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1.                       INTRODUCTION  

The purpose of this paper is to investigate the 

proper (CCS) in Som-Roy Chaudhary symmetric space-

time. The importance of the curvature symmetry cannot 

be ignored in Einstein’s theory of general relativity and 

gravitation. Under this symmetry the curvature structure 

is also preserved. As well as the set of Einstein’s Field 

Equations (EFEs) is concerned the geometric part of the 

(EFEs) is based on the curvature of the space-time. So 

to find the static and non-static solutions of (EFEs) it is, 

therefore, important to study curvature collineations 

(Stephani, et al., 2003). Here an approach, which is 

introduced by (Hall and da Costa, 1991), is employed to 

study proper (CCS) in the above space-time. In this 

paper M  represents a four dimensional, connected, 

Hausdorff space-time manifold with Lorentz metric g  

of signature (-, +, +, +). Component form of Riemann 

curvature tensor and Ricci tensor which can be 

determined with given metric ,abg  by finding the 

Christoffel symbols are denoted by 
a

bcdR  and 

c

ab acbR R respectively. Here comma and semicolon 

represent the partial and covariant derivatives 

respectively. The symbol L is used for Lie derivative. If 

the curvature tensor does not vanish over any non-

empty open subset of manifold ,M then manifold is 

considered to be non-flat. Furthermore, covariant 

derivative of any vector field X  on the manifold can be 

splitted into symmetric and skew symmetric parts as  

;

1
,

2
a b ab abX h F         (1.1) 

where ab ba X abh h L g   is a symmetric and 

ab baF F   is a skew symmetric tensor on .M  If 

; 0ab ch  then vector field is said to be affine. On the 

other hand if  2 ,X ab abL g g R    then X  is 

called homothetic. The metric preserving 

transformation is called isometry or Killing vector field 

i.e 0X abL g  . The vector field which is not 

homothetic is said to be proper affine. if it is not 

homothetic vector field . On the other hand if it is not 

Killing vector field then X  is said to be proper 

homothetic.  
 

If the Riemann curvature tensor is conserved along 

the vector field  X  on M then X  is called  (CCS) 

(Katzin, et al.,1969, Hall, 2004) i.e 
 

 0bcd
a

X RL .  (1.2) 

The expansion  of above equation (1.2) is  

 

; ;

; ;

;

0.

e e a e

b c

a e e a

bce d bcd e

a a

bcd e ecd bedR X R X R X

R X R X

 

  
 

 

For a vector field X  to be proper (CC), it should 

not be affine (Hall, 2004) on .M  The compact 

representation of Eq.(1.2) into set of twenty two 

coupled nonlinear partial differential equations is given 

by (Bokhari, et al., 2003). 
 

2. CLASSIFICATION OF THE RIEMANN 

TENSORS  

This section is devoted to classify the Riemann tensor 

by  its rank and bivector decomposition. The rank of 

the 66 symmetric Riemann matrix derived in an 

eligent way in (Hall and da Costa, 1991). The rank of 
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the Riemann tensor at the point p  on the maniofld can 

also be determined by the rank of the linear map 

: .ab ab cd

cdF R F  Define the subspace 
pS  of the 

tangent space 
pT M  which consists of those members u  

of 
pT M  which satisfy the Ricci identity  

0.d
abcdR u             (2.1) 

Then following algebraic conditions by the 

Riemann tensor at point p  in terms of bivector 

decomposition are satisfied (Hall, 2004).  

Class B  

If the range of   is spanned by the dual pair of non-null 

simple bivectors and dim 0pS  . Then rank of 

Riemann tensor is 2 and  at p  it takes the form 

 

* *

,abcd ab cd ab cdR F F F F         (2.2) 

where F  and its dual 
*

F  are the (unique up to scaling) 

simple non-null spacelike and timelike bivectors in the 

range of ,  respectively and , .R     

Class C  

This class can  have rank two or three. Eq.(2.1) have a 

unique (up to scaling) solution say, u and also 

dim 1pS  . The form of Riemann tensor at p  will be 

 

3

,

, 1

i j

abcd i j ab cd
i j

R F F


                (2.3) 

here 
i j R   for all ,i j  and 0

bi

abF k   for each of the 

bivectors 
i

F  which span the range of .   

Class D  

In this class the rank of the curvature matrix is one. 

There exist exactly two independent solutions uk ,  of  

Eq.(2.1) so that dim 2pS  . The Riemann tensor at p  

takes the form 

  ,abcd ab cdR F F     (2.4) 

where R   and F  is simple bivector with blade 

orthogonal to k  and .u For detail (Hall, 2004).  

Class O 

Here rank of the Riemann curvature matrix is zero, then 

this  class is called class O. In this class 0abcdR   and  

clearly dim 4pS  .  

Class A 

The Riemann tensor is said to be of class A at p  if it 

is not of class B, C, D or O. Here always dim 0pS  .  

More detail of the (CCS) for all the above classes A, B, 

D, C and O can be seen in (Hall and da Costa, 1991). 

 

3.                  RESULTS AND DISCUSSION  

Consider the spatially homogeneous rotating Som-

Roy Chaudhary symmetric spacetime with line element 
(Krori, et al., 1988).          

2 2 2 2 2 2

2 2

(1 )

2 .

ds dt dr r r d

dz r dtd





    

 

    (3.1)                                                                                                 

The above spacetime admits minimal three linearly 

independent Killing vector fields which are  

, , .
t z

  

  
                          (3.2) 

It can be easily shown that there exist four non-zero 

components of the Riemann tensor given by  

0101 1
1R    ,

2

0202 0112 2
R R r     ,  

4 2

1212 3
3 .R r r     The 66  symmetric matrix 

form of   the curvature tensor with components  abcdR  at 

p  is (Shabbir and Ramzan, 2008).  

1 2

2

2 3

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0
.

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

abcdR

 



 


 
 
 
 
 
 
 
 
 

             (3.3)  

For calculating CCS, we will consider Riemann 

tensor components as
a

bcdR . The spacetime metric may 

admit proper CCS when the rank of the 66  Riemann 

matrix is less than or equal to three (Hall and da costa, 

1991).The method of finding the rank followed which is 

given in reference (Shabbir and Ramzan, 2008).Thus 

following two are the only surviving possibilities when 

the rank of Riemann matrix is less than or equal to 

three:  
 

I.  Rank 3: 1 2 30, 0, 0,      

II. Rank 0:   1 2 3 0.          
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4.   BRIEF DERIVATION OF CURVATURE  

                        COLLINEATIONS
 

Case I  

In this case we have 1 2 30, 0, 0,       

and the rank of the 66  Riemann matrix is 3 and there 

exists unique no where zero spacelike vector field 

,a az z  which is covariantly constant satisfying 

; 0a bz  . Now the Ricci identity gives 

0.
a

bcd aR z  According to  the above constraints ,the 

line element (3.1) does not change i.e 

2 2 2 2 2 2

2 2

(1 )

2 .

ds dt dr r r d

dz r dtd





    

 

 (4.1) 

The space-time (4.1) is 1+3 decomposable and 

clearly belongs to the curvature class C. The CCS in this 

case take the form (Hall and da. Costa,1991) 

(z) ,X j X
z


 


where (z)j is an arbitrary function 

of z  and X   is the homothetic vector field in the 

induced geometry on each of the three dimensional sub 

manifolds of constant z . For the completion of this 

case, it is required to find the homothetic vector fields in 

the induced geometry. The non-zero   components of the 

induced metric are  

00
1  g   ,

11
1  g  ,

2 2

22
( ) r 1 ,g r 

2

02
2g r . 

For X  to be homothetic vector field must satisfy 

(Shabbir and Ramzan,2007) 

 2
ab ab

X

g gL 


 , where   .R            (4.2) 

Expansion of the equation (4.2) results in the six non-

linear coupled partial differential equations: 
0 2 2

,0 0 .,X r X  
            (4.3) 

1 0 2 2

,0 ,1 ,1 0.X X r X  
           (4.4) 

1 2 0 2 2 2 0 2 2 2

0 0 2 22 rX X (1 ) X X X 2, , , ,r r r r r     
 (4.5)

 

1

1

,
 .X                                          (4.6) 

2 0 2 2 2 1

,1 ,1 ,2X 1 X X( ) 0.r r r   
          (4.7) 

2 1 2 0 2 2 2 2 2

,2 ,21 2 X X 1 X 1( ) ( ) ( ).r r rr r r r    
    

(4.8) 

From equation (4.6), we have 
1 1

( , )X E tr  
.            (4.9)

 

Now solving equations (4.3) and (4.4) simultaneously 

and then using (4.9), we get
 

2 1 21
( , ) (r, )

2
tX E t E

r
  

 

and 

0 1 3
( , ) (r, )

2
t

r
X E t Et      

Therefore,
  

0 1 2 2 4

1 1

2 1 2

( , ) ( , ) dr ( ),
2

( , ),

1
( , ) (r, ).

2

r
X t E t r E r Ert

X r E t

X E t Et
r

   

 

 

   

 

 









(4.10) 

Now using (4.10) in the remaining equations and after 

some lengthy calculation, we have 

 

3

0 7 6 4

6

2 6 8

1

( ) c r ( ) ( ),
13

1
( )

1

1
cosech 2 r coth 2 ( ) ( ).

2

r
X t r E E

X r tc E

X c rE E

  

 

 

    

  

  









(4.11) 

Now substituting (4.11) in equation (4.5) and after 

doing some calculation, one can have 

0

3 4 5

3 4

4 3 2

( sin c cos ) ,

1
cos sin

12
( cos sin ) .

X t r c c

X r c c

X c c c
r

  

  

  

   

  

    









       (4.12) 

Use of the above information given in (4.12) in 

equation (4.8) and straight forward calculation gives 

 0.  It means that homothetic vector fields in the 

induced geometry of three dimensions are the Killing 

vector fields which are 

0

3 4 5

1

3 4

2

4 3 2

( sin c cos ) ,

cos sin

1
( cos sin ) .

X r c c

X c c

X c c c
r

 

 

 

  

 

  









     (4.13)

 

Hence curvature collineations of the above space-time 

become 
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3

0

3 4 5

3 4

2

4 3 2

( sin c cos ) ,

1
cos sin ,

1
( cos sin ) ,

(z) .

X r c c

X c c

X c c c
r

X j
z

 

 

 

  

 

  
















 (4.14)

  

 

 The proper CCS excluding Killing vector fields are 

 

(0,0,0, (z)),j   (4.15) 

 

where (z)j is an arbitrary function. from the litraure it 

can be seen that proper curvature collineations in this 

case form an infinite dimensional vector space. 
 

Case II 

In this case all the components of the Riemann 

tensor are zero and the spacetime becomes Minkowski. 

The rank of 66 Riemann matrix becomes zero. This is 

the trivail case and belongs to the class O. The Ricci 

identity given in (2.1) is trivially satisfied by the vector 

fields , , , .t r z  So every vector field is CC. The CCS in 

this case form an infinite dimensional vector space 

(Shabbir, et al., 2003) . 
 

5,                            CONCLUSION 

In this paper a study of Som-Roy Chaudhary 

symmetric space-time which is basically a spatially 

homogeneous rotating space-time, according to their 

proper curvature collineations is presented. An approach 

is adopted to study the above space-time by using the 

rank of the 66  Riemann matrix and also using the 

well- known theorem which gives the conditions where 

proper curvature collineations exist. The above 

investigation reveals the following results:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i) The case when the rank of the 66  Riemann 

matrix is three and there exists a unique nowhere zero 

independent spacelike vector field which is a solution of 

equation (2.1) and is covariantly constant. This is the 

space-time  (3.1) and it admits proper CCS which form 

an infinite dimensional vector space. 
 

(ii) In case II the space-time becomes Minkowski and 

every vector field is trivially curvature collineation. 
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