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1                     INTRODUCTION   

 Fluid Mechanics is a subject of science which 

deals with basic concepts and principles in hydrostatics, 

hydro kinematics and hydrodynamics and their 

application in solving fluid flow problems. In the fluid 

dynamics, Newtonian and non-Newtonian fluids are 

expressively concerned great to interest in the literature. 

The results of Newtonian and Non–Newtonian fluid 

flow in  problems classically depend on different 

properties of the flow of fluid, for example, velocity, 

temperature, pressure and density, as functions related 

with space and time. Fluid flow connected with porous 

media proposes a systematic structure that lies under 

realistic rules and that holds experiential and semi- 

experiential laws which are obtained from of flow and 

used to find the solution of practical problems. Flows of 

Newtonian and non-Newtonian fluids related with some 

essential investigation are prepared by way of Ariel       

et al. (2006), Abel-Malek et al (2002), Chen et al. 

(2006), Bird et al. (1987),  Fetecau and Fetecau (2005. 

2006), Rajagopal and Gupta (1984), Rajagopal and Na 

(1985), and Wafo-(2005).    
  

The research is to obtain a model that is as easy as 

likely, relating the minimum number of variables        

and parameters, and until now containing the facility to 

find out the viscoelastic activities in compound fluid 

flows investigated by Hulsen (1990) and  Keunings 

(2003). A general feature of viscoelastic     fluid is stress 

rest later than an unexpected shearing displacement 

where stress exceeds to a maximum     after that  begins  

lessening exponentially and ultimately  

 

reconciles to a value of steady state. A common consent 

has appeared that the flow with porous media related 

with viscoelastic fluids elastic effects should come up, 

even if their accurate nature is unidentified or 

contentious. Viscoelastic effects in porous media can be 

imperative insure cases. Whilst in these, the genuine 

pressure gradient will go beyond the simply viscous 

gradient further than a serious flow rate, as looked at by 

some researchers. 

 

Oldroyd-B model is the nonlinear viscoelastic 

model and is a second simplest model and it seems that 

the most well-liked in fluid flow viscoelastic modeling. 

Here viscoelastic behaviour will be modelled by the 

Oldroyd-B (Oldroyd 1958) and Phan-thien/Tanner 

(PTT) 1977) differential constitutive models and 

simulation developed by van Os; Phillips. (2004), 

Larson (1999 and Taha  2010) due to their large 

applications. The result of problems concerned with 

realistic fluid flow solved with Lie Group techniques 

has obtained rising concentration during current years. 

Lie-Group theory of ODE’s and PDE’s as a scientific 

branch created from efforts of the exceptional 

mathematician Lie of the nineteenth century (1842–

1899) and developed by Bluman and Kumei (1989), 

Olver,  (1986), Ibragimov, (1999) and others.and since 

then it has existed the major constituent part of his most 

significant creation of the continuous groups theory. For 

PDE’s, Lie point symmetries allow the reduction of the 

number of independent variables expanded by Abdel-

Malek, Badran and Hassan (2002), Basov’s. (2004), 

Moran,  and Gaggioli, (1968) and others.  
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This paper is associated with the investigative 

solutions of viscoelastic Fluid flow in a pipe using 

Oldroyd–B constitutive model. Analytical solutions are 

obtained in the way using symmetries of the system 

through Lie Group method and results are given and the 

physical interpretations of the solutions are prepared 

through graphs, these graphs are discussed. Finally the 

conclusions of this paper are given. 

  

     Section 2 is related with the problem formulation. 

Section 3 connected with viscoelastic fluid flow 

solution in circular pipes filled with porous media; 

section 3.1 attached according to non-homogeneous 

equation (4-i), section 3.2 concerns with symmetries of 

the PDE’s (13-i & iii), Section 3.3 associated with 

invariant solution of PDE’s (13-i & iii) corresponding to 

,21 XX   Section 3.3,1 related with solution of PDE’s 

(13-ii). Section 4 is connected with analysis of Velocity. 

Hence graph of invariant solution of velocity of 

equation (36-i) are given and discussed in section 

4.1and graph of steady-state solution of the velocity is 

discussed in section 4.2. Also section 5 connected with 

conclusions of these problems. 
 

 

 

 

 

 

 

 
 

 
 

2        PROBLEM FORMULATIONS 

Suppose viscoelastic fluid flow through porous       

media which   is   unsteady incompressible laminar flow  
 

apprehended in a circular pipe drenched in radial 

direction. A system of cylindrical polar coordinate is 

applied with radius-axis vertically upward. The most 

important equations system of flow contains of the 

conservation of both mass and momentum transport 

related with the Oldroyd–B constitutive model. In the 

absence of body force adopting Darcy-Brinkman model 

transfers a system of equations is used. The viscoelastic 

fluid flow with porous medium is supposed to be 

homogeneous and isotropic. As the flow in pipe is 

supposed to exist unidirectional expressed within only 

axial velocity as a function of redial direction along 

hydro dynamically entirely expanded which velocity 

does not hinge on the axial route of the pipe and the 

pressure gradient is supposed to live constant. For 

unidirectional flow velocity field is given as 

 ;0,0),,( truu   wherever the above meaning of 

velocity mechanically satisfies the incompressibility 

state. The continuity equation, generalized Darcy–

Brinkman model has been employed for the momentum 

equation through porous media and the Oldroyd–B 

equation define the stresses of viscoelastic in the fluid 

flow in vectorial form can be written as under: 

0. u       (1)   and      u
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The Oldroyd–B constitutive equation describes the viscoelastic stresses in the flow can be expressed as below: 
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In the above equations, u.  is the velocity vector field of flow, τ is the extra stress tensor, d  is the rate–of–strain 

tensor,  is the spatial differential operator, p is the isotropic fluid pressure (per unit density) and t is the time. The 

1 and 2 are respectively the viscoelastic solute and Newtonian solvent viscosities, fluid density is denoted by ρ, 

whereas λ is the relaxation time of the viscoelastic fluid and K is the intrinsic permeability of the porous medium,. 

Total viscosity  of the viscoelastic flow is 21    and is taken constant and   is porosity of porous media. 

The equations are derived which govern the unsteady unidirectional fluid flow through porous of viscoelastic fluid 

media adopting Oldroyd–B constitutive model. For unidirectional flow the velocity field is  ;0,0),,( truu   here the 

description of velocity automatically gives pleasure to the incompressibility state. The derivation of such equations 

by employing the momentum transport equation of viscoelastic fluid and Oldroyd–B constitutive equations 

assuming constant pressure gradient and may be expressed in the absence of body force, the governing system of 

equations is written in the dimensionless form as under 
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Where u(r, t) and ),( tr  are dimensionless velocity in the axial direction and dimensionless stress tensor in axial, 

shear and radial direction, r is radial coordinates, t is the time using for non-dimensional. Where the non-

dimensional Reynolds number (Re), Weissenberg number (We) and Darcy’s number (Da) are identified as  

,Re


 VcR
    

R

Vc
We


  , 

2R

KDa


 and .131    

As K is the adapted permeability concern with the porous medium using for non-dimensional. As R is a radius of the 

pipe and Vc  is used for the feature velocity supposed since reference redial velocity 


 

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Initial and boundary conditions for completing the well posed problem are taken as 

,0)1,( tu  and  0)0,( 



t

t

u
      When t > 0                                                    (5)                                           

and initial conditions are taken as     0),0(),0(,0 1211  rrru   When  10  r                    (6)\ 

 

1. Viscoelastic fluid flow Solutions in Circular Pipes filled  with Porous Media 

The PDE’s system (4) subject to initial and boundary conditions (5 & 6) is solved by finding the firstly steady state 

solution according to non-homogenous equation (4-i)  

3.1 According to Non homogenous Equation (4-i) 

A few problems involving non–homogeneous equations or boundary conditions can be determined by means of the 

change of dependent variable,  vu  

The basic idea to determine , a function of one variable, in such a manner that v, a function of two variables, is 

made to satisfy a homogeneous PDE or homogeneous conditions of boundary. For the non–homogeneous governing 

Equation (4-i), a change of dependent variables and to find the steady state solution, hence, consider                                                                                                                                                                                                                  

),(),(),( 11 rrtvrtu  )(),(),( 2211 rrtvrt     and )(),(),( 3312 rrtvrt         (7) 

Substituting above values in Equation (4), gives the two systems of equations which are  
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and   )()( 113 rr           (iii)                     (8) 

Subject to boundary conditions 0)1(1    and  0)0(1        (9) 

For solving the system of equations (8), put the )(3 r from (8-iii) in to (8-i), it gives, 
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Integrating the above ODE by using power series solution and applying the boundary conditions, so obtained the 

result as under 
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Here )(0 rJ
Da

i
 is Bessel function of order zero of first kind, respectively. 

Substitute this value of )(1 r in equation (8-iii), then )(3 r is obtained. After substituting the values of )(1 r   

and )(3 r  in equation (8-ii), then )(2 r is obtained. Then the following solution of system of equations (8) is 

achieved 
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Thus to determine ),(1 rtv , ),(2 rtv & ),(3 rtv , the new boundary value problem is given as 

1
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  2311332 })()({2 vvrvrveve rt WW        (ii)    3113 vvve
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Subject to initial and boundary conditions are,  
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Where
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 , etc, .are partial derivatives. 

 

3.2    Symmetries Analysis of the PDE’s (13-i & 13- iii)  

Once symmetry Lie algebra of the differential equation is known, it can be used in the investigation of 

transformations that will reduce the equation to simpler form and it is powerful method in obtaining analytical 

solutions of differential equations. In this section, symmetry conditions and method for finding the Lie point 

symmetries of the equations (13-i &13-iii) (because derivatives of these equations are connected each other) are 

introduced. The operator.  
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is the Lie point symmetry generator for governed system of partial differentials equations (13-i &13-iii) iffy, 
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In the operator X, according to Lie’s theory, the unknown functions 
21,,,  are taken independent of the 

derivatives of the primitive variables
1v   and 3v  and established from the determining equations derived from the 
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Where ,]1[X ]2[X  and ( ,]1[1
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t
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(19 and 2o), the unknown functions , ,  
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2 are independent for the differentials of 1v and 3v . Thus 

equating and separating them by the derivatives of 1v and 3v and powers of the derivatives of 1v and 3v deals to 

the two simplified over resolved systems of PDE’s and after solving these two over determined systems of linear 

PDE’s gives rise to the values of the unidentified functions , , 1 and 
2 as  
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Here ),( rtg  and ),( rth  are arbitrary functions of r of the following partial differential equations.  

g
Dar

h

r

h

r

g

rr

g

t

g 1
Re 2

2

2

2 

















 
       (a)  and h

r

g

t

h
We 









1    (b)     (22) 

In (22), 1c and 2c  are constants of integration. Thus the symmetry Lie algebra of the PDEs (13-i and 13-iii) is    

two–dimensional and defined by the following generators: 
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Where m is any natural number 

 

3.3    Invariant Solution of the PDEs (13-i &iii) corresponding to Operator X1 - α X2 

The form of invariant result related in the generator 
21 XXX   is given as 

)(),( 11 rrtv te   and )(),( 33 rrtv te          (24) 

For bounded function, we must take exponential function in negative sign. 

After putting the values of (25) into PDEs (13-i &13-iii) which gives the reduced ODEs system  
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Put the value of )(3 r from (25-b) into (25-a), then we have, 
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Subject to boundary conditions    0)1(1    and 0)0(1         (27) 

The above ordinary differential equation (33) is the Bessel’s differential equation whose order is zero and similarly 

equation have been solved as in section 3.1 and then the general solution of Bessel’s differential equation is  
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Where )(0 rJ   and )(0 rY  are Bessel function of order zero of first and second kind respectively, i-e. 
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Where   is the co-efficient of combination and ]
1

........
4

1

3

1

2

1
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n
n   for n=1, 2, 3, 4.......  Hence 

)(0 rY   when 0r , so it is neglected, Therefore, the result is in one bounded solution is given as 

)()( 011 rJcr     

After applying the boundary conditions from (28), so 0)0(1   is identically satisfied and 

0)()( 011   Jcr 01  c , So 0)(0 J , This has infinite number of roots ).......,,3,2,1( nn .  
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Hence applying the superposition principle, we obtain the solution  
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Therefore, equation (25) expands into as under: 
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For the constants, applying the initial conditions (14-i) and (14-iii), so we obtain  
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3.3.1    Solution of PDE (13-ii) 
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After setting the value of )(3 r and according to the solutions (32), solution of PDE (13-ii) is agreed as 
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Hence the final result of the system (4 to 6) admit the following solutions 
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As we have 0)(0 nJ  , the graph of this equation is 
 

 
Fig.1: Graph of the relation 0)(0 nJ   

 

Hence (Fig. 1) shows the different values of

 ....,..........  ,11.7915344  8.6537279,  ,5.52007812  ,2.40482555 n
.  

These values satisfy the equation 0)(0 nJ  , hence we 

choose the one value 2.40482555  for the graph. 

These values satisfy the equation 0)(0 nJ  , so we 

select the one value 2.40482555    for the graphs. 
 

2.        ANALYSIS OF VELOCITY  

4.1  Graph of Invariant Solution of Velocity of 

Equation (36-i) 
The analytical solutions of velocity have been 

obtained by Lie group method and are written in the 

equation (36-i) and plotted in (Fig. 2) for several 

parameters with ,1Re  ,1We ,10Da ,
9

1
1 

9
8

2  ,
1  and 2 and at different values of time t. 

 

 
Fig.2: Analytical solution of the velocity u of (36-i) with Re = 1,

9
8

2  , Da=10 and at different values of time t. 
 

 The result of analytical solution of the velocity u of 

time dependent equation (36-i) is presented in figure–2 

respectively. (Fig. 2) shows if time continues from rest, 

then pipe velocity profile enlarges and attained at 

maximum value of u = 0.261 and then some level 

decreases from the value of u = 0.261. At high level of 

time, flow become steady state at a value which is equal 

to 0.24555 and no further change in velocity profile.  
 

4.2 Graphs of Study State Solution of Velocity. 

The invariant solution related with 1X  is the steady-

state solution of the velocity u which is already solved 

in the section (3.1). The result of steady state solution of 

system of ODEs (8) with the boundary conditions (9) is 

obtained in the relation (12) and steady-state solution of 

the velocity u is given as      
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The graphs of steady state solutions of the velocity 

u are plotted in (Fig. 3) at different values of Darcy’s 

number Da. 

 
Fig.3:  Steady state solution of the velocity u (37) at different 

values of Da. 
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The steady state velocity is displayed in fig.3 

respectively. The (Fig. 3) shows that in the steady state, 

if pipe flows having small Darcy’s numbers Da, then 

steady velocity u have small values that if permeability 

decreases i-e Darcy’s number (porosity) of porous 

media decreases then resistance increases and hence 

velocity decreases in the steady state.  
 

5                    CONCLUSIONS 

In this research paper, the activities of transient 

hydrodynamics relative with flow of the viscoelastic 

fluid in pipes filled with porous medium in conjunction 

of the constant viscosity Oldroyd–B constitutive model 

are researched. Hence the analysis is lectured interested 

to solve the problem of PDE’s system for the analysis of 

velocity in analytical solution of velocity and Lie group 

technique has been applied successfully for solving 

PDEs of viscoelastic fluid flow and also numerical. The 

transformation group is a theoretic approach which is 

used to find the solutions of the problem. The one 

number of independent variables has been reduced 

through one-parameter group transformation and the 

PDE’s system reduces to an ODE’s system and the 

analytical solutions are obtained. The purpose of the 

current research is to obtain the exact analytical result of 

velocity adopting Lie group technique. We hope that the 

results may be useful for other workers in the field. Our 

advices for the future work are developing and putting 

into practice other steady-state and transient viscoelastic 

Algorithms. 
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