

SINDH UNIVERSITY RESEARCH JOURNAL (SCIENCESERIES)

Software restructuring for enhancing the Cohesion using Backward Slicing

M. K. SHAIKH, M. A. ANSARI, M. MEMON, M. R. MAREE*

Qaid-e-Awam University College of Engineering Science and Technology, Larkana, Pakistan

 Received 12rd March 2016 and Revised 19th July 2017

1. INTRODUCTION

Software is composed of many small logical

components. Over time, due to repeated modifications,

the structure of a system deteriorates, causing its logical

threads to get intertwined, like noodles in a bowl of

spaghetti. Essentially state of art mechanism is required

to comprehend the code efficiently.

Developing bug free software’s have been

significant domain of subject areas of software

maintenance and Software quality assurance over the

years. However, key factors like efficiency and of

process has never been priority. Binkley (Binkley,

1998). targeted lines of code for software quantification.

(Binkley et al., 2007) towards software refactoring is

considered as landmark in our research work. (Weiser,

1981) (Sward et al., 2004).

 Importance of Time and Cost in software

maintenance was always ignored.

 Real model development for potential risk

forecast was never formed.

 Fragile software design and analysis has

complicated the code understanding.

Poor Empirical statistics often results in extra

testing and maintenance effort. Reliable code

comprehension becomes inevitable to further validate

the software. The main motivation of this research is to

develop an appropriate code refactoring model with the

combination of quantitative measures and static

inspection of software code. Initial phase of our work is

subject to general aspects software code then it evolves

for structured and object oriented features too. Our

study establishes the fact that Software metrics statistics

can be used to achieve Code Optimization and Re-

engineering objectives. Analysis and Application of

software code set the core domain of this research.

Programming loopholes can’t always be reason to

deteriorate the overall code structure. It is a law of

software evolution (Arnold, 1986). Software Design is

not judged on predefined criteria. Implication of good

software design is constraints dependent. Consequently,

repeated modifications are carried out in order to insure

optimum level of constraints satisfaction. Such

modifications become restrict integration of new

constraints and leave no room for further optimization.

Successive changes become major cause of structural

decay of code thus adversely affecting the functional

requirements too. The major objectives of this research

are outlined below:

1. Propose a restructuring methodology that is

objectively focused to improve overall cohesion

measure of software systems.

2. Use backward tracing strategy of output

variables which could be faster and precise.

3. Validate the proposed idea experimentally with

available automated tools support.

4. Explore the futuristic dimension on the basis of

results obtained.

2. THEORITICAL FOUNDATION

 In this section, we briefly outline the key concepts of

restructuring, cohesion and slicing, particular in context

of our study and their effective application towards

software quality improvement.

2.1 Dynamics of Cohesion

Software Engineering as a recognized discipline

covers broad spectrum of quality assurance activities

Abstract: Software structure is characterized by high cohesion among modules. Repeated modification into code can adversely affect

cohesive structure of software systems. Efficient code transformation is required to re-engineer the software system for enhancing the

cohesion. In this paper we suggest restructuring process objectively for cohesive bond within the module using backward tracing of

dependent instance variables. In proposed measure of cohesion output variables produce domain of restructuring. The approach of

cohesion measure is further validated experimentally on open source software. Our transformation methodology application evolves

from small software to large software. Our approach significantly improves the cohesion and reduces complexity of ill structured code

resulting quality software.

Keywords: Software Restructuring, Cohesion, Backward slicing

http://doi.org/10.26692/sujo/2017.12.0073

SindhUniv. Res. Jour. (Sci. Ser.) Vol. 49 (004) 861- 868 (2017)

++Corresponding author: M. K. SHAIKH engr_mohsin@quest.edu.pk

*Institute of Mathematics and Computer Science, University of Sindh, Jamshoro,

http://doi.org/10.26692/sujo/2017.12.00
mailto:engr_mohsin@quest.edu.pk

like quantification, measurement, testing, consumer

acceptance and prototype re-engineering. Descriptive

analysis of process, product and people can form the

basis of adequate and smooth software development life

cycle. Elimination of frequent complexities in software

should be focal objective of good software practitioner.

Software metrics have been pivotal scale to detect and

improve quality measures. Software metrics are mainly

used for quantification of certain code characteristics.

An analytical and empirical analysis shows that the

design-level measures correspond closely with code-

level cohesion measures.

2.2 Application of Program Slicing

In today’s economically motivated world, software

systems are backbone of all the business operations to

insure swift and secure Since the inception of software

engineering, maintenance of source code has remained

concerned area for quality assured software system.

Program slicing is known as an effective technique to

understand the source code in decomposed structure

(Binkley et al., 2007) Application of slicing the program

is aimed at extracting out source code parts that having

defined functionality and exclusive existence. Program

slicing essentially focuses to identify portion of a source

code having meaningful semantics with particular

slicing criteria.

There has been significant advancement to explore

different aspects and applications of program slicing

over the years and is still ongoing in research literature

of software engineering. Program Slicing has emerged

as utility component in restructuring and refinement of

program code to understand technical dimensions of

software systems (Ishio et al., 2003) Application of

program slicing is covered in major areas of software

engineering, e.g., debugging, testing, software

maintenance, safety and re-engineering. Program slicing

mainly simplifies large source code by eliminating those

parts of the program which are meaningless for

particular context. The main aim of program slicing is to

identify and extract relevant parts of a software program

from a more complicated code. Being able to extract

these subprograms and view the source code makes it

possible to identify a wide range of potential bugs and

thus make the software run with more efficiency

(Karhu, et al., 2009)

2.3 Software Restructuring

Software restructuring is the process of re-

organizing the logical structure of existing software

systems in order to improve particular quality attributes

of software products (Kataoka et al., 2002). Some

examples of software restructuring are improving

coding style, editing documentation, transforming

program components (renaming variables, moving

expressions, abstracting functions, so on), and

enhancing functional structures (Relocating functional

components into other or new modules).

Noncompliance with coding standards, improper

documentation, and inappropriate development

coordination often result in inadequate source code

structure (Kataoka et al., 2002) Even the structure of

well-designed software tends to deteriorate due to

maintenance hazards (Shaikh et al., 2016) The

restructuring of old and new software systems can

potentially make them easier to understand, comprehend

and allow reuse for future operational purposes. Other

savings include reduced maintenance costs, increased.

Component reuse, and extended software lifetimes

(Kataoka et al., 2002) software systems are generally far

too large and complex to be effectively restructured on

an ad hoc basis. Analysts need rigorous techniques and

tools to restructure large software systems. 60% of total

software cost is incurred over evolution process during

entire life cycle development of software’s (Gallagher

et al., 1991) Program Comprehension consumes

50-90% of evolution process (Saleem, et al., 2009)

(Mohsin and Kaleem 2010) Complicated and multiple

tasks within the function make its code ill structured and

beyond casual comprehension. In such situation,

maintaining the good quality throughout development

process becomes very tough and objective of high

priority. Over the time, upgrading of technological and

customer’s needs can enforce modification even in well-

designed software system. As a result, software fails to

retain its originality in terms of its operation and

structure.

Program restructuring is an integral part of software

evolution to improve deteriorated structure and to cover

the maintenance overheads. Transformation of poorly

design software to well-designed software is usual

practice in today’s software engineering (Gallagher

et al., 1991). Restructuring in early days only focused

on data and control flow of code but now its application

dominates entire software code (Karhu, et al., 2009)

Developing the cohesive bond within function by

integrating its relevant components is challenging task.

However separating the unrelated fragments from same

function is even more challenging.

3. RESEARCH THEME

In order to validate theoretical perspective of

proposed idea and determine whether backward slicing

can be effective software restructuring, experimental

study is carried out.

3.1 Describing Approach

We have established theoretical framework and

introductory base for our approach. Now we can

elaborate its practical dimensions with effectiveness

M. K. SHAIKH et al., 862

towards domain of Software quality assurance.

Comprehension Process for large code base is very

difficult. Experts in program analysis divert their focus

on selection function or inter related components of

functions from entire code inspection techniques. Such

practice does not only help in comprehension but also

guide towards developing different metric attributes for

further quantification. In this thesis we have set out

enhanced cohesion to be foremost criterion for code

restructuring. We utilized sophisticated technique called

backward slicing to analyze the dependencies on output

variable. Below we explain different dimensions of

approach.

3.2 Enhancing the Cohesion

For enhancing the cohesion, precise analysis of

code and evaluation of dependencies is foremost

objective. To properly evaluate the cohesiveness of

software, dependent instance variables should be

identified from module, and implicit interaction via

dependent variables should be considered in computing

the cohesion metrics. For example consider code shown

in (Fig. 1).

This program as its name suggests computes the

sale the pay and profit which are its eventually instance

variable of module. Program structure suggests that

instance variables or modules have complex

dependencies among them.

One problem with software development is that

frequently modules continue to be in state of flux

beyond design phases. Redesigning complete system

would be disastrous task to handle poor software design.

Hence static analysis of software systems can be

important approach towards maintenance and cohesion

enhancement. Cohesion for this program can be

improved if it is restructured using following objective.

 Slice the program into main computation and

partial Computation.

 Each task should be isolated for the

identification of objectives.

3.2 Backward Slicing

We suggest Backward Slicing as analysis

mechanism for achieving our objective of cohesion

improvement in software systems. Backward slicing can

assist a developer by helping to locate the part of

program which needs to re-structure. This technique is

simple version of original program with some parts left

isolated. An important property of backwards slice is

that it preserves the effect of the original program on the

variable chosen at the selected point of interest within

the program. This is the reason we adopt backward

tracing process of dependencies. On the other hand

forward slice traces the program parts which get

affected by modification. Effects of forward slice are

useful after program has been subjected to certain

changes so forward slice rather helps regression testing

and refactoring.

 Fig.2. Slicing the module

We will continue our analysis over program in

Fig. 1. Backward slicing the on Sale_Pay_Profit on

criteria of instance variable, we split the program into

four modules.

 Compute_pay(days,sale), compute_sale(days,sale).

compute_avg_Pay(total_pay,days)”

,compute_profit(total_sale) as shown in (Fig. 2).

Decomposition of program indicates overall

improvement in comprehension of code. This module

has dependent instance variables which exhibit cohesive

bond with each other. Back ward slicing works as core

functionality of our restructuring methodology.

However yet transformation of code is required to reach

ultimate goal of strong cohesive bond within the

modules.

3.2 Transformation for restructuring

In this paper, we develop the transformation to

restructure the software systems. We assume that

program code can be refactored on prime criterion of

enhanced cohesion and dependencies can be analyzed

using backward slicing.

Fig. 1. Example of a module with lack of cohesion

Software restructuring for enhancing… 863

Restructuring process in our approach is performed on

following standards.

 Identification of modules with complex

dependencies and lack of cohesion.

 Tracing dependencies using backward slicing

mechanism.

 Splitting the program code into more refined

structure

 (Fig. 3) represents the complete restructured code

on our suggested approach. Transformation resulted into

formation of 5 modules i.e., Compute_Sale_Pay_Profit,

Compute_Sale, Compute_Profit, Compute_pay,

Compute_Avg_pay. Every module is separate and

integrated in terms of function and structure. Program

restructuring is an important option in software

evolution in order to improve structures that have

deteriorated and to keep software maintenance costs

under control. It is also used in software development to

turn a poorly designed program into a well-designed

one. The early days of restructuring efforts focused on

making a program’s control flow easier to follow. This

category is quite mature (Karhu, et al., 2009). With

regard to functional structure, however, one challenge

of restructuring is how to meaningfully group related

code segments together inside a large or poorly

structured function to form small or cohesive functions,

because it is not uncommon that unrelated fragments

and functionally cohesive code segments are interleaved

in practice.

5. EXPERIMENTAL ANALYSIS

The purpose of carrying experimental analysis is to

determine the efficacy of proposed approach over open

source software systems. This will further consolidate

its application and research worth.

5.1 Subject Systems

 There are mainly five well-known open source

projects utilized in our study to investigate effectiveness

of back-ward slicing. These include JDT Core-3.4,

Lucene -2.4.0, JEdit-4.3. Ant-1.7.

Fig 3. Decomposed functions

M. K. SHAIKH et al., 864

Table 1 Descriptive Information of Data-Sets

System Version # Methods KLOC

JDT-Core 3.4 18046 277

Lucene 2.4 7945 125

Ant 1.7 13488 207

JEdit 4.3 4567 137

 JDTCorei is an Eclipse plug-in that implements the

Java infrastructure of the Java IDE. Luceneii is a

software package from apache distribution, used for

full-featured text search engine library. JEditiii is

programming text editor for writing java source code.

Antiv is command line tool used for java build files.

(Table 1) includes descriptive information of subjects

systems used for experimenting our approach. It can

well be inferred that all the systems are of reasonable

and manageable size in terms of source code structure

and number of methods.

5.2 Methodology

 We opted for automated tool support to conduct our

experiment, which may in turn yield precise, accurate

and cost effective result. Our experimental setup

consists of Integrated Development Platform: Eclipse

3.1.2, Analysis Tool Indus1 0.8.3.14, Slicing Tool

Kaveri 0.8.3.7, Eclipse Metrics2 Plugin Java 6. In order

to obtain productive results of our approach, we have set

comparative analysis of experiment between Baseline

metrics and slice-based metrics. Following is the

description of metrics.

Table 2 Baseline Metrics

Table 3 Slice Metrics

 (Table 2 and 3) summarizes the definitions of Baseline

metrics and Slice based metrics. It is worthwhile to note

that metrics described in (Table 2) mainly outlines

structural properties of source code. Table 3 enlists

metrics which actually represent cohesive nature and

properties of slices obtained from source code.

1 http://indus.projects.cs.ksu.edu/projects/kaveri.shtml

2 http://metrics.sourceforge.net/

5.3 Application

 Firstly, we conducted experiment over open source

software Interpreter.java3 to assess the application of

our proposed technique. Interpreter.java contains 6

classes, 33 methods and 715 total lines of code. Initial

review of experimental study led to following major

observations.

 5 classes exhibit normal metric values

including Lack of Cohesion on methods and McCabe

Cyclomatic Complexity.

 Biggest class of systems contains 700 lines of

code and 33 methods

 Restructuring of methods was carried out on

priority basis of determining complexities

 Restructuring mainly focused to restructure the

functions with high complexity values on the criterion

of enhancing cohesion.

 Table 1 mainly indicates quality values of subject

system. Before restructuring process, software bears

Lack of Cohesion value 0.948, which is out of range as

calculated by Hellen’s Formula.

 Table 3. Before Restructuring

Overall complexity of class structure is also not

feasible, hence, functions within that class need

decomposition. Generally 33 methods within class is not

a big problem but slicing statistics may get affected as

shown in (Table 2). Consequently restructuring process

becomes applicable to subject system for improvement

in code quality. We identified functions with critical

values of subject system and brought them under

restructuring process. The decomposition results in

enhanced cohesion of overall structure program.

Function print was also sliced to reduce complex

structure. (Table 4) shows properties of restructured

system. It is evident from the results that restructuring

process improved the Lack of Cohesion and reduced its

value up to approximately 6%.Overall cyclomatic

complexity of class 30% which is indication of efficient

code transformation.4 new functions were created using

decomposition process.

3https://sites.google.com/site/smallbasicinterpreters/sour

ce-code

Metric

Name

Description

LCOM

Lack of Cohesion of Methods: Describes the extent

to which methods in the source are lacking the

cohesive bond.

CC(complex

ity)

McCabe Cyclomatic complexity is Indication of

Complex structure formed due to loops and

decision making statement within the source code.

Ca
Afferent Coupling exhibits dependence of source

components on classes from other modules.

Ce
Efferent Coupling shows the dependence of classes

on source code components of other modules.

Metric Name Description

Coverage (COV)
Ratio of means slices to modules within the

source code

Overlap (OLAP) Interdependence of slices

Tightness (TGT) Cohesive bond among the slices of module

Metric Value

LCOM

 0.948

CC

 0.56

Ca

 0.68

Ce 0.43

Software restructuring for enhancing… 865

 Table 4 Metrics Statistics after Restructuring

5.4 Result

 In this section, we have represented the results using

box-plots for different open source software systems.

These graphical representation of subject systems is

obtained after backward slicing and their source code is

analyzed using research methodology described in

section 5.2.

Fig. 4. Subject Systems metric values Before Restructuring

(Fig. 4) represents box-plot distribution of process metrics for subject systems used in this study. These metric

values characterize the software systems by certain properties of complexity and design strength. It can be well be

observed that LCOM is almost persistent in all the subject systems whereas CC is high as well except JEdit-4.3 It

indicates that complexity and design of software systems are not adequate, so, they are subject to restructuring.

(Fig. 5) represents the process metric values and slice

metric values after applying back-ward slicing. All the

systems have generally shown significant improvement

with the application refactoring effort: LCOM shows

decreased mean value in Lucene, Ant and JDTCore,

Ca, and Ce seem to be decreasing after restructuring in

Ant and JEdit too. Interestingly, metrics related slice

cohesion are in improving and increasing trend in

JDTCore-3.4 and Lucen-2.4, where median values of

COV remain 0.4 to 0.7, TGT values exhibit significant

change due to restructuring. In summary, cohesion

metrics values have shown substantial improvement as

result of restructuring on the basis of backward slicing.

 Metric Value

LCOM 0.89

CC 0.49

Ca 0.56

Ce 0.39

Fig. 5. Subject Systems metrics values After Restructuring

M. K. SHAIKH et al., 866

6. CONCLUSIONS

 Software restructuring should be easy, efficient and

semantic preserving. We provide software restructuring

frame work where enhancing cohesion is prime

objective using backward analysis of code statically.

Restructuring process and operations gives dynamic

mechanism for optimizing improvements in cohesion. A

software system that has gone through this restructuring

process has higher quality and is more maintainable.

The return on investment in this refactoring process can

be measured in lower error rates, fewer test cases per

module, and increased overall under stability and

maintainability.

 These results show that restructuring enhanced

cohesion and decreased Cyclomatic complexity. It is

also evident from the results that original functional

core of program is preserved after restructuring the

system. Despite the fact that Software engineers need

calculated and economical mechanisms to deal with

code complexity. There is no commercial acceptability

to new approaches. Our future research will include

detailed empirical study to further validate

implementation of our methodology on commercial

systems.

REFERENCES:

Arnold R S. (1986) An introduction to software

restructuring. IEEE Computer Society Press,

Washington, DC;

Binkley D. (1998). The application of program slicing

to regression testing. Information and software

technology. 1; 40(11):583-94.

Binkley D., M. Harman J. Krinke (2007) Empirical

study of optimization techniques for massive slicing.

ACM Transactions on Programming Languages and

Systems (TOPLAS). 1; 30(1): 3-6.

Binkley D., N. Gold M. Harman (2007) An empirical

study of static program slice size. ACM Transactions on

Software Engineering and Methodology (TOSEM). 1;

16(2):8-12.

Gallagher K. B., J. R. Lyle (1991) Using program

slicing in software maintenance. IEEE transactions on

software engineering. (8):751-61.

Ishio T, S. Kusumoto K. Inoue (2003) Program slicing

tool for effective software evolution using aspect-

oriented technique. In Software Evolution, Proceedings.

Sixth International Workshop on Principles of 3-12.

IEEE.

Ishio T., S. Kusumoto K.. Inoue (2003) Program slicing

tool for effective software evolution using aspect-

oriented technique. In Software Evolution,.

Proceedings. Sixth International Workshop on

Principles of 3-12. IEEE.

Karhu K., T. Repo O. Taipale K. Smolander (2009)

Empirical observations on software testing automation.

InSoftware Testing Verification and Validation,.

ICST'09. International Conference on 201-209. IEEE.

Kusumoto S., A. Nishimatsu, K. Nishie K. Inoue (2002)

Experimental evaluation of program slicing for fault

localization. Empirical Software Engineering. 1;

7(1):49-76.

Kataoka Y., T. Imai H. Andou T. Fukaya (2002) A

quantitative evaluation of maintainability enhancement

by refactoring. InSoftware Maintenance,. Proceedings.

International Conference IEEE. 576-585.

Lakhotia A., J. C. (1998) Deprez. Restructuring

programs by tucking statements into functions.

Information and Software Technology. 40(11):677-89.

Mohsin S., Z. Kaleem (2010) Program slicing based

software metrics towards code restructuring. In

Computer Research and Development, Second

International Conference 738-741. IEEE.

Saleem M., R. Hussain, V. Ismail S. Mohsin (2009)

Cost effective software engineering using program

slicing techniques. In Proceedings of the 2nd

International Conference on Interaction Sciences:

Information Technology, 768-772. ACM.

Sward R E., A. T. Chamillard D A. Cook (2004). Using

Software Metrics and program slicing for refactoring.

Air Force Academy Colorado Springs Co;

Shaikh M., C. G. Lee (2016) Aspect Oriented Re-

engineering of Legacy Software Using Cross-Cutting

Concern Characterization and Significant Code Smells

Detection. International Journal of Software

Engineering and Knowledge Engineering. (03):513-36.

Weiser M. (1981) Program slicing. In Proceedings of

the 5th international conference on Software engineering

Mar 9 439-449. IEEE Press.

Xu B., J. Qian X. Zhang, Z. Wu L. Chen (2005) A brief

survey of program slicing. ACM SIGSOFT Software

Engineering Notes. 1; 30(2):1-36.

Software restructuring for enhancing… 867

