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1.                          INTRODUCTION 

The importance of incompressible flow of Non–

Newtonian fluid past abrupt expansion pipe lies in the 

numerous engineering and science applications such as, 

polymer processing in industrial engineering, injection 

moulding in Mechanical Engineering, cardiovascular 

biomechanics in science and others are de–watering 

devices, pumping of slurries and foodstuffs, extrusion, 

thermoforming etc. The flow through sudden expansion 

occurs often in many applications due to the complex 

geometric but not examined so simple flow behaviour. 

For Newtonian fluids, diverging flows analytically, 

experimentally and numerically are greatly investigated 

(Back and Roschke, (1972), Habib and Whitelaw (1982) 

and Tenstrom, et al. (2006).  

  

Since (1950), the incompressible flow of inelastic 

non–Newtonian fluids in the presence of porous 

material has obtained a large amount of attention, due to 

the importance in industrial applications such as 

polymer solutions, micro emulsions and foam in 

petroleum industries and the heavy oil flow of polymer 

solutions in the presence of porous material mostly 

performs alike a power–law non–Newtonian fluid. Also 

drilling and hydraulic fracturing fluids expended in the 

oil industry that are known as Non- Newtonian liquids. 

Thestudy of Non–Newtonian fluid dynamics is a 

moderately novel division of applied sciences.  The 

expanding attraction of non- Newtonian fluids has been 

renowned in those meadows with material whose flow 

conduct of stress and rate of shear is not obeys the 

Newton's law of viscosity. Basically the fluids divided 

into two types one is Newtonian and second is Non-

Newtonian. Newtonian fluids just obeys the 

Newtonian‘s law of constant viscosity or satisfied the 

power law with unit index rate and Non-Newtonian 

fluids obeys the variable viscosity or satisfied the power 

law with index rate is lower and higher than unity. 

 

The examples of the fluids which obeys the Non-

Newtonian characteristics especially shear-thinning 

fluids which are given as molten chocolate, blood, 

wastewater sludge’s, xanthan gum solutions, polymer 

solutions and muds  (Pinho, et al. 2003), Zinani and 

Frey (2006), Solangi (2012)and Ray, et al. (2012). The 

literature is much available such as (Halmos and Boger 

(1975) examined experimentally limited mean laminar 

flow features in a 1:2 sudden expansion geometry and 

their quantities revealed that the vortex size and length 

was increased due to the shear-thinning intensity 

 

Similarly (Pinho, et al. (2003) examined the laminar 

flow structure of Non–Newtonian fluids through 1:2.6 

ratio expansion geometry. The finite volume method 

was exercised through the commercial Computational 

Fluid Dynamics code and transient form of pressure–

velocity coupling was allocated with Semi Implicit 

Pressure Linked Equations for Correction (SIMPLEC) 

algorithm.  The power law employed for the inelastic 

and shear–thinning fluids and presented the 

recirculation flow rate in terms of Reynolds Number 

and local loss coefficient in terms of Reynolds Number 

and shear–thinning intensity. Pinho concluded that the 

vortex intensity was decreased at high Reynolds number 
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with shear–thinning fluids and vortex length and size 

was increased at low Reynolds Number. (Bhargava,        

et al. 2007) studied the pulsatile flow of Non–

Newtonian fluids through Porous Medium Conduit and 

rheological model with a Darcy–Forchhemeir through 

porous channel was used and solve by finite element 

method. The velocity pulsatile profile was connived by 

described the effects of fluid inertia and other 

Rheological effects such as Darcy and Forchhemeir 

numbers. The velocity depressed continuously in the 

porous channel and increased velocities due to increase 

permeability and decreased velocities due to changing 

of Forchhemeir number and concluded that due to 

depress in Non–Newtonian behaviour the velocities 

continuously increased. The numerical results were 

compared with the (Bhatnagar, 1979). 
 

In this chapter discussed the laminar flow of shear-

thinning and shear thickening fluids through 4: 1 

expansion geometry with a viscosity by applying the 

power law model filled with and without porous 

material and to investigate the effects of fluid inertia in 

recirculation flow rate, length and size, vortex 

enhancement and excess pressure drop. Here describe 

the fluid motions through conservation laws as mass and 

brinkman momentum to predicate numerically for   

Non–Newtonian especially shear–thinning flows by 

using the Semi implicit finite element scheme with 

Crank–Nicolson choice (Ɵ = 0.5) with a viscosity 

obeying the power law model. The basic governing 

equations consisting the continuity and momentum 

Darcy Brinkman equation for two–Dimensional to 

model through ratio 4: 1 expansion pipe are presented in 

cylindrical polar coordinates with well posed boundary 

condition are fixed at solid walls and parabolic velocity 

profile are fixed and non–Dimensional form of  

governing equations are discussed. 

 

2.      GOVERNING SYSTEM OF EQUATIONS  

The basic governing equations such as continuity 

and momentum equation dominated through nonlinear 

partial differential equations in cylindrical coordinate’s 

form that is described as:  
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Where Re and Da show the Reynolds Number and 

Darcy Number that are given above.
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3.                     NUMERICAL SCHEME 

The finite element method is adopted and using the 

Taylor–Galerkin scheme and this scheme is divided into 

three steps to calculate the velocity and pressure and 

implemented the two–step Lax– Wendroff process to 

achieve the excellent 2nd order accuracy in time. Various 

researchers are applied this scheme in the field of fluid 

dynamics to examine the fluid flow phenomena through 

various mathematical geometries in the presence and 

absence of materials such as porous and fibre materials. 

(Townsend and Webster. (1987), Baloch, et al. (1994). 

The detail numerical process is already given in 

personnel published research papers Shaikh, et al. 

(2012, 2013) 

 

4.              PROBLEM DEFINITION AND 

MATHEMATICAL FORMULATION 

The power law model in two–dimensional for shear 

thinning and shear thickening fluids have been 

examined to confine fluid flow behaviour, therefore, the 

influence of non-Newtonian viscosity that is a function 

of shear-dependent through expansion pipe are 

investigated given in (Fig.1). The various Reynolds 

numbers with increasing inertia are tested. The problem 

is related to industrial engineering such as moulding 

material (Satish, et al. 2013). Two different pipes with 

large width are joined to each other to visualize the 

expansion pipe.  

 

The pipe length of upstream and downstream is 

given in figure and total number of elements is 2987, 

total number of nodes is 6220 and degree of freedom is 

14057 respectively.  

 

The length and height of the channel (upstream and 

downstream) is shown in the figure–1. Also no–slip 

boundary conditions on walls, well posed parabolic 

velocity profile on inlet and outlet are fixed, also axis of 

symmetry with mixed conditions Dirchlet and Neumann 

conditions with zero velocity shown in (Fig. 1). The 

conditions are verified for high convergence. The 

approximations initiate from unit Reynolds number and 

various high Reynolds number are examined for 

continuum methodology.  All numerical results are 

verified through analytical results and compared with 

the numerical results and with experimental results 

(Baloch, et al. (1994), Pedrizzetti (1996), Boger and 

Walters (1993) and Zinani et al. (2006). The triangular 

elements are selected for the geometry. 
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In industries, engineering and sciences, the pipes are 

imperative medium to move the various fluids (liquid 

and gases) from first location to second under the 

various forces. The good organization is subject to 

decrease the losses in pipe fluid flows are substantial. 

The various types of pipes consisting T–junctions, 

contraction, bends, expansions and various other 

components are used in applied sciences. These 

problems related to the pipes especially expansions are 

complicated to solve analytically or experimentally. 

Therefore, preferred a numerical solution to examine the 

fluid behave in the expansion pipes.  
 

The need of such algorithm development to process 

the low Reynolds number and as well as high Reynolds  

number for the fluid flow regimes may be verified 

and justified. Therefore, preferred here a finite element 

scheme due to the robustness and accuracy and it is easy 

to handle due to the various stages (Boughamoura, et al. 

(2000) and Satish, et al. (2013). Initially this scheme 

proposed by Donea (1984) for the problems of fluid 

flows, after that (Van. 1986). Contributes and prolonged 

the accuracy and stability of finite element scheme also 

adds the pressure correction term for the problems of 

especially constant viscosity incompressible flow 

materials in 2nd order. Consequently, several scholars 

and researcher such as (Townsend and Webster (1987), 

Baloch and Webster (2003), Baloch et al. (2008), 

Solangi et al., 2012) and Memon (2013) contributed and 

exonerates the strength of a 2nd order Semi implicit 

pressure–correction finite element scheme to determine 

the solution of Navier–stokes equations. 

 

 (Fig.1) and table shows the detail initial and 

boundary conditions fully developed and well posed 

boundary conditions on stationary walls, Dirchlet and 

Neumann boundary conditions on axis of symmetry and 

parabolic velocity profile is imposed at inlet and outlet 

in the two dimensional expansion pipe. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig–1: Schematic diagram 1:4 planner expansion pipe with boundary conditions. 

 

 MOMENTUM EQUATION 

Initial Conditions: vz(r, 0) = 0 
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An interesting and alternative approach commonly 

used for flow features through expansion pipes is to 

report a Couette correction to examine the total pressure 

across the whole domain. Here empirical rapport has 

been established which predicting the extra pressure 

drop through analytically acquired related pressure drop 

in both small and large pipe in the 1:4 ratio. The 

following equations are known as Couette–Correction 
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(CC) and are applicable for excess pressure drop that 

shares with the fluid flow appearance in the geometry. 
 

 uRe p - L

2

u d d

w

P L P
C

  





 

 

Where Re and δP indicates a Reynolds number and 

approximated total pressure in the domain. Downstream 

and upstream lengths of the pipe shows the Ld and Lu 

and Pd and  Pu shows the downstream and upstream 

pressure gradient correspondingly calculated 

analytically. w shows the wall shear stress
w

w
y





u
  

in the fully developed downstream flow. Here two 

meshes Curse (M1) and other is refined Mesh (M2) are 

occupied for simulations and visualised in (Fig.2). 
 

 
 

Fig–2: Refined Finite Element Mesh (M) for two dimensional            

1:4 geometry 

 

5.   NUMERICAL RESULTS AND DISCUSSION 

The numerical results of streamlines patterns of 

expansion pipe are presented the flow structure at silent 

corner of the pipe and examined the vortex intensity, 

effect of inertia, effect of power law index and excess 

pressure drop. The Non-Newtonian fluids shear thinning 

or pseudo plastic fluids analysed via power law model. 

The results are compared with the numerical results 

Boughamoura, et al. (2000), Pinho, et al. (2003), Satish, 

et al. (2013). 
 

The effect of fluid inertia at fixed                         

power law index “n “ 

 

5.1 Streamlines patterns of expansion pipe of Non–

Newtonian Fluids  (Shear thinning fluids) 

In these numerical results, the stream lines patterns 

of velocity fields are achieved at various Reynolds 

number and employing power law models of the 

different flow regimes available in the literature. 

Comprehensive study of flow structures are presented to 

a wide range of Reynolds number and power law 

indices, also generate the critical Reynolds Number 

(Rec). (Fig-3 (a–c)) showed the flow of shear thinning 

fluids structure of streamlines patterns power law index 

( = 0.95) at various Reynolds number (1 ≤ Re ≤ 50) and 

recirculation flow rate is increased due to decrease 

power law index (= 0.95) relatives to the Newtonian 

fluids at unit Reynolds Number. Consequently 

recirculation flow rate is enhanced due to increase 

Reynolds number at fixed power law index (= 0.95) and 

at Reynolds number (= 50) the vortex cell size and 

length is fully enhanced and filled the region of the 1 : 4 

expansion pipe shown in figure–4. The flow phenomena 

of shear thinning fluids are displayed in figure.5 at 

power law index (n = 0.90) also, the same phenomena 

of flow structure visualized as compared with power 

law index (n = 0.95). At unit Reynolds number the 

vortex size and length is small at silent corner but size 

and length is higher than the unit Reynolds Number at 

power law index (n= 0.95). Consequently the vortex 

size and length is enhanced due to increase Reynolds 

number up to 50. Recirculation flow rate is linearly 

increased with increasing Re’s. Also developed and 

fitted the computational data of vortex length and size 

(X) in terms of various power law indices (n = 01, 0.95, 

0.90 and 0.80) is expressed through empirical 

relationship as: 
 

X = 0.0698Re + 1.5516     01 ≤ Re ≤ 50, n = 01 

X = 0.2283Re + 1.1551     01 ≤ Re ≤ 50, n = 0.95 

X = 0.1064Re + 1.7431     01 ≤ Re ≤ 50, n = 0.90 

X = 0.1046Re + 1.3889     01 ≤ Re ≤ 50, n = 0.80 

 

5.2  Effect of power law index: 

Fig.4 and Fig.5 plotted that the recirculation flow 

rate in terms of power law indices at various Reynolds 

number and demonstrated that the recirculation flow 

rate observed the highest length initiated from 

5.35874e-04 at power law index. (Fig.4 c, d) described 

the recirculation flow rate in terms of all index rate and 

concluded that recirculation flow rate is a function of 

power law indices is reduced due to decrease the index 

rate (n). 
 

 
(a)  
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(b)  

 

 
(c)  

Fig.3: (a – c): Stream lines for 1: 4 expansion flow through 

 pipe. 

 

 
Fig.4: Two dimensional expansion flows, recirculation flow rate 

(Vortex intensity)(Qv) is a function of fluid inertia (Re) 

 
 

 
 
 

Fig–5: Graph of the vortex cell size (X) is a function of Reynolds 

Number (Re) 

6.                            CONCLUSION 

The effect of power law indices is presented to 

analyse the flow phenomena through vortex intensity, 

vortex length and size. Due to decrease power law index 

rate( n = 0.95), the vortex intensity and vortex length 

and size is increases at unit inertia other than Newtonian 

fluids and due to increase the Reynolds number, the 

vortex intensity is enhanced other the Newtonian 

fluid(n=01) because the power law index rate(n = 0.95) 

is near to the Newtonian fluid. But when decrease 

power law index ( n= 0.90 and 0.80) the vortex intensity 

and vortex length and size is decreased due to increase 

inertia and also on power law index(0.80) the vortex 

length and size enhanced slowly and when inertia will 

become dominant after Reynolds number 20, the vortex 

developments in silent corner move towards the lip 

vortex in upstream wall and up to Reynolds number 50, 

the vortex enhancement remains constant in silent 

corner of the downstream wall of expansion pipe see 

(Fig.4) and (Fig.5). The good numerical results are 

achieved and compared with other analytical and 

numerical results. 
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