐧𝐤(𝐯𝐢) Le

vel

Prio

rity

1 13 108 64 172 1 1

2 16.7 77 35 112 2 3

3 14.3 80 23 103 2 4

4 12.7 80 50 130 2 2

5 11.7 69 13 82 2 5

6 12.7 63 15 78 2 6

7 11 43 17 60 3 7

8 10 26 11 37 3 9

9 16.7 14 2 16 4 10

10 14.7 15 4 19 4 9

Optimized Scheduling for Parallel Computing Environment 299

Scenario 3

This scenario consists of 13 tasks with greater set of

dependencies among the tasks. It also assumes three

processing elements. The scenario is depicted in (Fig. 4)

and tentative execution times of all the tasks on three

processors are presented in (Table 5).

1

2 3 4 5 6 7 8

9 10 11 12

13

1 1 6
1

1
1 6

2 2 2
2

2 2

2 1 1 8

1

1
2

Fig.4. Directed Acyclic Graph Of Scenario 3.

Table 5. Execution Time of Tasks for Scenario 3

The priority of tasks for scenario 3 is computed and

presented in (Table 6). Final execution time of proposed

algorithm for this scenario is found to be better than

HEFT by 6.5%. Execution flows in this scenario for the

proposed algorithm and HEFT are depicted in (Fig. 5-7).

Tas

ks

Execution Time

P1 P2 P3

1 22 15 17

2 15 25 5

3 22 5 9

4 19 19 16

5 16 20 24

6 16 14 9

7 22 5 9

8 19 19 16

9 15 12 21

10 9 21 3

11 5 6 25

12 15 12 21

13 10 17 24

Fig. 5. Execution flow of HEFT, CPOP, and proposed algorithm for Scenario 1.

Fig. 6. Execution flow of HEFT, CPOP, and proposed algorithm for Scenario 2.

Fig. 7. Execution flow of HEFT, and proposed algorithm for Scenario 3.

A. AHMAD et.al., 300

Table 6. Prioritization comutation for scenario 3

Tas

ks

𝐰𝐢̅̅ ̅ 𝐑𝐚𝐧𝐤𝐮(𝐯𝐢) 𝐃𝐕𝐂(𝐯𝐢) 𝐑𝐚𝐧𝐤(𝐯𝐢) Lev

el

Prio

rity

1 18 127 74 201 1 1

2 15 75 22 97 2 5

3 12 95 22 117 2 3

4 18 103 72 175 2 2

5 20 73 10 83 2 7

6 13 64 13 77 2 8

7 12 75 22 97 2 4

8 18 73 14 87 2 6

9 16 61 28 89 3 9

10 11 38 10 48 3 12

11 12 43 14 57 3 10

12 16 41 8 49 3 11

13 17 17 0 17 4 13

5. CONCLUSION

This work proposed a scheduling strategy for

problems that can be represented by a directed acyclic

graph. The algorithm prioritizes all the tasks of a

problem based on their ranks and suggests a mapping on

computing elements. This mapping reduces the overall

execution time of the problem. The algorithm is

compared with existing strategies under different

scenarios and shows its improvement up to 12.5%.

REFERENCES:

Case-Based Reasoning, (1993) Morgan Kaufmann

Publishers,

Dong, F. and S. G. Akl, (2006) “Scheduling Algorithms

for Grid Computing: State of the Art and Open

Problems”, Technical Report No: 2006/504.

Huedo, E. (2004) “Experiences on adaptive grid

scheduling of parameter sweep applications”, 12th

Euromicro Conference on Parallel, Distributed and

Network-Based Processing,Coruna, Spain.

Ilavarasan, E., P. Thambidurai, and R. Mahilmannan,

(2005) “High Performance Task Scheduling Algorithm

for Heterogeneous Computing System”, International

Conference on Algorithms and Architectures for

Parallel Processing, ICA 03-10

Ma, D and W. Zhang, (2003) “A Static Task

Scheduling Algorithm in Grid Computing”,.

International Conference on Grid and Cooperative

Computing, GCC.

Topcuoglu, H., S. Hariri, and M. Y. Wu, (2002)

“Performance-effective and low-complexity task

scheduling for heterogeneous computing,” IEEE

Transactions on Parallel and Distributed Systems,

vol. 13, no. 3, 260–274.

Yousaf, M. M. and M. Welzl, (2014) “Network-Aware

HEFT Scheduling for Grid”, The Scientific World

Journal, DOI: 10.1155/2014/317284.

Yousaf, M. M and M. Welzl, (2013) “On the Accurate

Identification of Network Paths Having a Common

Bottleneck”, The Scientific World Journal, DOI:

10.1155/2013/890578.

Zhang, L. (2002) “Scheduling algorithm for real-time

applications in grid environment”, IEEE International

Conference on Systems, Man and Cybernetics,

Yasmine Hammamet, Tunisia, Tunisia.

Optimized Scheduling for Parallel Computing Environment 301

