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I.                  INTRODUCTION 

The availability of increasingly powerful machines 

justifies the continuous progress of hardware vendors 

but at the same time raises significant challenges for 

software engineers. Now it is highly important to make 

full utilization of the computing powers of state-of-the-

art machines by designing innovative scheduling 

techniques. Generally, the most expensive resource of a 

system is its processing units. Scheduling takes care of 

the maximum utilization of these expensive resources. 

Scheduling of computing resources has become more 

complicated because current machines have many such 

computing resources and these resources are quite 

diverse in their nature.  
 

It should be highly important to consider the 

computational needs of parallel tasks, communication 

patterns and data transfers among different tasks, 

communication to computation ratio of overall parallel 

algorithm, and load balancing issues during deployment 

of parallel jobs on computational resources of a hybrid 

computing infrastructure. Scheduling strategies vary 

greatly with respect to the nature of problem. This work 

explores scheduling of applications that may be 

represented by a directed acyclic graph (DAG) and 

propose an optimal algorithm for such problems. 
 

After discussing background of this domain and 

related work in section II and III respectively, the design 

of proposed algorithm is presented in section IV. 

Further, it has been evaluated and compared with 

existing algorithms under varying scenarios in section V. 

Finally, the discussion is concluded in section VI. 

 

2.                     BACKGROUND 

We assume that a parallel computing environment is 

a set of heterogeneous processing elements that are fully 

connected. Any processor can execute a task and 

communicate with other processors at the same because 

of overlapping computation and communication time. 

Once a processor starts executing a task, it continues 

without interruption and after completion, it 

immediately sends the output data to all its dependents. 

An application or problem to be solved is represented by 

a weighted, directed, acyclic graph (DAG). Each node 

of DAG represents a subtask that is executed 

independently on a processor. Each weighted edge 

represents the amount of data to be transferred. 

 

Following sub sections discuss some common 

calculations (Topcuoglu, et al., 2002)  that are usually 

performed by static parallel scheduling algorithms. 

 

A. Communication Cost 

Communication cost represents the time required to 

transfer data from one processor to another over 

network. Following is a simplified model for 

communication cost to transfer m units of data from 

processor i to processor j: 
 

 𝑐𝑖,𝑗 = 𝑡𝑠 + 𝑚𝑡𝑖,𝑗 () 

 

Where 𝑡𝑠 denotes the startup time and 𝑡𝑖,𝑗 is network 

speed from processor i to processor j. The startup 

communication cost for all the processors is usually 

assumed to be the same. 
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B. Average Earliest Start Time (AEST) 

Average earliest start time of a task 𝑣𝑖 is computed 

as: 

𝐴𝐸𝑆𝑇(𝑣𝑖) = max
𝑣𝑚 ∈ 𝑝𝑟𝑒𝑑(𝑣𝑖)

(𝐴𝐸𝑆𝑇(𝑣𝑚) +  𝑤𝑚̅̅ ̅̅ + 𝑐𝑚,𝑖̅̅ ̅̅ ̅)  

                                            () 

 

Where 𝑝𝑟𝑒𝑑(𝑣𝑖)  is the set of immediate 

predecessors of 𝑣𝑖 . 𝐴𝐸𝑆𝑇(𝑣𝑠𝑡𝑎𝑟𝑡)is 0. 𝑤𝑚,𝑗 is execution 

time of 𝑣𝑖 on 𝑗𝑡ℎ processor and 𝑤𝑚̅̅ ̅̅  is average execution 

time of 𝑣𝑚which is calculated as: 

 

 𝑤𝑚̅̅ ̅̅ =
1

𝑝
∑ 𝑤𝑚,𝑗

𝑝
𝑗=1   () 

Finally, 𝑐𝑚,𝑖̅̅ ̅̅ ̅ is average communication cost. 

 

C. Average Latest Start Time (ALST) 

 

Average latest start time of a task 𝑣𝑖 is computed as: 

 

𝐴𝐿𝑆𝑇(𝑣𝑖) = min
𝑣𝑚 ∈ 𝑠𝑢𝑐𝑐(𝑣𝑖)

(𝐴𝐿𝑆𝑇(𝑣𝑚) − 𝑐𝑚,𝑖̅̅ ̅̅ ̅) − 𝑤𝑚̅̅ ̅̅  

                                      () 

 

Calculation of this time is started from the bottom of 

the graph. 

 

D. Earliest Start Time (EST) 

Earliest start time of a task 𝑣𝑖 on processor 𝑝𝑗 is 

computed as: 

𝐸𝑆𝑇(𝑣𝑖 , 𝑝𝑗) = max(𝑎𝑣𝑎𝑖𝑙(𝑝𝑗), max(𝐴𝐹𝑇(𝑣𝑡 + 𝑐𝑡,𝑖)))  () 

 

Where 𝑎𝑣𝑎𝑖𝑙(𝑝𝑗) is the time when processor 𝑝𝑗will 

be available after the execution of parent task(s) of           

𝑣𝑖 . AFT is the actual finish time for 𝑣𝑡  ∈
 𝑝𝑟𝑒𝑑(𝑣𝑖).𝐸𝑆𝑇(𝑣𝑠𝑡𝑎𝑟𝑡)is 0. 
 

E. Earliest Finish Time (EFT) 

 

Earliest finish time of a task 𝑣𝑖  on processor 𝑝𝑗  is 

computed as: 

 

 𝐸𝐹𝑇(𝑣𝑖 , 𝑝𝑗) = 𝑤𝑖,𝑗 + 𝐸𝑆𝑇(𝑣𝑖 , 𝑝𝑗)       () 

 

F. Critical Path (CP) 

Critical path (CP) of a DAG is longest path from 

the entry node to the exit node in the graph. The length 

of this path |𝐶𝑃| is the sum of the computation costs of 

the nodes and inter-node communication along the path. 
 

G. Algorithm Pattern for Static Scheduling 

Most of the static scheduling algorithms follow a 

pattern and according to this patter an algorithm is 

divided into following three phases. 

 

 

1) Level Sorting Phase 

Level sorting is the starting phase of an algorithm, 

as this will determine the relation between a task and its 

sub tasks. Tasks on two different levels with a 

communication like between them can never be 

executed in parallel. A process can only be executed 

when all of its predecessor tasks have been executed and 

data required for this process has been transferred to it. 

 

Entry node is the only node having no parent. All 

the DAGs have one entry node and one exit node. The 

exit node is the ending node and having no child. If 

some DAG has more than one entry and exit nodes then 

a new node with zero execution time and zero 

communication cost is created and connected with them. 

 

2) Task Prioritization Phase 

This phase is most critical and heart of most of the 

algorithms as it determines the execution flow and 

priority to be scheduled on processor. In this phase, 

using different heuristics, a sub optimal order is 

determined. So, this phase actually prioritizes tasks 

based on different calculations and assumptions. The 

commonly used properties to assign priority are average 

earliest start time, average earliest finish time, critical 

path, up link cost, and down link cost. 

 

3) Processor Assignment Phase 

In this phase sub tasks are assigned to processors 

based on the availability of processor. So, this phase 

gets a list of prioritized sub tasks and schedules them on 

processors. 

 

3.          RELATED WORK 

In heterogeneous scheduling environment computing 

nodes are not necessarily of the same specs. The systems 

may have different hardware and operating system 

running on them. In heterogeneous environment the 

execution time of each sub process on each node will be 

different and will affect the final execution time of 

process. 
 

Scheduling can be categorized as decentralized and 

hierarchical. Decentralized scheduling model does not 

require central leader responsible for scheduling. 

Resources owners may apply some restrictions and 

schedulers will have to follow them. Development of 

scheduling algorithm becomes difficult if resource 

owners and scheduler do not agree with respect to 

resource management. In case of hierarchical scheduling 

a resource owner can locally apply some policies for 

external users. So, a scheduler can be designed 

considering different layers of resource hierarchy 

(Zhang, 2002) 
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Adaptive scheduling is suitable for dynamic 

environments where real time status of the resources is 

used. It evaluates the needs of tasks on the fly and tries 

to fulfill it in order to achieve desired goals. It requires 

an active resource manager that keeps track of the 

available resources. The available resources can be 

assigned dynamically (Huedo, 2004). In this case, 

scheduling strategy and parameters can be replaced at 

runtime. 

 

Network aware scheduling considers the network 

realities in a greater depth because data transfer cost 

plays a vital role in scheduling tasks at distributed 

locations (Yousaf, et al., 2014). It intelligently uses the 

information of shared bottlenecks (Yousaf, et al., 2014) 

for realistic estimation of communication time. 

 

In static scheduling the execution order and 

processor assignment is determined before the start of 

execution of process. Flow of sub processes is 

determined before the actual execution. Usually, the 

calculations are based on the averages. It can be used 

when resource requirements of all the tasks is known in 

advance. Further, the knowledge of underlying 

infrastructure is also assumed to be known in advance. 

Obviously, it is not appropriate to situations where 

dynamic changes are significant and frequent. Some 

well-known static scheduling strategies are discussed in 

the following sub sections. 

 

H. Heterogeneous Earliest Finish Time (HEFT) 

The level sorting phase of HEFT works in top down 

fashion (Topcuoglu, et al., 2002). In this phase the given 

DAG is to sort tasks at each level to group the tasks that 

are independent of each other. As a result, tasks in the 

same level can be executed in parallel. For assigning 

priority to a task, three attributes are used which are 

average computation cost, data transfer cost, and the 

rank of predecessor tasks. Priority is assigned to all the 

tasks at each level based on its rank. Tasks are ranked as 

upward and downward. At each level the task with 

highest rank value receives the highest priority. In the 

processor selection phase, the processor, which gives 

minimum EFT for a task is selected and the task is 

assigned to that processor. 

 

The upward rank of a task𝑣𝑖, which is actuallylength 

of the longest path of𝑣𝑖 to the exit node, is recursively 

defined as: 

 

𝑅𝑎𝑛𝑘𝑢(𝑣𝑖) = 𝑤𝑖̅̅ ̅ + max
𝑣𝑗 ∈ 𝑠𝑢𝑐𝑐(𝑣𝑖)

(𝑐𝑖,𝑗̅̅ ̅̅ +

𝑅𝑎𝑛𝑘𝑢(𝑣𝑗))                        () 

 

 

 

HEFT uses EFT to select the processor for each task. 
 

I. Critical Path On a Processor (CPOP)  

Level sorting phase of CPOP (Topcuoglu, et al., 

2002) works in similar way as it is done in HEFT. In 

CPOP the priority is calculated using𝑅𝑎𝑛𝑘𝑢and 𝑅𝑎𝑛𝑘𝑑 

where 𝑅𝑎𝑛𝑘𝑢 is computing using equation (7) and 

𝑅𝑎𝑛𝑘𝑑 is calculated as: 
  

𝑅𝑎𝑛𝑘𝑑(𝑣𝑖) = max
𝑣𝑗 ∈ 𝑝𝑟𝑒𝑑(𝑣𝑖)

(𝑤𝑗̅̅ ̅ + 𝑐𝑗,𝑖̅̅̅̅ + 𝑅𝑎𝑛𝑘𝑑(𝑣𝑗)) () 

The priority of a task is calculated as 𝑅𝑎𝑛𝑘𝑢(𝑣𝑖) +
𝑅𝑎𝑛𝑘𝑑(𝑣𝑖) . The processor selection phase has two 

options:  
 

1. If the current node is on the critical path it is 

assigned to the critical path processor 

2. Otherwise it is assigned to the processor that 

minimize the execution completion time. 
 

J. High Performance Task Scheduling (HPS) 

In HPS, all the tasks are sorted according to their 

level in DAG. The entry task is at the top level and all 

other tasks in levels follow the following role: 
 

“Level 𝑖  consist of all tasks 𝑣𝑘  such that, for all 

edges(𝑣𝑗 , 𝑣𝑘), task 𝑣𝑗 is in a level less than 𝑖 and there 

exists at least one edge(𝑣𝑗 , 𝑣𝑘) such that 𝑣𝑗  is in level 

𝑖 − 1.” 
 

The priority of tasks is calculated using down link 

cost, up link cost, and link cost. For each task, from 

highest to lowest priority, the processor, which gives 

minimum EFT  is selected. 
 

K. Level and Branch Priority (LBP) (Ilavarasan, 

et  al.,  2005) 

This algorithm used the same level sorting technique 

as used in HEFT. The attributes that are used to 

calculate the priority of tasks are T–Level: the length of 

the longest path from the entrance node to the task 

node𝑣𝑖 and B–Level: the length of the longest path from 

the task node𝑣𝑖to the exit node. Scheduling of a task 𝑣𝑖 

is done on the host that optimizes its earliest finish time. 
 

4. 4.                              DESIGN 

This section discusses the design of optimized and 

flexible scheduler for parallel computing environment 

that schedules the sub tasks on processing elements to 

minimize the total execution time of a parallel problem. 

This algorithm is based on the communication with the 

children of any node along with uplink cost. The 

proposed algorithm depicted in (Fig. 1), is divided into 

three phases and each of the phases is discussed in the 

following sub sections. 
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1: 

 

 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

Read the DAG, associated attributes, and 

infrastructure details for all tasks 𝑣𝑖  at each 

level 

begin 

compute 𝑤𝑖̅̅ ̅ using equation (3) 

compute 𝑅𝑎𝑛𝑘𝑢(𝑣𝑖) using equation (7) 

compute 𝐷𝑉𝐶(𝑣𝑖) using equation (10) 

prioritize the task based on 𝑅𝑎𝑛𝑘𝑢(𝑣𝑖) +
𝐷𝑉𝐶(𝑣𝑖) 

for each processor 𝑝𝑘 in the processor set 

begin 

compute 𝐸𝐹𝑇(𝑣𝑖 , 𝑝𝑘)  using equation insertion 

(6) 

𝑝𝑘 ← 𝑣𝑖 , which minimize the 𝐸𝐹𝑇(𝑣𝑖 , 𝑝𝑘) 

end 

end 
 

Fig. 1. Proposed algorithm for scheduling. 

 

L. Level Sorting Phase 

In first step the DAG is divided into levels and then 

the rank of each node is calculated using uplink cost 

along with down vertices cost. Entry node is at level 1 

and there should always be one entry point. If there are 

more entries for a DAG (as it could be) then a new node 

will be defined with zero execution time and it will be 

connected to all of the entry points with zero 

communication cost. Every node i connected to node j at 

level n will be at level n+1 if there is a communication 

link from node i to node j. The exit node is at the highest 

level of graph and there should be only one exist node. 

More than one exit nodes will be connected to a single 

empty node. 

 

M. Task Prioritization Phase 

Priority of each node, in terms of its rank, is defined 

level wise. The rank of a node 𝑣𝑖is sum of its upward 

rank, as mentioned in equation (7), and down vertices 

cost (DVC), which is represented as: 

 

𝑅𝑎𝑛𝑘(𝑣𝑖) =  𝑅𝑎𝑛𝑘𝑢(𝑣𝑖) + 𝐷𝑉𝐶(𝑣𝑖)       () 

DVC is the amount of collective data to be 

transferred from a node 𝑣𝑖 to its child nodes.If 𝑣𝑖  has 

𝑛child nodes and 𝑒𝑖,𝑗 represents the amount of data to be 

transferred from 𝑣𝑖 to its 𝑗𝑡ℎ child node, then: 
 

𝐷𝑉𝐶(𝑣𝑖) =  ∑ 𝑒𝑖,𝑗
𝑛
𝑗=1                       () 

 

After calculating the rank of each of node, 

prioritization is started. The priority of each node is 

calculated based on its level and rank. Nodes at each 

level are sorted according to their rank and then priority 

is assigned. And then processor selection is done based 

on the priority. 

 

 

N. Processor Selection Phase 

In processor selection phase the prioritized list is 

traversed in top down order and each node is assigned to 

an available processor that minimizes the finish time of 

respective node. The availability of the processor is also 

maintained. A sub process can start its processing only if 

all of its predecessors have finished their execution and 

the required data has been transferred. 
 

5. Evaluation and Comparison 

We have evaluated our algorithm on three different 

scenarios. Further, its performance has been compared 

with the performances of HEFT and CPOP on these 

scenarios. 

 

O. Scenario 1 

First scenario consists of eleven sub tasks and three 

processors are available to execute this problem. The 

execution time of each sub task on each of processor is 

different and is provided in (Table I). The execution 

time of each sub tasks is tentative but not actual.  

 

The communication between two subtasks is the 

amount of data transferred from one node to other. The 

communication cost between any two processors is 

assumed to be the same so we will ignore the data 

transfer rate and will be only considering the amount of 

data to be transferred. The complete DAG is represented 

in (Fig. 2). 
 

Table: 1. Execution Time of Tasks for Scenario 1 

 

Tasks 

Execution Time 

P1 P2 P3 

1 4 4 4 

2 5 5 5 

3 4 6 4 

4 3 3 3 

5 3 5 3 

6 3 7 2 

7 5 8 5 

8 2 4 5 

9 5 6 7 

10 3 7 5 

11 5 6 7 

 

For task prioritization, first average execution time 

for each of the sub task is calculated by summing up the 

execution time on the processors and then divided by 

number of processors. By adding upward rank and down 

vertices cost, rank of each node is computed. Then the 

final prioritized list is computed level wise. For each 

level, all the tasks are sorted with respect to their 

ranking. This process is conducted level wise. All the 

computed results are presented in (Table 2). 
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Fig.2. Directed acyclic graph of scenario 1. 
 

For process allocation, earliest finish time of all the 

tasks is computed using equation (6). After that, 

prioritized list is traversed and tasks are allocated to 

suitable processors. 
 

Execution flow of proposed algorithm is computed 

and compared with the execution flow of HEFT and 

CPOP. It has been observed that final execution time of 

proposed algorithm for scenario 1 is better than HEFT 

and CPOP by 10% and 25% respectively. Execution 

flows for all three algorithms are depicted in (Fig. 3). 

 
Table: 2. Prioritization Comutation for Scenario 1 

 
Tas

ks 

𝒘𝒊̅̅ ̅ 𝑹𝒂𝒏𝒌𝒖(𝒗𝒊) 𝑫𝑽𝑪(𝒗𝒊) 𝑹𝒂𝒏𝒌(𝒗𝒊) Le

vel 

Prio

rity 

1 4 34 6 40 1 1 

2 5 28 4 32 2 2 

3 4.67 27 1 28 2 4 

4 3 28 4 32 2 3 

5 3.67 20 2 22 3 5 

6 4 21 4 25 3 6 

7 6 23 2 25 3 8 

8 3.76 22 3 25 3 7 

9 6 14 2 16 4 10 

10 5 15 4 19 4 9 

11 6 6 0 6 5 11 

 

P. Scenario 2 

This scenario consists of 10 tasks that have relatively 

large amount of data to be transferred and its tasks are 

computational intensive in comparison to scenario 1. All 

the tasks are spread over four levels. Tasks at each level 

require data from the tasks of previous level. In this 

way, tasks at a level are dependent on the complete 

execution of tasks at their previous level. 
 

This scenario has been also discussed in the 

literature (Topcuoglu, et al., 2002) (Huedo, 2004) and it 

also assumes three processing elements. The scenario is 

depicted in (Fig. 3) and tentative execution times of all 

the tasks on three processing units are presented in 

(Table 3). 
 

Table 3. Execution Time of Tasks for Scenario 2 

 

Tasks 

Execution Time 

P1 P2 P3 

1 14 16 9 

2 13 19 18 

3 11 13 19 

4 13 8 17 

5 12 13 10 

6 13 16 9 

7 7 15 11 

8 5 11 7 

9 18 12 20 

10 21 7 16 
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1
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Fig.3.Directed acyclic graph of scenario 2. 

 

The prioritization of tasks for scenario 2 is calculated 

and presented in (Table 4) Final execution time of 

proposed algorithm for this scenario is found to be better 

than HEFT and CPOP by 3.75% and 12.5% 

respectively. Execution flows for all three algorithms are 

depicted in (Fig. 4). 

 
Table 4. Prioritization Comutation For Scenario 2 

 

Ta

sks 

𝐰𝐢̅̅ ̅ 𝐑𝐚𝐧𝐤𝐮(𝐯𝐢) 𝐃𝐕𝐂(𝐯𝐢) 𝐑𝐚𝐧𝐤(𝐯𝐢) Le

vel 

Prio

rity 

1 13 108 64 172 1 1 

2 16.7 77 35 112 2 3 

3 14.3 80 23 103 2 4 

4 12.7 80 50 130 2 2 

5 11.7 69 13 82 2 5 

6 12.7 63 15 78 2 6 

7 11 43 17 60 3 7 

8 10 26 11 37 3 9 

9 16.7 14 2 16 4 10 

10 14.7 15 4 19 4 9 
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Scenario 3 

This scenario consists of 13 tasks with greater set of 

dependencies among the tasks. It also assumes three 

processing elements. The scenario is depicted in (Fig. 4) 

and tentative execution times of all the tasks on three 

processors are presented in (Table 5). 
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2 3 4 5 6 7 8

9 10 11 12

13

1 1 6
1

1
1 6
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2 1 1 8
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Fig.4. Directed Acyclic Graph Of Scenario 3. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Table 5. Execution Time of Tasks for Scenario 3 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The priority of tasks for scenario 3 is computed and 

presented in (Table 6). Final execution time of proposed 

algorithm for this scenario is found to be better than 

HEFT by 6.5%. Execution flows in this scenario for the 

proposed algorithm and HEFT are depicted in (Fig. 5-7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tas

ks 

Execution Time 

P1 P2 P3 

1 22 15 17 

2 15 25 5 

3 22 5 9 

4 19 19 16 

5 16 20 24 

6 16 14 9 

7 22 5 9 

8 19 19 16 

9 15 12 21 

10 9 21 3 

11 5 6 25 

12 15 12 21 

13 10 17 24 

 

  
 

Fig. 5. Execution flow of HEFT, CPOP, and proposed algorithm for Scenario 1. 

 

  
 

Fig. 6. Execution flow of HEFT, CPOP, and proposed algorithm for Scenario 2. 

 
 

Fig. 7. Execution flow of HEFT, and proposed algorithm for Scenario 3. 
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Table 6. Prioritization comutation for scenario 3 

 
Tas

ks 

𝐰𝐢̅̅ ̅ 𝐑𝐚𝐧𝐤𝐮(𝐯𝐢) 𝐃𝐕𝐂(𝐯𝐢) 𝐑𝐚𝐧𝐤(𝐯𝐢) Lev

el 

Prio

rity 

1 18 127 74 201 1 1 

2 15 75 22 97 2 5 

3 12 95 22 117 2 3 

4 18 103 72 175 2 2 

5 20 73 10 83 2 7 

6 13 64 13 77 2 8 

7 12 75 22 97 2 4 

8 18 73 14 87 2 6 

9 16 61 28 89 3 9 

10 11 38 10 48 3 12 

11 12 43 14 57 3 10 

12 16 41 8 49 3 11 

13 17 17 0 17 4 13 
 

5.                           CONCLUSION 

This work proposed a scheduling strategy for 

problems that can be represented by a directed acyclic 

graph. The algorithm prioritizes all the tasks of a 

problem based on their ranks and suggests a mapping on 

computing elements. This mapping reduces the overall 

execution time of the problem. The algorithm is 

compared with existing strategies under different 

scenarios and shows its improvement up to 12.5%. 
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