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1.               INTRODUCTION 

Hyperspectral image classification has been 

acknowledged as the fundamental and challenging task 

of hyperspectral data processing. The advantage of 

hyperspectral imaging technique is that, considering that 

every element (water, tree, soil, etc) is defined by a 

precise spectrum (spectral signature), it should be 

possible to accurately classify every pixel of the image 
by considering their spectrum. The abundance of 

spectral and spatial information has provided  great 

opportunities to effectively characterize and identify 

ground materials. 
 

In recent days for supervised hyper-spectral data 

classifi-cation many methods have been used. 
Maximum likelihood are included in classic Techniques 

(ML) (Schowengerdt, 2007) neural networks, 

(Subramanian, et al., 1997) NN classifiers (Samaniego, 

et al., 2008)  among many others. The quality of these 

pixel-wise classification methods is strongly related to 

the quality and number of training samples. 
 

By blending the 1  and 2  penalties, Elastic     

Net (ELN) regression resolves these issues.  Alike to the 

LASSO, the variable selection and continuous shrinkage 

is simultaneously done  by  the  ELN,  it  is  also  

selectable  for  the  groups of correlated features. With 

the 1   ELN  generates  the   sparse  features  and  2  

 

 

 

penalty facilitates the stability and correlated 

characteristics along with the free parameter α 

establishes the penalties relative strength. Nowadays 

ELN emerged with logistic regression, (Tomioka et al., 

2011) multi-kernel learning (Hussain and Shawe-

Taylor., (2011)”. The effectiveness of this technique is 

popularized in multidimensional image classification 

(Balamurugan, 2013) and functional magnetic 
resonance imaging (FMRI) (John et al., 2012) 

classification and also in devise of sparse classifiers Li 

(Wang, et al., 2006). 

 

It is a easy and effective way to regularize for 

spatial smoothness to meliorate the input space with 

features accounting for the neighborhood of the pixels. 

In recent days Edge-preserving filtering [EPF]  

(Friedman, et al., 2010) (Bushra et al., 2016) has 
shown the remarkable growth for the image processing. 

 
To performs the weighted average of the 

neighborhood samples for HSI classification the EPF is 

well suited. EPF is a non-linear filter and it considers 

the spectral and spatial distances between the pixels, 

which enables the EPF to preserve the image details. 

The spatial variability  presents due to the noise can  be  

smoothed  out  with   the   help  of  EPF. Benefited  with 

the weighted averaging  approach  of  EPF, for the post- 

processing  step  it  is  well  suited  to  add the geometric   
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Abstract: This article presents not to simply a unique two stage regularization/shrinkage estimator for regression; rather, explicit to 

make the Bayesian framework connection to the Elastic Net procedure via the post-processed Edge preserving filtering which consist of 

two steps. We evaluated the quality of  bands with pixel-based classifier associated with the Elastic Net based regularized regression. 

Next, spatial contextual information is used for refining the classification results obtained in the first step. This is achieved by means of a 

generic but powerful bilateral filtering post-processing, with a color guidance image retrieved from the principal components of the 

hyper-spectral image. Under the generalized Elastic Net framework, our proposed model showed the less time complexity. When 

comparing three widely used hyper-spectral data sets with the other classification methods, our method has shown the noticeable 

classification accuracy while the number of training samples is relatively small. 

 

 

++Corresponding: Author: bushra.naz@faculty.muet.edu.pk 

Department of computer systems Engineering, Mehran University Of Engineering And Technology. 

 



 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

information  with  the  pixel-wise  spectral-only 

classifier. Previous research (Bushra et al., 2017) (Xu 

2014) have indicated that post-processing classification 

is an important step in improving the quality of 

classifiers. In last decades researchers have been 

proposed the different kinds of EPFs, i.e., Joint bilateral, 

weighted least square (Farbman et al., 2008), guided 

(He, et al., 2013). Domain transform (Gastal, et al., 

2011), local linear Steins unbiased risk estimate and 0  

-gradient (Xu et al., 2011) filters. All filters have the 

joint filtering approach which smoothen the given 

image on the basis of a guidance image. During the 

filtering process the spatial information is well 

considered. Moreover, nowadays image processing 

researchers keenly noticed the Edge Preserving Filtering 

(EPF) (He, et al., 2013). A lots of applications    in 

image processing field is introduced such as high 

dynamic imaging   (Farbman et al., 2008)., stereo   

matching  (Hosni et al., 2013)   image   fusion  (Li ,       

et al., 2013), (Li and Kang. 2012)  enhancing  (Zhang 

and Allebach. 2008),  (He,  et al., 2011) and  de- noising  

(Lin 2010) have  been  developed.  Furthermore,  for  

HSI  visualization (Kotwal and Chaudhuri. 2010) and 

classification (Shahzad et al., 2015)  EPFs drawn the 

remarkable results. 

 

For images an EPF is a non-linear, edge-preserving 

and noise-reducing smoothing filter. The intensity value 

at each pixel in an image is replaced by a weighted 

average of the classification results. Chosen the 

maximum probability we then finally classify the HSI. 

With the neighborhood pixel information, bilateral 

filtering with spatiao-spectral information is emerged 

for the refining the probabilities and must ensuring the 
refined probabilities are aligned with real object 

boundaries. 

 

This research has proposed a post-processed bilateral 

filter logistic regression with Elatic Net regularization 

(ELNR- EPF).  We have generalized a mathematical 

convenient approach to estimate the sparse coefficient 

by the Bayesian learning. In the regression termed as 

(ELNR) which gives the initial result as a multiple 

probability map and then at the second stage a post 

processing bilateral filter (a first stage we obtained the 

initial classification map with ELN logistic filtering 

approach which consider the spectral and spatial 

characteristics) is applied to refine and preserves the 

edges another pixel, it should not   only occupy a nearby 

location but also have a similar value. The technique of 

EPF is as an extension of the bilateral filter. 
 

2.  PROPOSED FRAMEWORK 

A. Problem formulation 
For input an L band set of N pixel vector 

 1 2, , ,x x x L N

N

  X  is given , where each 

 1 2, , ,
T L

i Lx x x  x  is a L0Dimension vector. 

Consider the  1, ,S N   indexing HSI N  pixel. 

Assume the K labels classes as  1, ,k K   and 

 1 2, , ,y y y K N

N

  Y  as an image of class 

labels, where each  

     1 2
, , ,

T
K K

i i i iy y y   
 

y  as an image of 

class labels, where each is a 1-of-K encoding. Let the 

training set    1 1( , ), , ( , ) LT x y x y C


       

the total number of labeled samples is denoted by the . 

The major task of the HSI with the defines notation is to 

classify the label iy k  for each pixel i S  . This 

 

 

Fig. 1. A two stage post-processing spectral-spatial HSI classification model with Elastic Net regularized regresion and Bilateral Filetring. 
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classification results in the thematic map of class labels 

Y . The proposed framework is shown in (Fig. 1). 

 

Bayesian Elastic Net Regression 
 

In this article we broaden the Bayesian framework 

to the ELN penalty with complete characterization of 

ELN prior. The core elements of Bayesian ELN 

regression- the prior and posterior distributions. This 

places the ELN in the context of a model-based 

framework where point estimation, prediction, and 

model uncertainty can be addressed from a Bayesian 

learning perspective. Here, the posterior mode does not 

play a central role in the Bayesian paradigm; rather, 

inference about β  is based on the entire posterior 

distribution ( / )p β y , the prediction of future 

observations y  is based on the posterior predictive 

distribution ( / )p y y , and uncertainty about the 

specification of the regression model is addressed via 

the posterior distribution over the model space. A key 

advantage of casting ELN regression in a Bayesian 

framework is that uncertainty about the regularization 

parameters   and   can be incorporated into the 

model through a prior distribution. Integrating over this 

uncertainty essentially creates an infinite mixture of 

ELN regression models, allowing for adaptive, data-

based shrinkage of the regression coefficients. 

 

Initially, we used the pixel wise classification 

model to build the class densities based on Bayesian 

framework with ELN prior (ELNR) to generate the 

pixel-wise classification map  ,i k i iP P k y x∣  

using probability map  1, , kP p p  . Specifically, 

the probability is defined as follows: 

 

,

1

0

i

i k

if k
P

otherwise


 


x
 …………………. (1) 

 

To refine the initial classification map, in probability 

optimization we will added spatial aware information 

via bilateral filtering with the color reference image R . 

This research models the posterior class probabilities 

using the multinomial logistic regression (MLR) [33]. 

We have consider the linear regression in standard with 

ELN based regularized multino-mial logistic regression, 

initially the pixel-wise probability Pi,k = P (yi = k xi) 

which is related to a given sample belonging to the class 

k can be given as: 

 

 
0

0

, 0

1

; ,

T
k i k

T
j i j

i k i i k k

K

j

P P k x

e

e







 





β x β

β x β

y β β∣

 ……………….(2) 

 

where 1,2, , 1,k K i S    , while the 

  1

0 ,
T L

k k

β β  is the regress or of coefficients 

corresponding to the class k  for MLR model. taking the 

advantages of ELN penalty and assuming the sparsity 

and correlation of repressors  0 ,k kβ β  , the general 

prior of  0 ,k kβ β   is modeled as ELN prior is modeled 

as ELN prior [34]. It is worth to mention here that  

under the Bayesian framework, the ELN penalty 

corresponds between the Gaussian and Laplacian priors. 

Then maximum a posterior (MAP) to estimate the 

regress or can be written as maximum penalized log-

likelihood, given as: 

 

 

 
   

0 1

0

0,
1 1

,

1
max ,K

k k

k k

N K

k k k

i k

P
N


 

  β β

β β

β β β

…………………………………………………. (3) 

where 

   0 0

1

, log ; ,
N

k k i i k k

i

P


 β β y x β β∣  … .(4) 

and  

 
2

2 1
( ) 1k k kP    β β β  ……… .(5) 

is the ELN penalty. while the P  measures the penalty 

strength of Lasso  1   and Ridge-regression

 0   . The penalization term is now a convex 

combination of the  1  norm and  2  -norm of the 

coefficient vector .The parameter  0,1   is used 

for determining the proportions between the these two 

types of regularization. 
 

For the N k  indicator response matrix Y , with 

elements  il iy I g l    log-likelihood function can 

be specified in more explicit form which is a concave 

function of the parameters. 
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  (6) 

To avoid the complexity of  Eq.(6) log likelihood 

can be approximated to a quadratic lower bound by 

performing the partial Newton steps, in the spirit of path 
wise coordinate descent algorithm while allowing only 

 0 ,l l   to vary for a single class at a time. 

 
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0 0

1

0
1

1
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Ql l l il il l i l

i
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  





  

 

β β

β

.(7) 

where, 

 

    0
1

i l iT

il l i l

l i l i

y P x
z x

P x P x
 


  


   ……...(8) 

    1il l i l iP x P x    ……………………....(9) 

 

Here ilz  denotes the working response and il  

represents the weights. using the cyclical coordinate 

descent, this proposed regularized problem is solved. 
 

Post-processing Edge Preserving Bilateral Filtering 

Inspired by the HSI phenomenon, nowadays to 

concentrates the information in the spectral and spatial 

domains. Spatial hierarchies may consist of features, 

sizes, places, contexts, pyramids, or even ultrametrics 

based on the spatially perceptive relationships. One 

simple yet effective method for spatial spectral 

classification is by  applying  adaptive  filters or  

moving  windows  to  the  spectral  bands.  In  this  

letter,  to improve the ELNR classification performance 

obtained through the spectral information alone via the 

Bayesian Elastic Net Regression, we integrate the 

spatial information with spectral information with a a 

very simple and generic Edge Preserving Filtering 

(EPF) approach known as bilateral filter (BF). 
 

With only spectral information, the classification 
map contains the noise and does not aligned with the 

real object boundaries. The optimized probabilities are 
modeled as a weighted average of its neighborhood 

probabilities, 

 

 

 

, , ,

( )

ˆ ( )i k i j j k

j N i

P W P


  R  ………………………(10) 

 

where R  and ,
ˆ
i kP  refers to the guidance and input 

image, respectively. While i  and j  represent the ith    
and jth   pixels. While ( )N i  is the neighborhood of 
the ith pixel and the weight ,i jW  for the bilater 

filtering which preserves the edges of a specified 
guidance image can be defined using two Gaussian  

decreasing  functions,  

   , )  /( 1
s r

i

b

i j i i j

j w

W R K G i j G R R 



     (11) 

s  is used for local window of a pixel,  and r    

expounds the decreasing weight of a pixel via the 

intensity difference between the reference pixels, i.e., 

iR  and jR  .  Here, iw   is a local window of size 

   2 1 2 1s s     around pixel i , 
b

ik  is a 

normalizing term of the bilateral filter. 

 

Referring Eq.12, if the neighborhood pixels of 

pixel i  in the guidance image have similar intensities or 

colors, i.e., i jR R , the weight of pixel j  , represented 

by neighboring  pixel j  ,  will  be  quite  large,  

especially  when  it is  very  close  to i  ,  i.e., i j  is  

very  small.  In contrast, if  the  neighboring  pixels  

have  quite  different  intensities  in the guidance image

R  , the situation will be the opposite. The pixels with 

the similar color or intensities present in the reference 

image must have the similar output. 

 

For Guidance image we choose the PCA. 

Benefitted with the bilateral filter features, i.e., we can 

get the more accurate and effective classification 

accuracy by avoiding the blurring while  removing  the  

noise  between  the  homogenous  zones. Moreover, 

Bilateral Filter provides the δs  and δr  parameters 

modification in non-iterative way. 

Once  the  initial  probabilities  map  are  refined  

with  EPF approach, the classification of pixel i for label 

yi  can be given by choosing the maximum probability 

as: 

,
ˆarg max i ki

k

Py  …………………………….(12) 
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The  step  by  step  algorithm  for  the  proposed  

framework  is illustrated in Algorithm 1. 

 
Algorithm 1: Elastic Net Regression & EP Bilateral Filtering 

 

1. Input:  

- L N  HSI  1 2, ,..., NX x x x   *K N , spatial 

window size , ELN regularization   and . 

2. Compute the pixel-wise ELN regularized 

regression for initial classification with PCD. 

- For each pixel find initial probability map via the     

Eq: 2 

3. Apply  Edge  Preserving  Bilateral  Filtering  

via  Eq:  10 - Choose maximum probability using the 

Eq: 12 

4. Output Post-processed Spectral-spatial 

classification result. 

 

3.        EXPERIMENTS AND RESULTS. 

A. Data Sets And Metrics 

In order to evaluate the performance of the 

proposed method, three well known hyperspectral 

datasets are employed i.e., Indian Pines, University of 

Pavia and Centre of Pavia images. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

The   purpose   of   the   experiments   is   to   

compare   the performance  of  the  proposed  post-

processed  approach  with other  state-of-the-art  
analysis  classifiers,  such  as  Sparse multinomial   

logistic   regression   (SMLR),   LORSAL   with 

multilevel logistic spatial prior (denoted as LOR-MLL), 

Support  vector  machine  (SVM)  and  SVMs  with  

composite kernels (denoted by SVM-CK) that combine 

the spectral information  and  spatial  information  via  a  

weighted  kernel summation,  which  are  well-

established  techniques  in  the machine  learning  

community. Furthermore our previously proposed 

Bilayer Elastic Net Regression (ELN2-RegMLR).All 

parameters of these methods are set according to the 
reference papers. 

 

4.         CLASSIFICATION RESULTS 

In this experimental analysis we have represented 

the results in boldface that are significantly better than 

others. From the experimental results, we have the 

following outcomes.  

 

1)  AVIRIS  Indian  Pines  Data  Set.:   This  image  is  a 

classical benchmark to validate the accuracy of hyper-

spectral image  analysis  algorithms. For  comparison,  

we  adopt  the aforementioned  state-of-the-art  
supervised  classifiers.  (Fig. 5(a)−(h))   shows  the  

ground-truth  and  classification  results obtained by the 

different tested methods for the Indian Pines data.  

Moreover, (Table  I)  gives  all  comparable  results  of 

different classifiers. From Table I and Fig. 5, classifiers 

with spatial information (MLL prior, CK, EPF) have 

shown a clear advantage over the pixel-only 

counterparts. while our method ELNR-EPF gives the 

second best spectral spatial classification result, which 

is about 2.55% higher than the state-of-the-art SVM-CK 

classifier in OA. It is also noticeable that although our 
approach is linear but it produces comparable results 

with  the  well  known  SVM  and  LOR-MLL  and  

ELN2-RegMLR methods in pixel-wise and spectral-

spatial counterparts. 
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2)  ROSIS   University   of   Pavia   Data   Set.:   In   

second experiment,   we   evaluate   our   method   using   

the ROSIS University of Pavia data set while comparing 

with the other state-of-the-art methods mentioned 

previously. Fig. 6(a)−(h) illustrates the reference map 

and classification results of the classifiers listed in   

Table 3. 
 

From (Table 2 and Fig. 6), we can conclude that 

proposed approach  achieves  the  second  highest  

accuracy  among  all of  the  other  classifiers.  It  is  

worth  to  emphasize  here  that all classical spectral-

spatial classification methods adopted the RBF kernel 

for mapping, indeed we used linear system without      

the RBF kernel and still get the Comparable results than 

RBF kernel mapping approaches. We get  the second 

highest spatiao-spectral classification accuracy and get 

1.57% higher than SVM-CK approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3)  ROSIS Centre of Pavia Data Set.: In this experiment, 

we evaluate our method using the ROSIS center of 

Pavia data set while comparing with the other state-of-

the-art methods mentioned previously. We have 

compared our previous proposed method  and other well 

known classification methods: which obtain the best 

classification result in the center of Pavia data set.    

(Fig. 4) show the reference, false color map and training 

data. It is worth to emphasize that these training samples 

are out of the testing samples. Fig.7(b)−(h) illustrates 

the classification results while the Table 3. represents 

the numerical classification results in the form of OA, 

AA and κ coefficients. From the Fig. 7(b)−(h) it is 

observed that the all classifiers achieve good 

classification results, but our method still gets the 

highest result, which is which is 0.15% higher than the 

our previous proposed method ELN2- RegMLR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table I: Classification Accuracy (%) For The Indian Pines Image Using Training Samples And Testing Samples  

Class Type SMLR SVM ELNR LOR-MLL SVM-CK ELN2-RegMLR ELNR-EPF 
Alfalfa 64.17 81.25 27.08 70.42 95.83 97.92 100.0 

Corn-no-till 82.03 86.28 82.79 92.96 96.67 96.78 94.60 
Corn-min-till 70.97 72.80 58.27 86.65 90.93 97.07 94.18 

Corn 64.81 58.10 45.71 79.38 85.71 100.0 74.37 
Grass/Pasture 91.07 92.39 84.56 94.25 93.74 98.21 97.82 

Grass/Tree 96.46 96.88 91.37 98.66 97.32 99.40 99.50 

Grass/Pasture-mowed 38.70 43.48 43.51 50.00 69.57 13.04 100.0 

Hay-Windowed 99.30 98.86 99.09 99.39 98.41 100.0 100.0 

Oats 28.89 0.00 17.33 50.00 55.56 22.27 100.0 

Soybeans-no-till 76.61 71.53 61.08 90.20 93.80 99.68 88.10 
Soybeans-min till 83.03 84.38 80.55 93.89 94.37 98.55 98.30 

Soybeans-clean till 81.76 85.51 74.82 94.37 93.66 98.42 94.53 
Wheat 99.63 100.0 99.47 99.58 99.47 98.97 100.0 

Woods 96.41 93.30 95.56 97.66 99.14 100.0 99.50 
Bldg-grass-tree-drives 66.61 64.91 60.23 79.30 87.43 96.49 87.53 

Stone-steel towers 70.24 88.24 89.41 73.06 100.0 95.29 90.40 

OA 83.94 84.52 79.17 92.70 94.86 97.93 97.41 
AA 75.67 79.24 68.41 84.36 90.73 88.41 94.96 

κ 0.746 0.823 0.761 0.917 0.941 0.975 0.947 

 

Fig. 5. Indian Pines image with OA.  (a)ground truth of Image  ; (b)SMLR(OA=83.94%); (c)SVM(OA=84.52%); (d)ELNR(OA  = 79.17%); (e)LOR-MLL 

  (OA = 92.70%); (f) SVM-CK(OA =94.86%); (g)ELN2-RegMLR(OA =97.93%) (h)ELNR-EPF (OA = 97.41%); with about 10% training samples. 
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Fig. 6.  University of Pavia image with OA. (a)ground truth of Image ; (b)SMLR(OA=81.63%); (c) SVM(OA=79.15%); 

(d)ELNR(OA = 78.90%); (e)LOR-MLL (OA = 85.69%); (f)SVM-CK (OA =87.18%); (g)ELN2-RegMLR(OA =96.03%) 

(h)ELNR-EPF(OA = 89.75%) with about 9% training samples. 

  
Fig. 7. University of Pavia image with OA. (a)ground truth of Image ; (b)SMLR(OA=97.98%); (c) SVM(OA=97.70%); 

(d)ELNR(OA = 97.78%); (e)LOR-MLL (OA = 98.73%); (f)SVM-CK (OA =98.47%); (g)ELN2-RegMLR(OA=98.58%); (h)ELNR-
EPF(OA = 98.63%) with about 9% training samples. 

TABLE 3: CLASSIFICATION ACCURACY (%) FOR THE CENTRE OF PAVIA IMAGE USING TRAINING AND TESTING SAMPLES 

   
 

   

 Fig. 8. Impact of the Edge Preserving filtering parameters (a) the δr parameter (b) the δs parameter 
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C. Analysis of the δr and δs parameters 

For the proposed method the blur degree (δr) and 

the filtering size (δs) are the key parameters. The 

influence of these parameters are depicted in (Fig. 8) 

using the Indian Pines image. We have chosen the  10%  

training  samples. To  test the impact of the δr parameter 

we have fixed the parameter   δs = 3, while for testing  

the  impact  of  the  δs  parameter the blur degree 

parameter δr is fixed to 0.03. From the Fig. 8(a), it is 

worth to notify that the setting the δr parameter is vitally 

very important for the proposed method. To analyzed 

the influence of δr parameter on classification 

accuracies, we set this parameter from 0.005 to 0.04 

with the step size of and other parameters are same as 

used for the proposed method. We can observe in the 

Fig. 8(a) that the classification accuracies (OA, AA    

and κ) increases in the case when the δr 0.03 while for 

δr > 0.03 the tendency of accuracies have decreased 

gradually. For the δr = 0.03, we get the best 

classification result. 0.15% higher than the our previous 

proposed method ELN2-RegMLR.results, but our 

method still gets the highest result, which is0.15% 

higher than the our previous proposed method ELN2-

RegMLR.We also illustrated the influence of the 

blurring parameter visually as shown in Fig. 9. A 

classical data set Indian Pines we have chosen and we 

have set the  δr=1, 2, 3 and 4. From the Fig.  9  we  have  

observed  that  if  this  parameter  is  not chosen 

perfectly then the classification results will be deeply 

blurred.  

 To analyze the influence of the filtering size δs 

parameter, we set filtering size from 0 to 6 with step 

size of 1. It is also worth to recall that the spatial local 

window size is directly related  with  the  filtering       

size  as  we  define  previously,  i.e., Ω  =  (2δs  + 1) × 

(2δs  + 1), thus setting the δs  parameter is significantly 

important to the performance of our proposed BF based 

method. The influence of this parameter is illustrated in 

the Fig. 8(b). It can be easily observed from the Fig. 

8(b) that the classification accuracies have the same 

tendency as we have observed in the analysis of the δr 

parameter. With the δs ≤ 3, the classification accuracies 

are increases gradually while  for  the  filtering  size  

parameter  δs  >  3,  there  is  a dramatically reduction in 

the average accuracy, while the OA and κ  decreases 

gradually. Although the AA for δs = 4 is not reduced so 

much but for the δs = 5 and δs = 6 it is showing the very 

low AA, the reason is that because for a small-scale 

class like “Oats” which contains  only 20 samples can 

be totally mis-classified when the filtering size is very 

large. It can be concluded that δs  should not be set to be 

too small or large. For the best result we set the filtering 

size δs = 3 which leads to the spatial window   size   of 

7 × 7. 

5.                        CONCLUSION 

In  this  paper  we  have  introduced  the  HSI  

classification generic but powerful post-processed Edge 

preserving bilateral filtering  approach  which  includes  

both  spatial  and  spectral Information.  The proposed 

method aims at optimizing the pixel-wise classification 

maps in a local filtering framework. A grouping and 

sparsity promoting multinomial logistic regression with 

regularized Elastic Net is proposed to estimate the initial 

classification map. Apart from yielding better results, 

The proposed scheme provides computational efficiency 

with the local probabilities optimization. In addition, the 

proposed spatio-spectral ELNR-EPF opens a wide field 

for future developments in which filtering methods can 

be easily incorporated. This  paper  has  shown  that  

local  smoothing  is  also  able  to achieve a high 

classification accuracy. For the future work we can 

extend our work by handling the adaptively filtering 

size and blur degree of EPF. 
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