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1.                   INTRODUVTION 

The necessary and main branch of fluid mechanics 

is troubled with fluids that are frequently referred as 

complex, in recognition of the truth that these materials 

exhibits a great deal intricate behaviour. There are 

different analytical techniques to find the solution of 

PDEs in fluid mechanics. However, every one technique 

has their restrictions in applications. The Lie group 

theory is necessary approach in this observation. To find 

analytical solutions of behavior PDEs have been used 

pertaining to investigate in this field. Due to difficulty 

of fluids, there are many models relating the properties, 

but not all, of non-Newtonian fluids. Thus here the 

research and study of these fluids is hard, it is vital from 

a practical point of observation and understanding the 

non-Newtonian fluids itself. The fluids Flows related 

with some vital research are organized by approach of 

Abel-Malek et al (2002), Ariel et al. (2006), Bird et al. 

(1981, 1983, 1987), Chen, et al. (2006), Fetecau and 

Fetecau (2005. 2006), Rajagopal, (1984, 1985),  

Oldroyd (1958), Owens and Phillips (2002), van Os and 

Phillips (2004), Taha (2009, 2010) and Wafo-Soh 

(2005), and others. In a viscoelastic flow, the pressure 

tensor relative to the deformation gradient history; 

researched by Moran, and Gaggioli. (1968). Phenomena 

related with Viscoelastic flows have been studied and 

investigated by Taha (2009, 2010) and Larson.(1999). 
 

There are different analytical techniques to solve 

Partial differential equations occurring in fluid 

mechanics.. Recently a developed analysis method is 

symmetry method or Lie group method, this method has 

been successfully applied by various researchers. In this 

paper, our aim is to solve PDE’s system by Lie-Group 

theory using lie-point symmetries method and obtained 

their exact solutions. Lie-Group theory of ODE’s and 

PDE’s as a methodical branch constructed from hard 

work of the excellent mathematician Lie (1842 to 1899) 

and developed by Bluman and Kumei (1989), Olver,  

(1986), Ibragimov, (1999) and others researchers. The 

dynamics of mainly physical methods is explained by 

differential equations and for acquiring exact solutions 

of such equations, Lie group theory supplies powerful 

tools.  

 

Section 2 concerns with the problem formulation. 

Section 3 associated with invariant results of 

viscoelastic fluid flow without porous space in channel, 

section 3.1 connected with Solution of Study State, 

segment 3.2 contains Lie Group method of PDEs (13-i) 

and (13-iii). Sections 3.3 is concerned with Lie-point 

generators, segment 3.4 connected with  results 

concerned with invariant solution of  PDE’s (13-i) and 

(13-iii)  related to the operator X1 – α X3, section 3.5 

connected with results of the equation (13-ii), section 

3.6 concerned with  result corresponding to the 

symmetry X1. Segment 4 includes with conclusions.  
 

2.      FORMULATIONS OF PROBLEM 

Suppose viscoelastic fluid flow which is the 

incompressible laminar in a porous channel. The system 

of equations relative to flow comprises of the 

conservation of mass and momentum transport 

combined with the constitutive model of Oldroyd–B. 

The viscoelastic fluid flows through porous medium are 

supposed to exist homogeneous and isotropic. Using 

model Darcy-Brinkman, the equation of momentum can 

be modelled and continuity equation and momentum 

equation in the absence of body force may be written 

under the following equations: 
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The constitutive equation explains the stresses in the viscoelastic flow can be expressed as: 
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Where velocity vector field is ,u extra stress tensor is ,  rate of strain tensor is indicated by ,d  is signified 

the operator of spatial differential, p is pressure (per unit density) of  the isotropic fluid and t is related with the time. 

The 1 is indicated the viscoelastic solute and 2 is signified the Newtonian solvent viscosities, ρ is the fluid 

density, relaxation time of the viscoelastic fluid is denoted by λ and intrinsic permeability of the porous media is 

denoted by K, the coefficient of Forchheimer is c.  = 1 + 2 is the total viscosity flow and is constant. In 

equation (2), the co–efficient tensor of acceleration is supposed to be 1/ and porosity of porous medium is  .The 

derived equations preside over the unsteady viscoelastic unidirectional fluid flow during porous media accepting 

constitutive model of Oldroyd–B. The velocity field is  0),,(,0 ytvu  for unidirectional fluid flow, hence the 

report of velocity mechanically provides delight to the incompressibility condition. The derivation of such equations 

supposing pressure gradient as a constant and can be stated as: under: 
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Where ),( ytv is the component of velocity in direction of axial and ),(11 yt , ),(12 yt  and ),(22 yt  are the 

components of stress tensor in direction of axial, direction of shear and direction of transversal. As transversal 

direction is denoted by y, where .12 second normal stress which is vanish i-e .012   

By introducing the non dimensional variables, the dimensionless equations system is expressed in the following 

form ,
*
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Along with material parameters ,*
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L
  

*

11   , *

22    

where v* is dimensionless velocity, * is dimensionless stress and y* is non-dimensional transversal coordinates 

and t* is dimensionless time and the non-dimensional modified permeability is K*.As, characteristic length is L as 

half width of the channel and the characteristic velocity is Vc supposed as reference axial velocity  
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then after substituting the dimensionless variables, the equations which are non-dimensional form 

turn into  

)(

)()(
1

1Re

121
12

1112
1112

2

2

2 2

iii
y

v

t
We

ii
y

v
We

t
Weiv

Dayy

v

t

v












































  (5)  

Where We,Re and Da re the non-dimension Reynolds number, non-dimension Weissenberg number and 

non-dimension Darcy’s number. As ,Re


 VcL
    L

VcWe 
  and 2

*

L
KDa


  are respectively.  

3. VISCOELASTIC FLUID FLOW IN CHANNELS WITHOUT POROUS SPACE  

As Darcy’s number Da approaches to infinity or the last term vanishes, then the differential equations system 

(5) is called flow of viscoelastic fluid in channels without porous medium and is written as: 
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To complete the well posed problem requirement, it is necessary to set initial and boundary conditions. So 

initial conditions are take as:  

v (0, y) = 0, ,.0),0(11 y  ,.0),0(12 y  when t > 0     (7) 

and boundary conditions are given as: 

v(t, –1) = 0  and v(t, 1) = 0,      when 11  y      (8) 

3.1 Exact solutions of equations system (6 to 8) of viscoelastic flow through channels without porous 

media 

i. Solution for non-homogeneous equations system 

For result of the study state, the equations of non–homogeneous system are able to solve by resources of a transform 

of dependent variables, so for this suppose                                                                                                                                                                                                                  

),(),(),( 11 yrtuytv     )(),(),( 2211 yyturt      and   )(),(),( 3312 yyturt    (9) 

Putting these values in Equation (6), and separating the like terms of two independent variables which gives the two 

systems of equations which are given as 
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Subject to boundary conditions: 

,0)1(1    0)1(1   and 121          (11) 

After solving and integrate (10) and applying the boundary conditions (11), result of above system (6) admit the 

steady–state solutions as below: 
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and second system which is PDE’s is given as  
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Subject to initial and boundary conditions is given as: 

,0)1,(1 tu          (14- i)    and       ,.0)1,(1 tu            (14-ii)          when t > 0  
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3.2 Lie Group Method for Solving the PDEs system 

Group method or symmetry method is powerful method in finding exact solutions of differential equations. As 

Lie group of the equation is identified, it can be applied in the search of transformations. Symmetry will decrease the 

equation in easy form. As derivatives of equations 13-i and 13-iii are linked each other. So Lie group method for 

obtaining the Lie point symmetries of these equations is introduced. The generator 
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In which  \ 
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According to Lie’s theory, in the operator X, the unknown functions ,  ,  
1  and 

2 are taken independent of the 

derivatives of the primitive variables
1u   and

3u . Hence 
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r ) are described in the relations (18 and 19). As unknown 

functions , ,  1 and 2  are independent for the differentials of v1 and v3.Therefore unscrambling with 

respect. to powers of the differentials of 1v and 3v guides to the two basic over concluded PDE’s systems and after 

solving these two over determined systems of linear PDE’s, solution of the two over resolved systems gives the 

values of , ,  1 and 
2  functions as 
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where m are non-negative numbers.     (27) 

 

3.4 Invariant solutions of the PDE’s (13-i) & (13-iii) corresponding to the generator  

X = X1 - α X3 
From given generator (15), the invariant solutions corresponding to X, are obtained by solving the characteristic 
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Replacement the above relations (29) into governing equations (13-i) and (13-iii) represents ordinary differentials 

equations of functions 1(y) and 3 (y). 
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n  into (33) and applying the super position principle, then it takes the form 

Solution of equation (31) is given as: 
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Putting the values of )(1 y  and )(3 y  in to equation (29), then it takes the form 
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As the equation (31) is the combination of two equations (30-i & 30-ii), which have same boundary conditions, so 

for functions of time, we consider 
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Substituting the above relations (37) into governing equations (13-i) and (13-iii), which represent the following 

ordinary differentials equations of function of time  
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where ),(1 ytu and ),(3 ytu of equation (37) turns over of the form as 
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In order to satisfy the initial condition (14-iii & 14-v), we have, 
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3.5 Solution of the partial differentials equations (13-ii). 
Now, take equation (13-ii), we have 
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Substituting the values of y, 
1nA and applying the initial condition (14-iv), i-e ,2),0( 2

12 yWeyu  then it gives, the 

final solution of ),(2 ytu  is obtained as 
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Final solution of the problem (6) subject to initial and boundary conditions (7 & 8) after substituting the 

solutions (12, 43 & 45) into (9) is find as: 
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4                        CONCLUSIONS 

In this paper, we have solved the problem of system 

of three partial differential equations related with 

viscoelastic flow without porous media within channels 

attached with constitutive model of Oldroyd–B. As 

major purpose of our investigation is to solve the 

problem of PDEs system by applying Lie group 

technique successfully and to obtain the invariant 

solution of the problem occurring in the research of 

viscoelastic flow in channels without porous medium.. 

In this paper, the PDE’s system was changed into 

ODE’s system and then these equations are able to be 

solved and get invariant solution. By applying 

symmetry conditions, Lie-point symmetries have been 

attained and accepted to reach at the solutions. This 

method can provide some realistic insights attention in 

comprise of outcomes and may support for formative 

demanding results in some cases.. We trust that the 

solutions may be helpful for other personnel in this 

field. Our recommendations for the future work are 

developing and setting into practice other Algorithms. 
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