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1.                            INTRODUCTION 

Mechanics is the basic of sciences. It tends to 

provide better understanding of the physical world 

along with developing various skills and strange fields 

of interests such as fluid dynamics. In the fluid 

dynamics, Newtonian and non-Newtonian fluids are 

meaningfully worried enormous to interest in the 

literature. The results of Newtonian and Non–

Newtonian fluid flow in  problems classically depend on 

calculation of different properties of the flow of fluid. 

Flows of Newtonian and non-Newtonian fluids related 

with some essential investigation are prepared by way 

of Al-Fariss, and Pinder, (1987), Abel-Malek et al 

(2002), Vafai, (2002), Kakac, Kilkis, Kulacki, and 

Arine, (1991), Rajagopal, Na and Gupta (1984, 1985), 

and Wafo .(2005)..  The research is to find a model that is 

as easy as likely, connecting the minimum number of 

variables and parameters, and until now including the 

facility to find out the viscoelastic behavior in 

compound fluid flows observed by Hulsen (1986, 1990) 

and Keunings (2003). 

 

A common consent has emerged that the flow with 

porous media linked with viscoelastic fluids, elastic 

effects should come up even if their precise nature is 

unidentified or contentious. Viscoelastic effects in 

porous media can be imperative insure cases. Whilst in 

these, the genuine pressure gradient will go beyond the 

simply viscous gradient further than a serious flow rate, 

as looked at by some canvassers. It is felled out that the 

extremely expensive normal stress ratios and differences 

defined as extensional to shear viscosity related by 

means of polymeric fluids will produce expanding 

values of apparent viscosity as flow in the porous 

media, flow pipes are of quickly changing cross section 

Viscoelastic fluids have been investigated by Larson 

(1999) and Sochi (2009, 2010) due to their huge 

purposes. Oldroyd-B model is the nonlinear viscoelastic 

model and is a second simplest model and it seems that 

the most well-liked in fluid flow viscoelastic modeling. 

Here viscoelastic behaviour will be modelled by the 

Oldroyd-B (Oldroyd 1958) and Phan-thien / Tanner 

(PTT) (1977) differential constitutive models and 

simulation developed by van Os; Phillips. (2004). The 

result of problems troubled with realistic fluid flow 

solved with Lie Group techniques has acquired 

mounting concentration during current years. Lie-Group 

theory of ODE’s and PDE’s as a scientific branch 

created from efforts of the exceptional mathematician 

Lie of the nineteenth century (1842–1899) and 

developed by Olver, (1986), Bluman and Kumei (1989), 

Ibragimov, (1999) and others.and as then it has survived 

the major constituent part of his most important creation 

of the continuous groups theory. For PDE’s, Lie point 

symmetries permit the reduction of the number of 

independent variables expanded by Moran, and 

Gaggioli, (1968), Abdel-Malek, et al (2002), Basov’s. 

(2001), and others.  

 

The correct computations in the fluid dynamics are 

very imperative, since they influence behavior, safely 

and economy of complete structure. After finding result, 
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it must be checked cautiously. This paper is related with 

the analytical solutions of viscoelastic Fluid flow in a 

pipe. Analytical solutions are obtained in the way using 

generators of the system through Lie Group method and 

results are checked carefully. 

  

Section 2 is linked with the problem formulation. 

Section 3 connected with viscoelastic flow solution in 

circular pipes filled with porous media; section 3.1 

associated according to non-homogeneous equation     

(4-i), section 3.2 concerns with symmetries of the 

PDE’s (13-a and c), Section 3.3 combined with 

invariant solution of PDE’s (13-a and c) corresponding 

to ,21 XX   Section 3.3,1 attached with solution of 

PDE’s (13-b). Finally the conclusions of this paper are 

identified in section 4. 

  

2.              PROBLEM FORMULATIONS   

Suppose viscoelastic fluid flow through porous 

media which is unsteady incompressible laminar flow 

apprehended in a circular pipe determined in radial 

direction. A system of cylindrical polar coordinate is 

related with radius-axis perpendicularly upward. The 

most important equations system of flow contains of the 

conservation of both mass and momentum transport 

related with the Oldroyd–B constitutive model. In the 

absence of body force adopting Darcy-Brinkman model 

transfers a system of equations is used. The viscoelastic 

fluid flow with porous medium is assumed to be 

homogeneous and isotropic. As the flow in pipe is 

understood to exist unidirectional expressed within only 

axial velocity as a function of redial direction along 

hydro dynamically entirely expanded which velocity 

does not hinge on the axial route of the pipe and the 

pressure gradient is believed to exist constant. For 

unidirectional flow velocity field is given as 

 ;0,0),,( trvV  wherever the above meaning of 

velocity mechanically satisfies the incompressibility 

state. The continuity equation, generalized Darcy–

Brinkman model has been employed for the momentum 

equation through porous media and the Oldroyd–B 

equation define the stresses of viscoelastic in the fluid 

flow in vectorial form can be written as under: 

 

0. V                                                                                                                               (1) 

V
K

VVpdr
rt

V 














.)][(

1 2                                                  (2) 

 

The Oldroyd–B constitutive equation describes the viscoelastic stresses in the flow can be expressed as below: 
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In the above equations, V  is the velocity vector field of fluid flow, τ is the extra stress tensor, d  is the rate–of–

strain tensor,  is the spatial differential operator, p is the pressure of isotropic fluid (per unit density) and t is the 

time. The 1 is the viscoelastic solute viscosity and 2  Newtonian solvent viscosity respectively, fluid density is 

indicated by ρ, whereas λ is the relaxation time of the viscoelastic fluid and intrinsic permeability of the porous 

medium is denoted by K,. Total viscosity  of the viscoelastic flow is 21    and is taken constant and hence 

porosity of porous media is . 
 

The equations are obtained which govern the unsteady unidirectional viscoelastic fluid flow through porous 

medium accepting Oldroyd–B constitutive model. The velocity field is  ;0,0),,( trvV   here the explanation of 

velocity automatically gives pleasure to the incompressibility state. The derivation of such equations by employing 

the momentum transport equation of viscoelastic fluid and Oldroyd–B constitutive equations assuming constant 

pressure gradient and may be expressed in the absence of body force, the governing system of equations is written in 

the dimensionless form as under 
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Where v(r, t) and ),( tr  are dimensionless velocity in the axial direction and dimensionless stress tensor in 

axial, shear and radial direction, r is radial coordinates, t is the time using for non-dimensional. Where the non-
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dimensional Reynolds number (Re), Weissenberg number (We) and Darcy’s number (Da) are identified as 
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As K is the adapted permeability concern with the porous medium using for non-dimensional. As R is a radius of 

the pipe and Vc  is used for the feature velocity supposed since reference redial velocity 
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Initial and boundary conditions for completing the well posed problem are taken as 
 

,0)1,( tv  and  0)0,( 



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t

v
      When t > 0                                                                                       (5)  

 

and initial conditions are given as    
 

  ,0,0 rv 0),0(),0( 1211  rr    When  10  r                                                                                 (6) 

 

3. RESULTS OF VISCOELASTIC FLUID FLOW FILLED  WITH POROUS MEDIA IN CIRCULAR PIPES 

The PDE’s system (4) is solved firstly by finding the steady state solution according to non-homogenous 

equation (4-i) and subject to boundary and initial conditions (5 and 6).  

 

3.1 For the Non homogenous Equation (4-i) 

A few problems concerning non–homogeneous equations or boundary conditions can be resolved by means of 

the transform of dependent variable, fvv i   

 

The basic idea to resolve f , a function of one variable, in such a method that v, a function of two variables, is 

made to satisfy a homogeneous PDEs or homogeneous boundary conditions. Now, we adjust the dependent 

variables for the non–homogeneous equation (4-i), and to obtain the steady state solution, hence, suppose                                                                                                                                                                                                                  
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Substituting above values in Equation (4), gives the two systems of equations which are that 
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Subject to boundary conditions 0)1(1 f   and  0)0(1 f                                                                             (9) 

  

For solving the equations of system (8), set the )(3 rf from (8-iii) in to (8-i), it provides, 
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By using power series solution, solving or integrating the above ODE and applying the boundary conditions, so 

acquired the result as below 
 















































0

2

0

22

0

0

)!()4(

)!()4(

)(

)(

1 11)(

n

n

n

nn

nDa

rnDa

Da

i
j

Da

ri
j

DaDarf                                                                  (11) 

 

Here )(0 rJ
Da

i
 is first kind Bessel function of order zero respectively. 

Substitute )(1 rf in equation (8-iii), then )(3 rf is obtained. After replacing with the values of )(1 rf   and )(3 rf  

in equation (8-ii), then )(2 rf is achieved. Then the following solutions of equations system (8) is completed 
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Thus to obtain ),(1 rtv , ),(2 rtv and ),(3 rtv , the new initial and boundary value problem is given as 
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Subject to initial and boundary conditions are,  
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3.2    Lie Group Analysis of the PDE’s (13-a and 13- c)  

Once Lie group algebra of the differential equation is known, it can be employed in the investigation of 

transformations that will reduce the equation to simpler form and it is powerful method in obtaining analytical 

solutions of differential equations. In this section, symmetry conditions and method for finding the Lie point 

symmetries of the above equations (because derivatives of these equations are attached each other) are introduced. 
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is the Lie point symmetry generator for governed PDE’s (13-a &13-c) iffy, 
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Here ),( rtg and ),( rth  are arbitrary functions of r of the following partial differential equations.  
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In (22), 1c and 2c  are constants of integration. Thus the symmetry Lie algebra of the PDEs (13-a) and (13-c) is 

two–dimensional and identified by the following generators: 
 

,1
t

X



     

3

3

1

12
v

v
v

vX








  and 

31

),(),(
v

rth
v

rtgX m








                                       (23) 

 

Where m is any natural number 

 

3.3    Invariant Solution of the PDEs (13-a and c) corresponding to Operator X1 - βX2 

The form of invariant result related in the generator 
21 XXX   is given as 
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For bounded function, we must take exponential function in negative sign. 

After putting the values of (25) into PDEs (13-a and13-c) which gives the reduced ODEs system  
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Put the value of )(r from (25-b) into (25-a), then we have, 
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Subject to boundary conditions    0)1(    and 0)0(                                                              (27) 

 

The above PDE (26) is the Bessel’s differential equation of order  zero and similarly equation have been solved 

as in section 3.1 by using power series solution and then the general solution of Bessel’s differential equation is  
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As answers are got after joint two equations and have same boundary points, so for the time function, assume 
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Therefore, equation (24) develops into as below: 
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For the constants, applying the initial conditions (14-a) and (14-c), so we obtain  
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Set the values
1nc and

2nc in the relation (33), we obtain 
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3.3.1    Solution of Partial Differential Equation (13-b) 
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After substituting the value of ),(3 rf  )(1 rf  and according to the equation (34-a and b), solution of PDE (13-b) is arranged as 
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Therefore, final result of the PDE’s system (4 to 6) accept the following solutions 
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4.                          CONCLUSIONS  

The point of this paper was to develop mathematical 

models and to find the invariant solutions of the PDE’s 

system arising in the study of viscoelastic fluid flow in 

pipes filled with porous media using with Oldroyd–B 

Constitutive Model. Lie group method is applied 

successfully to obtain the invariant solutions of the 

problem. The Lie group is a theoretic approach which is 

applied to determine the solutions of the problem. The 

one number of independent variables has been reduced 

through one-parameter group of transformation and the 

PDE’s system reduces to an ODE’s system and the 

invariant solutions are acquired. The purpose of the 

investigation is to find the exact analytical result of 

velocity accepting Lie group technique. We wish that 

the results may be helpful for other researchers in this 

field. Our recommendations for the future work are 

expanding and leaving into practice other steady-state 

and transient viscoelastic algorithms. 
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