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1.                INTRODUCTION 

The quandary of flow with slip-stream is very 

critical in this time of present day science, development 

and infeasible running industrialization. The wonder of 

slip-stream regime has pulled in the consideration of an 

expansive number of researchers because of its far 

reaching application. The constituent part nearby a 

strong surface no lengthier considers the velocity of the 

surface in various certifiable applications. At the surface 

of a particle causes a determinate tangential velocity; in 

this situation it skims on the particle. This current 

organism is named as slip flow regime and their force 

can’t be overlooked. Slippage of fluid marvel placed at 

stable limits show up in numerous applications, for 

example, small scale channels or Nano directs and in 

utilization wherever a slight layer of “light oils” is 

connected toward the moving-plates on the other hand 

at the same time surface remains covered with unique 

covering, for example, thick monolayer of hydrophobic 

octa-decyltric hlorosilane (Derek, et al.,2002) i.e. grease 

of mechanical gadget wherever a dainty layer of oil is 

connected to the surface slipping more than each other 

or when the surfaces are covered with exceptional 

covering to minimize the grinding between them.In the 

historical backdrop of liquid course through channels, 

Navier examined a limit state of liquid slip at strong 

surface such that Rrrzzv  S=  , where   is the slip 

coefficient,  rzS  is part of extra stress tensor and zv  is 

the velocity along z-axis. For a situation 0 lists that 

there is no slip at the limit. 
 

The drainage of a fluid through pipe of a tank under 

the action of gravity is an old, how ever complicated 

problem. The tank may be drained by an attach pipe or 

may be drained throughevenhanded hole “orifice 

situation”. The pipe possibly could be horizental or 

vertical or may contain a complete piping system with 

horizental extension and vertical drop with fittings and 

valve, etc. Usually tank has a shape of cylinderical 

contain a vertical wallhoweverbottom maybe conical 

hemisherical or by flat or might be additional shape. 

There is some time sintrest in draining the tank should 

be totally dry in which situation the bottom shape needs 

to be accounted for and occasionally not. 

 
Classifications of gravity draining fluid’s are used 

extensively throughout industries, a small number 

ofsuch classifications are: draining condensate into 

storage, water distribution,  waste water management 

and dams, retrieval of chemicals from tank farm. The 

generated model will accurately represent tank draining 

behavior for all tanks with a similar setup. End effects, 

accuracy of time measurement, accuracy of height 

measurements and friction losses will be taken into 

consideration (Joe and  Macklin, 2005) 

 

An outstanding evaluation of exact solutions of the 

“Navier-Stokes equation” has been given by (Wang, 

1991). In this manuscript, we studied tank drainage 

problem of Newtonian fluid with slip condition. Exact 

solutions of the consequential differential equations 

subject to boundary conditions, are obtained. For the 

slip parameter 0 , we retrieve velocity profile for 

linearly viscous case. Also relationships for velocity-

profile, flow rate, average-velocity, shear stress on pipe, 

depth of fluid in the tank and time required for complete 

drainage are calculated. 
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This paper is organized by means of follows: 

Section number 2 provides basic equation’s for the 

Navier-Stokes equation. Section number 3 provides 

formulation and solution of the problem. Section 

number 4 deals with volume flux, average velocity, 

shear stress on the pipe, relationship how does the time 

vary with length and time required for complete 

drainage. Results and discussion are given in section 

number 5, while conclusion is provided in section 

number 6. 
 

2        BASIC EQUATIONS 

Essential governing equations for incompressible 

viscous fluid flow, disregarding thermal effects are: 

 

 .0=V (1) 
 

 ,= Tb
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The symbol V  represent velocity vector,  denotesthe 

constant density, p be the dynamic pressure, b is the 

body force and T the extra stress tensor. The operator 

Dt

D
 denotes the material derivative. The extra stress 

tensor describing a Newtonian fluid is made by: 
 

.= 1AT  (3) 

Here   represent dynamic-viscosity and 1A  be the 1st 

Rivlin Ericksen tensor,represented as: 
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The cylindrical component’s of equation of motion (1) 

and (2) are 
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3         TANK DRAINAGE 

Consider a cylindrical tank containing an 

incompressible viscous fluid. The radius of the tank is 

assumed to be 
TR  and diameter d . The initial depth of 

the fluid is chosen to be 0H . The fluid in the tank is 

drained down by means of a pipe having radius R  and 

length L . Further more letting )(tH  be the depth of 

fluid in the tank at any time t .Flow of fluid in the pipe 

is due to gravity and pressure of the fluid in the tank. 

 

We plane to calculate the velocity profile, pressure 

profile, flow rate, average velocity, shear stress on the 

pipe, relationship how does the time vary with length 

and the time required for complete drainage. Here we 

use cylindrical coordinates ),,( zr   with r -axis 

normal to the pipe and z -axis along the center of the 

pipe in vertical direction. As the flow is individual in 

the z -direction and the  and r components of 

velocity vector V  are equal to zero, 

 

 .),(0,0,=],,[= trvvvvV zzr  (8) 

 
 

Fig. 1: Geometry of the tank drainage flow down through pipe 
 

Using profile (8), the equation of continuity (4) is 

indistinguishablyfulfilled and the momentum
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gravitational acceleration 
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equation (5-7) diminishes toward 
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From equations (9 - 11) we can see that the equation 

of motion is now quite simple, yielding that the 

pressure is only function of z  and t  and the 

equation to be solved for ),( trvz
 is  
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Equation (12) is a partial differential equation for p

and 
zv . The velocity in the pipe flow remains nearly 

constant with time due to slow draining such that we 

may neglect the time derivative 
t

vz




. Also flow in 

the pipe of radius R  is due to both gravity and 

hydrostatic pressure. The pressures at the pipe 

entrance and exit are respectively,  

),(==0,= 1 tgHppzat   

0,==,= 2ppLzat  

so that 
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The equation of motion (12) thus reduces to 
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The associated boundary condition’s are 

0,=T0,= rzrat (15) 

RrrzzvRrat  T=,= 
  

(16) 

Solving equation (14) subject to the boundary 

conditions (15), we get 
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By intigrating equation (17) w.r.to r and by using 

boudry condition (16), we get 
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Remark: Taking 0=  in equation (18), we retrieve 

the Newtonian solution (Papanastasiou, 1994) 

 

4 FLOW RATE, AVERAGE VELOCITY, 

SHEAR STRESS ON THE PIPE 

The “flow rate "Q per unit width is specifiedthrough 

the formula 
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Using velocity profile (18) in equation (19), one can 

calculate the flow rate 
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We determine the average velocity, v  by using the 

formula 
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2R
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So the average velocity of the fluid flowing down the 

pipe is 
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Shear stress on the pipe is given by 
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Mass balance over the entire tank is 
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Substituting flow rate from equation (20) into 

equation (24) and then separating variables on both 

sides of equation one obtains 
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and the time required for complete drainage is 

obtained by taking 0=)(tH  in 
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Fig.2: Effect of   on velocity profile, when

3/78.0,5.11 cmgpoise  

.20)(,10,5 cmtHcmLcmR   

 

 

Fig, 3: Effect of )(tH  on velocity profile, when 

3/78.0,5.11 cmgpoise  

.01.0,10,5  cmLcmR  

Fig, 4: Effect of R  on velocity profile, when 
3/78.0,5.11 cmgpoise  

.3.0,20)(,10  cmtHcmL  

 
Fig. 5: Effect of   on velocity profile, when 

cmRpoise 5,5.11 

.01.0,20)(,10  cmtHcmL  

 

Fig, 6: Effect of L  on velocity profile, when 
3/78.0,5.11 cmgpoise    

.01.0,20)(,5  cmtHcmR  

 

 
Fig,7: Effect of  on velocity profile, when

3/78.0,01.0 cmg 

.20)(,10,5 cmtHcmLcmR   

 

Fig,8: Effect of )(tH  on flow rate, when 

01.0,10,/78.0,5.31 3   cmLcmgpoise
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Fig. 9: Effect of TR  on depth with respect to R, when

3/38.1,6.0 cmgpoise      

      .001.0,10,20,1 0  cmLcmHt  
 

 

Fig,10: Effect of TR  on depth    with respect to t, when  

           
3/38.1,6.0 cmgpoise  

            .01.0,10,20,5 0  cmLcmHcmR  
 

 

5            RESULTS AND DISCUSSION 

In the above sections we studied tank drainage 

problem using an incompressible Newtonian fluid with 

slip condition, exact solutions for the differential 

equation is obtained. The variation of velocity profile

zv , flow rate Q and depth )(tH has been investigated 

on different parameters. The effects of the slip 

parameter  , dynamic viscosity , depth )(tH , length 

of pipe L , pipe radius R and density   on velocity 

profile are observed through figures (2) - (7)and effect 

of the depth )(tH on flow rate is shown in figure (8)and 

effect of the radius of tank TR on depth )(tH is 

examined in figure (9) – (10). In figures(2) – (7) it is 

detected that the magnitude of velocity increases as the 

increase with slip parameter  , depth )(tH , pipe 

radius R and density  and decreases for the increase of 

length of pipe L  and dynamic viscosity .In figure 8 

for the increase )(tH we detected that flow rate 

increasesand in figures (9) –(10) depth )(tH with 

respect to pipe radius R as well as for time t  are 

plotted, in both cases depth )(tH increases with 

increase of radius of tank TR . 

 
 
 
 
 
 
 
 
 
 
 
 

6                     CONCLUSIONS 

Considering equation for unsteady, incompressible, 

isothermal tank drainage flow for the Newtonian fluid 

with slip condition. We have obtained exact solutions 

for “velocity profile, flow rate, average velocity and 

shear stress on the pipe”. Here itis noted that for the slip 

parameter 0 , solution (18) reduces to the Newtonian 

solution without slip condition (Papanastasiou, 1994).     

A relationship (26), how does the time vary with length 

is derived. It is notedthat as the fluid is becoming 

thicker, velocity of the fluid decreases. 
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