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In the fluid dynamics, the solutions of the PDE’s leading the flows of compressible or incompressible,  

 

1.                INTRODUCTION 

Newtonian and non-Newtonian fluids are 

expressively concerned large to interest in the literature. 

Material of viscoelastic can be prospected as the 

transitional states among the viscous fluids and elastic 

solids. The substance displays behavior of elastic, such 

as the effects of memory, as well as the properties of 

fluid. Viscoelasticity can be modeled by connecting 

Newton's rule for fluids of viscous (here stress is 

directly proportional to strain rate) by means of Hook's 

law used for elastic solids, since presented with the 

original Maxwell model and enlarged with the 

Convicted Maxwell models used for the viscoelastic 

nonlinear fluids. Much difficult rheological and 

hydrodynamic behavior of compound fluids can be 

considered like effects of the inner elastic possessions. 

The governing equations of the problem are related with 

the viscoelastic flow that illustrates partial elastic 

recovery upon the removal of a deforming stress. As the 

constitutive model itself is simple, the dynamics that 

occur in simple flows are difficult and present a 

considerable challenge to numerical simulation, due to 

infinite extensional viscosity at finite elongation–rate. 

Viscoelastic fluids have been researched due to their 

vast applications for some decades to know the 

phenomena related with it and investigated by Taha 

Sochi (2009, 2010), Larson (1999), Rajagopal and. 

Gupta, (1984), Rajagopal and Na, (1985) and Keunings, 

(2003),. The investigation is to derive a model that is as 

easy as likely, relating the minimum number of 

parameters and variables, and until now containing the 

facility to determine the viscoelastic activities in 

compound fluid flows. 

 

The objective of this paper is to present 

investigative solutions for viscoelastic fluid flows in 

pipes through porous medium adopting the viscosity 

which is constant related with Oldroyd–B constitutive 

model. Oldroyd-B model is the nonlinear viscoelastic 

model and is a second simplest model and it seems that 

the most well-liked in fluid flow viscoelastic modeling. 

Here viscoelastic behaviour will be modelled by the 

Oldroyd-B (Oldroyd 1958) and Phan-thien/Tanner 

(PTT) (1977) differential constitutive models and 

simulation developed by van Os; Phillips. (2004) and 

Wafo (2005). 

 

This investigation is concerned with how to find 

and use symmetries for partial differential equations 

(PDE’s); symmetry of PDE’s maps any solution of 

PDE’s to another solution of the same PDE’s. The 

problem is to find and use admitted Lie point 

symmetries algebra. Symmetries of differential equation 

are forming a confined one-parameter group of 

transformation and depending continuously on a 

parameter can be designed algorithmically by Sophus 

Lie (1842–1899) and developed by Bluman and Kumei 

(1989), Olver, (1986), Ibragimov, (1999) and others. 
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These algebras are made use of to reduce the governing 

PDE’s system to solvable form. Basically, to determine 

an admitted Lie point symmetry one must consider 

transformations, acting on spaces of a finite number of 

variables, which depart invariant the solution multiple 

of the given PDE’s and its differential consequences. 

For PDE’s, symmetries allow the reduction of the 

number of independent variables developed by Moran, 

and Gaggioli, (1968), Abdel-Malek, Badran and Hassan 

(2002), Basov’s. (2004) and others. The solution of the 

governing PDE’s system is acquired analytically or 

numerically in the way using symmetries of the system 

through symmetry method. Numerical predictions of a 

system are resolute adopting Mathematica solver       

ND-Solve.  
 

      Section 2 concerns with the formulation in 

mathematics. Section 3 associated with viscoelastic 

flow solution in circular pipes through porous media; 

section 3.1 connected with study state solution for non-

homogeneous equation, section 3.2 consists of solution 

of PDE’s system (10) to (12) using symmetry method. 

Lie-point symmetries of the PDE’s (10-i & 10-iii) of 

viscoelastic flow in pipes are determined in section 3.2. 

Section 3.2.2 related with invariant solution 

corresponding to ,21 XX  result of PDE’s (10-ii) 

linked with the section 3.2.3. Section 4 is related 

analysis of Viscoelastic stresses. As section 4.1 

concerned with analytical solutions of normal and shear 

stresses. Steady state solution of normal and shear 

stresses and its graphs is discussed in section 4.2. As 

Section 4.3 connected with numerical solution of 

stresses of viscoelastic fluid flow in pipes filled with 

porous space. As section 5 associated with conclusions 

of the problems. 
 

2.         PROBLEM SPECIFICATION 
Consider a tubular porous layer held in a pipe 

drenched with the incompressible laminar flow of 

viscoelastic fluid in radial direction. A polar coordinate 

system is applied with radius-axis vertically upward. 

The main equations system of flow includes of the 

conservation of momentum and conservation of mass 

transport paired with the Oldroyd–B constitutive model.  

 

The viscoelastic fluid flow in the course of porous 

medium is believed to possess isotropic and 

homogeneous. For unidirectional flow velocity field is 

given as  ;0,0),,( truu   wherever the above 

meaning  of   velocity    mechanically       satisfies    the  

 

 

 

 
 

incompressibility state. The generalized Darcy–Brinkman  

model has been employed for the momentum equation 

and if body force is not present; continuity equation, 

generalised equation of momentum through porous 

media and the Oldroyd–B equation defines the stresses 

of viscoelastic in the fluid flow in vectorial form can be 

given as:  
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where as t represents time so that 
t

  is a temporal 

derivative, ρ and  is the fluid density and total 

viscosity of viscoelastic fluid respectively, u.  is used 

for the field of velocity vector, τ is the extra stress 

tensor, d  is the rate–of–strain tensor,  represents a 

spatial operator for differential, 2 is denoted for the 

Newtonian solvent viscosity, p is the isotropic fluid 

pressure, the intrinsic permeability within the porous 

media is identified with K  and   is porosity of porous 

media. 

 

The constitutive equation of Oldroyd–B model 

defines the stresses of viscoelastic in the fluid flow may 

be written in the form as under, 
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Where the rest time for the fluid of viscoelastic is 

indicated by λ and 1 is used for viscoelastic solute 

viscosity. As total viscosity is 
21   and is taken 

constant.  
 

The equations are derived which govern the 

unsteady unidirectional flow of viscoelastic fluid 

through porous media adopting of constitutive equation 

within an Oldroyd-B flow fluid, the equations are 

obtained by leading the unidirectional fluid flow of 

viscoelastic in porous pipes. The derivation of these 

equations by employing the transport equation of 

momentum and constitutive equations of Oldroyd–B 

suppose that pressure gradient is constant and body 

force is not present, the following dimensionless form 

equations in the present problem are considered for 

mathematical modeling. 
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Where u(r, t) and ),( tr  are dimensionless velocity in the axial direction and dimensionless stress tensor in axial, 

shear and radial direction, r is radial coordinates, t is the time using for non-dimensional and  the dimensionless 

Reynolds number (Re), Weissenberg number (We) and Darcy’s number (Da) are defined as 
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Hence K  is the adapted permeability concern with the porous medium using for non-dimensional. As R is a radius 
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It is necessary to prescribe initial and boundary conditions for to complete the well posed problem specification,. So 

initial conditions are given as:  ,0)1,( tu  and  0)0,( 



t

t

u
     When t > 0     (5)  

and initial conditions are taken as     0),0(),0(,0 1211  rrru    When  10  r      (6) 
 

3. Viscoelastic flow Solutions in circular pipes through porous media 

The PDE’s system (4) subject to initial and boundary conditions (5 & 6) is solved by finding the firstly steady state 

solution for non-homogenous equation (4-i) 

3.1 Steady State Solution for Non-homogenous equation (4-i) 

Non–homogeneous equations can be solved by means of a change of dependent variable and to find the steady state 

solution, hence, consider                                                                                                                                                                                                                  

),(),(),( 11 rrtvrtu  )(),(),( 2211 rrtvrt   & )(),(),( 3312 rrtvrt      (7) 

Substituting these values in Equation (4), and separating the like terms of one and two dependent variables, gives the 

two systems of equations which are  
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Subject to boundary conditions 0)1(1    and  0)0(1              (9) 
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Subject to initial and boundary conditions are,  
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For solving the system of equations (8), putting the )(3 r from (8-iii) in to (8-i), then differential equation is 
obtained as 
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So for C.F. of equation (13), we have 
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The above equation is Bessel’s differential equation of order zero. As general result of the (14) is written as 
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twice continuously differentiable in .10  r  so, we must take 0B and equation (14) has only one bounded 
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As particular solution of equation (13) is given as Darp )(1    
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Substitute this value of )(1 r in equation (8-iii), then )(3 r is obtained. After substituting the values of )(1 r  

and )(3 r  in equation (8-ii), then )(2 r is obtained. Then the following solution of system of equations (8) is 
achieved 
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3.2 Solution of system of PDE’s (10) to (12) using symmetry method  
 

3.2.1 Lie-point symmetries of the PDE’s (10-i) & (10- iii) of viscoelastic flow in pipes 

In this section, symmetry conditions and method for finding the Lie point symmetries of the equations (10-i 

&10-iii) are introduced because derivatives of these PDEs are linked each other and Let us the one parameter Lie 

point transformations of ),,,( 31 vvrt is considered by 
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be the corresponding first and second extended infinitesimal generator for the governed PDEs ((10-i &10-iii), Where 
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Therefore one parameter Lie group of transformations (21 to 24) is admitted by the governed PDEs (10-i &10-

iii).iffy 
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In (23), 1c and 2c  are constants of integration and symmetry Lie algebra of system of PDEs (10-i and10-iii) is two-

dimensional and infinite and is generated by  
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Where m is any natural number 
 

3.2.2 Invariant solution corresponding to X1 - α X2 

The form of invariant result related in the generator 
21 XXX   is given as 
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The insertion of (26) into PDEs (10-i &10-iii) gives the reduced system of ordinary differential equations  
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If we set the value of )(3 r from (27-ii) into (27-i), we have, 
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Through Equation (11- i and ii), the corresponding boundary conditions are 0)1(1   and 0)0(1   (29) 

The above ordinary differential equation (28) is the Bessel’s differential equation whose order is zero and similarly 
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equation have been solved as in section 3.1 and then the general solution of Bessel’s differential equation is  

)()()( 02011 rYcrJcr            (30) 

Where )(0 rJ   and )(0 rY  are Bessel function of order zero of first and second kind respectively. Hence 

)(0 rY   when 0r , so it is neglected, Therefore, the result is in one bounded solution is given as 
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Therefore, equation (26) develops into as under: 
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For the constants, applying the initial conditions (12-i) and (12-iii), so we obtain 
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and similarly for the condition (12-iii), we have 
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Substitute the values
1nc and

2nc in the relation (38), we get 
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3.2.2 Result of PDE (10-ii) 
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After putting the values of
1nc , 

2nc and )(3 r , so the equation (36) turns into 
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Hence the final result of the system (4 to 6) admit the following solutions 
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Hence the graph of the equation 0)(0 nJ  is given as 

15 10 5 0 5 10 15

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

n

J 0

 

Figure–1: Graph of the equation 0)(0 nJ   

This figure-1 shows the different values of 

 ....,..........  ,11.7915344  8.6537279,  ,5.52007812  ,2.40482555 n , which satisfy the equation 0)(0 nJ  , so 

choose the one value 2.40482555  for the graph. 
 

4. ANALYSIS OF VISCOELASTIC STRESSES  
 

 4.1    Analytical solutions of normal and shear stresses and its graphs. . 

The results of analytical solutions of normal stress component ),(11 rt and shear stress component ),(12 rt  are 

plotted in figures 2–3 for several parameters with ,1Re  ,1We ,10Da ,
9

1
1 

9
8

2   and at different 

values of time t. 
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Fig–2: Result of normal stress component
11  of (38-ii)           Fig–3:  Result of shear stress component

12  of              (38-iii)   
 

The result of relation (38-ii) and (38-iii) demonstrated analytical solution of normal stress component 11  

and the shear stress component 12  related with time dependent equations of the system (4 to 6) and the result of 

component of normal stress profile 11  is presented into figure–2 and show with the aim of the first component 11  
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expands with rising time and get to a higher state line at similar time rank into non–linear style and reaches at steady 

state at a maximum value of  0.0542. Whilst, the behavior the shear stress component
12  is illustrated in figure–3 

and shear stress
12  clearly indicate the linear movement in reduces by means of expand in time since it shall exist. 

There is no other alters in shear–stress since flow of fluid approaches at a minimum value which is equal to - 0.0555 

and flow become steady state. 
 

4.2 Study state solution of normal and shear stresses and its Graphs. 
 

The invariant solution related with 1X  is the steady-state solution which is already found in the section: 3.1 in 

the relation (16).and steady-state solutions of normal stress component )(11 r and shear stress component )(12 r  is 
given as      
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The results of steady state solutions are plotted in figures 4 & 5 with ,
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1
1  1We  and at different values of 

Darcy’s number Da. 
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Fig–4:  Steady state solution of normal stress component

11         Fig–5: Steady–state solution of shear stress component
12  

 

The steady state results of components of normal 

stress and shear stress show in (Fig 4and 5) respectively. 

As the Fig 4 illustrate in order to the steady normal 

stress component 11
 at high Darcy’s number (Da) flow 

behave like without porous media whilst, as Darcy’s 

number (porosity) of porous media decreases and flow 

resistant of the fluid expands and here component 11
 

reduces within the steady condition and as figure–5 

demonstrates to facilitate in the steady state, when pipe 

flow containing small values of Da, then component of 

shear stress 12
 contains big values so that if 

permeability reduces, then  component 12
 enlarges in 

the steady situation and eventually there is no flow 

when Darcy’s number approaches to vanishing value. 
 

5.                         CONCLUSIONS 
 

The main purpose of this research paper was to find 

the analytical solutions of viscoelastic fluid flow in 

pipes filled with porous medium in conjunction of the 

constant viscosity Oldroyd–B constitutive model by 

using Lie group analysis and most important analysis of 

this paper is to discover the exact results of normal and 

shear stress components. for non homogenous PDE, 

firstly steady state solution have been found and 

changed the original PDE’s system  in to new PDE’s 

system in the new dependent variables subject to 

suitable boundary conditions and new initial conditions. 
Lie-point symmetries have been achieved by applying 

symmetry method and accepted to arrive at the result of 

the problems and can supply a number of valuable 

insights interested in the solutions structure and 

sometimes can be helpful to find the exacting solutions 

in a lot of cases. We hope that the results may be 

accommodating for other human resources in the field. 
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