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1.                          INTRODUCTION 

Fluids used for manufacturing purposes in chemical 

industry are mostly classified as non-Newtonian fluids. 

Generally, the non-Newtonian fluids are complex 

mixtures such as slurries, plastics, pastes, gels, polymer 

solutions etc (Harris, 1977), (Rajagopal, 1982), 

(Erdogan, 1981). Phan-Thien Tanner (PTT) fluids fall in 

the class of non-Newtonian fluids due to their 

rheological equation of shear stress. The PTT is simple 

quasi-linear viscoelastic model, derived by (Phan-Thien, 

1977), (Phan-Thien, 1978). This model incorporates 

shear thinning, shear viscosity, normal stress differences 

and the elongation behavior of the fluids. The PTT 

model is increasingly applied to predict the flow and 

heat transfer of viscoelastic fluids. Recently, a sequence 

of papers has appeared which present the analytical 

results of a PTT fluids model for channel flows 

(Oliveira, 1999) (Cruz, et. al, 2005). 

 

The wire coating is an important and oldest process 

using an extruder, dating back to the 1840s (Tadmor, 

1979). Polymer extrudate is used to coat a wire for the 

purpose of mechanical strength and environmental 

protection. Many applications exist of wire coating in 

engineering disciplines such as chemical and industrial 

engineering. Therefore some researchers motivated to 

investigate the wire coating process (Denn, 1980) 

(Basu, 1981) and give some theoretical, numerical and 

experimental results. The treatment of coated wire after 

leaving the die is a posttreatment problem. The wire 

after leaving the die depends on the quality of the 

material used for coating and the temperature. The 

posttreatment of wire coating was studied by Kasajima 

and Katsuhiko Ito (Kasajima, 1973). They consider that 

the polymer obey the power law fluid model. Moreover, 

they examine the problem with no slip conditions and 

constant temperature at boundaries. There efforts 

establish the expression for velocity and temperature 

distribution. The objective of the present paper is to 

examine the laminar flow of viscoelastic fluids obeying 

the PTT fluid model and investigate the heat transfer 

with slip boundary conditions and linearly varying 

temperature.  
 

2.                        BASIC EQUATIONS 

The basic equations governing the flow of an 

incompressible fluid with thermal effects are: 
          0 u ,                        (1) 

        fTdiv
Dt

uD
  ,            (2)       

      2

p T

D
c k

Dt



   ,  (3) 

where u  is the velocity vector,   is the constant mass 

density, f is the body force, D Dt  denotes the 

material derivative,   is the fluid temperature, Tk is 

the thermal conductivity, pc  is the specific heat,  L  is 

the gradient of velocity vector u ,   is the dissipation 

function and T  is the Cauchy stress tensor defined as 
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SIpT  .                                  (4) 

In Eq. (4) p is the pressure, I  is the identity tensor and 

S  is the extra stress tensor. 

 

 The model adopted here to accommodate the 

viscoelastic behavior of the fluid is PTT model may be 

expressed as 

  12trS S S A 


     with    1trS trS
 


   .     (5) 

Here   is the constant viscosity coefficient of the 

fluid,   is the relaxation time, Str  is the trace of the 

stress tensor S  and 1A  the deformation rate tensor 

defined by 

                          LLA
T
1  ,                                    (6) 

 where T denote the transpose of matrix. 

 

In Eq. (5)  trS  is the stress function in which 

  is related to the elongation behavior of the fluid. 

For 0 , the model given in Eq. (5) reduces to the 

well-known Max-well model.  

The upper contra-variant convected derivative designed 

by  over S  in Eq. (5) is defined as  

    uSSu
tD

SD
S

T




.           (7) 

3. FORMULATION AND SOLUTION OF THE 

PROBLEM 

The geometry under consideration is shown 

systematically in (Fig. 1), where the polymer extrudate 

is denoted by the solid line. For investigation of flow 

behavior of a polymer used in wire coating, we divide 

the flow transversely into countless short sections as 

shown in broken lines in (Fig.1) and assume that that 

each section has the same shape. Therefore, we analyze 

only one section shown in (Fig.2). 

 

For appropriate investigation we choose cylindrical 

coordinates  zr ,, , for the stated problem such that  

r  is perpendicular to the direction of flow.  
 

Consider the flow an incompressible PTT fluid of 

constant density in posttreatment of wire coating. The 

wire at temperature 1  and of radius 0kR  (where 0R  

is the radius of coated wire and k  is the dimensionless 

ratio of  radii, such that, 10  k ) is dragged in the z  

direction through a PTT fluid polymer (II) with a 

velocity 1V  and the gas (III) close to the polymer (II) is 

at temperature 2  and flowing with a velocity 2V . We 

consider slippage exists at the contact surfaces of wire, 

polymer, and the gas as shown in (Fig.2).  
 

Assuming that the flow is steady, laminar, 

unidirectional and axisymmetric: 
 

We seek a velocity field of the form 

 rwvu ,0 ,                    (8) 

 S S r and  r .          (9) 

 

 
 

Fig-1 Schematic profile of polymer extrudate in wire coating. 
 

 
 

Fig-2 Drag flow in wire coating. 

 

Using Eq. (8) the continuity equation (1) is satisfied 

identically. Inserting Eqs. (8) and (9) in (5-7) we obtain 

the following non-zero components of the stress tensor 

S  and the dissipation function    are: 

2
2 zrzz SS



  ,             (10) 

dr

dw
SS zrzr 




 








 3

2

2 ,             (11) 

dr

dw
S zr .                 (12) 
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Similarly, with the help of velocity field and non-

zero components of the stress tensor S  the momentum 

equation in the absence of body forces reduces to  

0




r

p
 ,                     (13) 

0






p
,            (14) 

 zrrS
dr

d

rz

p 1





.         (15) 

 

In view, of Eqs. (13) and (14) it is concluded that 

p is a function of z only. 

Consider the axial pressure gradient  zp , 

where   is constant.  

Integrating Eq. (15) we get 

r

C
rS zr

1

2



 ,    where 1C  is an arbitrary constant of 

integration.                                                                     (16) 

The boundary conditions are: 

  
0

1 kRrzrSVw


          at 0kRr  ,       

   

  
0

2 RrzrSVw


          at  0Rr  ,          (17) 

in which   is a slip parameter. 

Depending on the location of the maximum fluid 

velocity that may exists in the region (II) in Fig 2, the 

shear rate 0  may be written as 

dr

dw
0  ,     for 010 RrkR  ,        (18) 

dr

dw
0   ,       for 001 RrR  ,        (19) 

in which 1  is the dimensionless radial position 

where the maximum velocity occurs [25]. 

In other words, at 01Rr  , the velocity of polymer 

become maximum and we have 

0
dr

dw
,     at 01Rr   ,               (20) 

 and therefore 

0zrS ,     at 01Rr  ,        (21) 

 

Now solving Eq. (16) combine with (21) we obtain 

the integration constant existing in Eq. (16) as 

 2

0

2

11
2

1
RC   .         (22) 

The explicit expression for shear stress is given as 

































 







001

2

0

2

1

2

010

22

0

2

1

for    
2

for  
2

RrR
Rr

RrkR
rR

S

r

r

zr







 (23) 

On inserting, Eq. (23) into (11) we obtain first order 

system of two ordinary differential equations defined 

for velocity field in two different domains as  

        010

3
22

0

2

1

222

0

2

1 for   
2

2
2

RrkR
rRrR

dr

dw

rr







  
























 

















 






     (24) 

        001

3
2

0

2

1

222

0

2

1

2

for  
2

2
2

RrR
RrRr

dr

dw

rr

























 

















 













         (25) 

 with the boundary conditions 

  2

11 1 k
k

G
Vw 


        at 0kRr  ,           

  2

2 1    GVw        at  0Rr  ,                    (26) 

where 1, kG  and   are constants given as  

 

11

1

2

0

2

1

1
and

2

1
   ,,





 

k
kRG  

 Assuming the temperature of the boundaries are linearly varying with z  according to the expressions  

        200100 ,,, and  RFzzRRkFzzRk ,                     (27)  

we set       

   ,r z z F r    ,                            (28) 

 where   is the temperature gradient. 
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Using Eqs. (12), (23) and (28), the energy equation (3) reduces to system of ordinary differential equations due 

to different shear stress in the region (II) given as: 

  
2 2 22

1 0
0 1 02

1
0, for   

2
T p

dw

drr

R rd F dF
k c w kR r R

dr r dr


 

    
        

   
,                                 (29) 

 

2 2 22

1 0
1 0 02

1
0, for   

2
T p

dw

drr

r Rd F dF
k c w R r R

dr r dr


 

    
        

   
,                                 (30) 

 

At this stage, it is convenient to introducing the 

following non-dimensional parameters 

,
0R

r
r  ,

2V

w
w  ,

0R


  ,

2

1

V

V
U    

,
2

1

2

0
1

2 V

VR




  ,

2

3

24

0

3

2
4 V

R



 
  ,

2

2

0
3

2 V

R




       

2

0

4

2

,
pc R

V






     

   
   

   
   


















































01

001

0

0

01

001

0

0

rfor

rfor

,

,

R
RFRF

RFrF

R
kRFRF

kRFrF

d

d

d







    

where 
d  is the dimensionless temperature and 

d

0  are defined as follows 

   

   

1 0 0

1 02

2

0

1 0 0

1 02

2

for r

for r

,  

,  

T

d

T

F R F kR
k R

V

F R F R
k R

V















  
  
  

  
 
 
 

 

The system of Eqs. (24-26) and (28), (29) with (27), 

after dropping the “ ” take the following form: 

3
2 2 2 2

1 1
1 2 1for   k  , ,r

r r

r rdw

dr

 
  

    
     

   
  (31) 

  

3
2 2 2 2

1 1
1 2 1for   1,, r

r r

r rdw

dr

 
  

    
     

   
  (32) 

with boundary conditions 

  2

11 ,
G

w U k
k


     at kr  ,      (33)

    2
1 1 ,w G           at  1r ,    (34)  

and the energy equation becomes 

  

2 22

1
3 4 12

1
0, for   k  ,

d d
dw

r
drr

rd d
w

dr r dr


 

  
    

 
 (35) 

  

2 22

1
3 4 12

1
0, for   1,

d d
dw

r
drr

rd d
w

dr r dr


  

  
    

 
 (36) 

 with boundary conditions      

   

    















1for01

and

 k for0

101

101

,,

,,

r

rk

ddd

ddd





  (37)

                    

The boundary conditions given in Eq. (33) and (34) 

are appropriate for solutions of Eq. (31) and (32) 

respectively. We solve accordingly, and obtain the 

following expression for velocity fields 
  

     

    UrkkrkGrkrkrk

rkrkrkrkrk
rk

rw

2242
1

124lnln2
1

22
1

42
1

22
2

12

4422
2

226
12

22
1

22
2

622
1

2
224

1






 











 




     (38)      

   1 kfor   r  

and  

      

   1
1

for   2421242
12

3
1

ln2
1

24

412
2

216
12

22
1

22
1

2
2

6
24

1






 



rrrkGrr

rrrrr
r

rw




    (39)      
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The expressions in equation (38) and (39) are the 

velocity fields in the combined drag and pressure-driven 

flow. Here, the values of 1  depend on the wire speed 

and pressure drop, whereas values of 1 in the pressure 

driven flow are obtained by setting the wire speed equal 

to zero. 

At 1r , it follows that from equation (38) and (39) 

that  

     

     

    

   

1 2 2 2 2 2 6 2 2 2 2 4 42 6 2
1 2 2 22 1 1

2 2 2 2 2 2 2 2 2 212 4 ln ln 4 1 4
2 1 11 1

2 2 2 6 2 2 46 2 2 1 1
2 1 1 2 1 2

2 2 2 2 2 24 ln 3 4 1 4 .
1 1 2 1

k r k r k r k r k r
k

k r k r k r G k r k k r U

r r r r r

r r G k r r

 

  

 

   

         


       


        


      


(40) 

 The expression in equation (40) is used for 

determining the values of 1 , which depends on the 

velocity ratioU , dimensionless wire radius k , slip 

parameter   and the dimensionless parameters 1 ,  

2 , 3 , 4 . The detail theoretical and experimental 

analysis is given in (Han, 1978) for this value. For the 

determination of 1 , one must resort to a trial and error 

procedure, using some kind of numerical schemes.  

The average velocity is  

 




1

21

2

k

ave drrw
k

w                  (41) 

At the cross-section, within the die, the volume flow 

rate is   

  drrwrQ
k


1

2            (42) 

As the velocity field is continuous on the value 1 , 

so the volume flow rate can be re-written as  

   
















 

1

2

1

1

1

2





drrwrdrrwr
k

w
k

ave  (43) 

 Use of equation (39) and (40) in equation (43), we 

obtain
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
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Similarly, the volume flow rate is obtained from equation (42) and is given as 
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The expression for temperature distribution in the domain 1 k  r  and 11  r  can be obtained from Eqs. 

(35-37), with the help of velocity distributions given in Eq. (38) and (39) as follows 

Exact Solution of non-isothermal PTT Fluid…                                                                                                                                                            429 



 

 

 

 


0

1

2 2
288 ln ln

1

2 2 6 2 2 4 2 2 6 2 2 4
576 144 72 ln ln 126

1 3 2 1 1 1 32 1 3 1 4

2 2 6 2 2 6 2 2 4 2 2
440 205 81 288 ln ln

2 1 3 2 1 4 1 1 4

2 2 6 6 2 8 2
72 ln ln 18 8 576

1 3 1 3 2 3 22

d

d
r

k r k

k r k r k r r k k r

k r k r k r k r r k

k r r k k r k r k



   

  



 



          

          

          






    2 2

1 2

6

1 4 1

2 2 6
ln ln

1 3

2 2 4 8 2 6 2 2
144 ln ln 16 81

1 1 3 2 4 2 1 4

2 6 2 8 2 2 6 2 6
18 8 576 ln ln 9

1 3 2 3 2 1 3 1 1 4

ln ln 72

ln ln

r r k

k r r k k r k r

k r k r k r k k r

r k r

k



 

 



 



        

           

  



  

  

 

2 2 2

1 3

2

2 2 4 2 6 2 2 8
144 ln ln 27 2 ln ln 144

1 1 13 1 2 1 4 2 4 1

2 2 4 2 2 2 2 2 4 2 2 4 2
72 180 ln ln 36

1 3 1 1 4 2 1 4 41

4 2 2 6 2 2 2 2 2 2
108 18 ln ln 72 ln ln ln

2 1 4 2 4 1 4 1

432

k r k k r k r k

k r k r k r k r r k k r

k r k r r r k r k r k

k r   

  

    

           

          

          



  


 1




 

      

  

2 2 4 2

1 4

2 2 2 2
72 ln ln ln ln ln ln 216

4 1 21 1 1

2 2 2 2 2 8 2 2 2 2 2 8
44 72 144 ln

1 1 3 2 1 3 1 1 3 1 1 3
1 72

2

k r k r k r k k U G

k r r k k r r k

k r    

    

        

          



    
 

 

   
 

 

2 2 2 2 2 2 2 4 2 2 4
144 ln 216 ln ln ln 216

1 1 3 1 2 1 42 1 4 1

2 2 2 2 2 2 4 2
ln ln ln 72 ln ln 72 ln ln 36 ln

1 1 3 1 1 1 3 1 1 3

22 2 4 2 6 2 2 2 4 2 2
18 ln 36 ln 72 ln 108 l

2 1 3 2 1 3 1 1 3 2 1 3

k r r k k r r k k r

k r k k r k k r r k r k

k r k r k k r k k r

    

   

   

          

         

           





  

  

 

n

2 2 2 2 2 4 2 2 2 2
72 ln ln 36 ln 144 ln

1 1 3 2 1 3 1 4 1

2 2 2 2 2 2 4 4 2 4 4 4
72 ln 72 ln 36 ln

4 2 1 3 11 2 1 3

2 2 2 6 6 2 2 6 6
72 ln 72 ln

2 1 3 2 1 3 1

for   k          
1

k

k r r k k r k r G k r k r

G k r r k k r k k r r r k

k r k r r r k

r

   

    

   



        

          

       

 





 






(46)
 

where  

 



  


 

















 















3
2

2
8

1
ln

4
ln

4
4

2
1

9
4

2
1

2
2

27
1

ln
2

ln
2

4
2

1
9

4
2
1

2
1

72
4

2
1

2
2

27
4

2
1

2
2

216
4

2
1

2
2

81

4
6
1

2
2

36
4

22
72

4
2

72
3

2
72

4
2
1

2
2

18
4

2
1

27

3
2
1

2
1

126
3

4
1

2
2

432
1

lnln
4

2
1

2
1

72
4

4
1

2
2

216

4
2
1

2
2

81
4

6
1

2
2

36
4

22
72

4
2

72
3

2
72

4
2

2
16

1
lnln

4
6
1

2
2

72
4

2
1

27
1

lnln
3

4
1

2
1

144
3

8
1

2
2

72

1
lnln

3
6
1

2
2

576
3

2
2

8
3

2
1

18
3

2
1

2
1

144
ln

22
288

1

rrrrrrr

rrrrr

rrGrGrrr

rrrrr

rrrGGrrr

rrrrrr

rrrrr
krk

r
d















 

     
  0

2 6 6 2 4 4 2 2
2 ln ln 216 ln ln 18 ln

2 4 1 4 11 2 1 3 1 1

2 6 6 2
72 ln 288 ln

2 1 3 1 1

for   1                                (47)
1

d

r r r r r r r

r r r

r

     

  



          

    

 




    

R. A. SHAH, et al.,                                                                                                                                                                                                     430 



The temperature distribution for equal temperature 

at the boundaries of domain can be obtained by 

substituting 00 d
 in Eqs. (46) and (47) respectively. 

 

4.                             CONCLUSION 

Exact solutions have been derived for the nonlinear 

viscoelastic PTT fluids in posttreatment analysis of wire 

coating. These flows are formed by the combination of 

an imposed constant pressure gradient in the 

axial/longitudinal direction and the movement of a wire 

in that direction. In this study, the solutions of the 

Navier-Stokes and energy equation are established for 

the radial variation of the velocity and temperature. Due 

to positive and negative shear stress a value 1  is 

defined, where the rate of shear stress is zero i.e., 

velocity is highest. The location of the maximum fluid 

velocity moves between the wire and gas at the surface 

of coated wire, which depends on the drag of wire and 

pressure gradient. This appears to be the first study of 

the posttreatment problem with a viscoelastic fluid. The 

scope of the present study was quite wide and will be 

fruitful for mathematicians, engineers and scientist for 

the future work. 
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