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1.                              INTRODUCTION 

By controlled data we mean a data set whose 

generation has been controlled in the desired way. That 

is the generated data will have desired features built-in 

to it. In other words the generated dataset is cloned.  

The terms “Controlled Data” and “Cloned Data” are 

used interchangeably here but those are different from 

“Simulated Data” Morgan (1984) and “Random Data”. 

The random data generation routines generate data that 

follow a particular distribution with specific construct of 

the underlying parameters whereas Simulated Data can 

be considered as the data used to imitate the happenings 

of a real-world system.  

 

The controlled data is actually a blend of simulation 

and random data. The characteristics of both of the 

approaches are blended to exercise the control on the 

generated data. Thus controlled data provides basis for 

putting several of the procedures used for checking 

usual assumptions of various statistical techniques on 

test with higher level of clarity and objectivity.  

 

In this piece of research we relied upon controlled 

data. To stay within the scope we restricted ourselves to 

three assumptions of linear regression models       

namely multicollinearity, heteroscedasticity, and 

autocorrelation. For the purpose we generated dataset by 

exercising our control on the level and extent of the 

departure of the data from each of the above-mentioned 

assumptions. The test procedures are then applied on the 

data sets to check if the test procedures are capable to 

detect the presence and to report the intensity of the 

departure.  

 

A blend of computational approaches had to be 

employed to get the needful done. We mainly relied 

upon Minitab 16 and MS Excel 2007 for the purpose. 

Both of them facilitated us through their macros to 

clone the dataset ultimately generated for further 

processing. 

 

It has always been told in the literature, lectures, 

notes, and discussions that departure from the basic 

assumptions of least square may put sever adverse 

effects on the quality of the regression estimates 

Gujarati (1978). Although this consequence is well 

known but the intensity of the affect has not been 

regulated. That is the relation between level of departure 

and the intensity of the consequence is unaddressed. 

 

It was considered good to give it a go. For the 

purpose we started with three assumptions             

namely multicollinearity, heteroscedasticity, and 

autocorrelation. Essentially a similar approach was 

developed which was used for each of the assumptions. 

 

2.                  MATERIAL AND METHODS 

The generic approach is outlined as follows: 

1. Draw sufficient number of sufficiently large 

samples with defined (and known) level of 

departure of the underlying assumption. For 

example a given level of multicollinearity. 
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2. Estimation in the presence of the built-in departure 

from the underlying assumption at the defined (and 

known) level of intensity. Has to be repeated for 

every single sample. 

3. Application of the suitable test procedure to 

confirm its ability of detection of the problem and 

recording the respective p-value. 

4. Rectification of the problem by using appropriate 

modification to the data or estimation procedure to 

define “control” group for comparison. 

5. Establishment of relationship between these results. 

 

2.1 Adapted Method for Multicollinearity 

125 correlation matrices of order 4 × 4, mean 

vectors of order 4 × 1, and variance vectors of order 

4 × 1 were generated and stored for further processing. 

The upper diagonal elements of the correlation matrices 

were generated using uniform random numbers over the 

interval 0 and 100 duly divided by 1000. The diagonal 

elements were obviously set at 1 and lower diagonal 

elements were copied appropriately to make it 

symmetric. The constant mean vector and constant 

variance vector were generated systematically using the 

pattern 0.01(0.04)4.97 and 0.101(0.004) 0.597 

respectively 

 

Using each of the 125 sets of correlation matrix, 

mean vector and variance vector a sample was drawn 

from multivariate normal distribution which has the 

correlation structure given in correlation matrix. That is 

multicollinear data with known correlation structure. 

 

125 random samples each of size 3000 were drawn 

from standard normal distribution which were used as 

error term in fitting the regression model on 

multicollinear data. 

 

125 Y-variables were generated using each of the 

125 sets of collinear X-variables using same assumed 

values of 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4 and one of the 125 error terms 

in turn. 

 

A regression model 𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +
𝛽3𝑋3 + 𝛽4𝑋4 + 휀 was fit for each of the 125 samples 

and corresponding Standard Errors of each of 

�̂�1, �̂�2, �̂�3, �̂�4 were stored. 

 

In each of the 125 cases, to define Variance Inflation 

Factor (VIF) for each of the regressor in turn was 

regressed on the remaining regressors and 

corresponding coefficient of determination was 

calculated and saved. 

 

Each of the 125 collinear sets of regressors was 

orthogonalized by replacing them with their Principal 

Component Scores. Keeping rest of the data intact we 

repeated the whole process and fit the regression model 

𝑌 = 𝛿0 + 𝛿1𝑍1 + 𝛿2𝑍2 + 𝛿3𝑍3 + 𝛿4𝑍4 + 휀, where 𝑍𝑖 are 

the Principal Component Scores and Standard Errors of 

each of the 𝛿1, 𝛿2, 𝛿3, 𝛿4 were stored. 

 

The above-mentioned results namely Standard 

Errors for �̂�1, �̂�2, �̂�3, �̂�4 and 𝛿1, 𝛿2, 𝛿3, 𝛿4 were compared 

by taking their ratios. A perfect relation proportional to 

the VIF was expected. 

 

Three samples of 1000 observations each were 

drawn from uniform distribution over the interval 0 and 

5. These were regarded as 𝑥1, 𝑥2, 𝑥3 and were used as 

explanatory variables in the subsequent iterative 

proceedings. 

 

2.2 Adapted Method for Hetroscedasticity 

100 samples each of size 1000 were drawn from 

normal distribution with zero mean but incremental 

value of the variance following the series 1(1)100 for 

every subsequent sample. Each sample was multiplied 

by the product term 𝑥1 × 𝑥2. Each of the resultant 

sample was used as error term for generating 𝑌, the 

dependent variable. The 𝑌𝑠 were generating using each 

of the error term blended with the set of explanatory 

variable namely 𝑥1, 𝑥2, 𝑥3 using arbitrary values of the 

four regression parameters using 
 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 휀 
 

This is how we end up in defining 100 𝑌𝑠 which are 

duly heteroscedastic as per above-mentioned scheme. 

The heteroscedasticity of the data was checked by 

means of Goldfeld-Quandt test (1972) and 

corresponding value of statistic and P Values were 

tabulated against level of heteroscedasticity. This 

provides us a table of three columns and 100 rows. Each 

row corresponds to the level of heteroscedasticity and 

each column represents value of test statistic and P 

Value. 
 

2.3 Adapted Method for Autocorrelation 
To check the autocorrelation in the data, three 

variables, having 100 number of observations each, 

namely, 𝑥1 ,  𝑥2 , 𝑥3 are generated randomly from 

uniform distribution over the interval between 1 and 100 

as 100 samples are generated from standard normal 

distribution. Using a predefined value of the 

autocorrelation factor Rho(𝜌), the autocorrelated error 

terms are defined using the relationship  
 

𝜇𝑖 = 𝜌(𝜇𝑖−1) + 휀𝑖 
 

Now we were in a position to generate 𝑌, the 

dependent variable, by using 𝑥1 ,  𝑥2 , 𝑥3  as three 

independent variables and the above-mentioned 

autocorrelated error term using the model with arbitrary 

values of the regression parameters 
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𝑌𝑖 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝜇𝑖 

 

This is how we have 100 datasets of 𝑌, the same set 

of dependent variable, 𝑥1 ,  𝑥2 , 𝑥3 explanatory 

variables. 

 

By fitting the regression model on each of the 100 

sets separately we obtained Mean Squared Error for 

each of the model and tabulated along with 

corresponding P Value. 

 

3.              THE ANALYTICAL PROCEDURE 

After having generated controlled data to 

impersonate the problem of multicollinearity, 

heteroscedasticity, and autocorrelation with controlled 

level of problem we started analyzing the same 

separately for each type of the inherited problem. 

 

3.1 The Problem of Multicollinearity 

We had 125 sets of four explanatory variables with 

known level of collinearity along with 125 

corresponding Y variables. That is we had 125 different 

sets of 𝑌, 𝑋1, 𝑋2, 𝑋3, 𝑋4 for each scenario based upon 

mean vector, variance vector, correlation matrix to 

generate random samples from multivariate normal 

distribution. Each variable had 1000 observations. We 

applied Durbin-Watson  test (1971) on each of the data 

set and recorded value of the test statistic. As the 

presence of multicollinearity is suppose to cause 

inflation of the variance of the estimates of regression 

coefficients thus standard errors of the regression 

coefficients of the model fitted to each of the 125 sets of 

𝑌, 𝑋1, 𝑋2, 𝑋3, 𝑋4 were recorded in tabular form.  

The level of multicollinearity was brought to level 

nil by orthogonalizing each of the 125 sets. The 

explanatory variables 𝑋1, 𝑋2, 𝑋3, 𝑋4 were replaced with 

Principal Component Scores 𝑍1, 𝑍2, 𝑍3, 𝑍4which are 

orthogonal by principle. To check the impact of 

removing multicollinearity from the data is expected to 

be reflected in the standard error of the regression 

coefficients estimated using orthogonal data.  
 

Ideally a dataset with no multicollinearity is used as 

base to gauge the impact of the collinearity on the 

standard errors of the regression estimates. The 

Variance Inflation Factor deals the situation in that 

direction i.e. from orthogonality to collinearity. We 

were dealing the situation in reverse direction so an 

inverse function of the Variance Inflation Factor was 

introduced to obtain the reverse effect of transforming 

data from multicollinearity to orthogonality. We termed 

it as Variance Deflating Factor. 
 

𝑉𝐷𝐹𝑗 =
1

𝑉𝐼𝐹𝑗
= (1 − 𝑅𝑗

2) 

 

where 𝑅𝑗
2  =  R2, in the regression of 𝑋𝑗 on the 

remaining (k-2) regressions  
 

The two tabulations were compared for each 

scenario to see if there is any role Variance Deflation 

Factor can play. 
 

The Standard Errors of the estimates of regression 

coefficients for the multicollinear and orthogonal data 

corresponding to each of the scenarios are presented in 

(Table-1). 

 

Table 1: Standard Errors of the Estimates of the Regression Coefficients for Multicollinear and Orthogonal Data Sets 

 

𝑺𝑬(�̂�𝟎) 𝑺𝑬(�̂�𝟏) 𝑺𝑬(�̂�𝟐) 𝑺𝑬(�̂�𝟑) 𝑺𝑬(�̂�𝟒) 
Case 

Mul Orth Mul Orth Mul Orth Mul Orth Mul Orth 

0.03279 0.03264 0.33483 0.03060 0.32272 0.03258 0.03329 0.03329 0.03455 0.03455 1 

0.04110 0.04092 0.41974 0.03837 0.40456 0.04084 0.04173 0.04173 0.04331 0.04331 2 

0.04102 0.04084 0.41889 0.03829 0.40374 0.04076 0.04165 0.04165 0.04322 0.04322 3 

0.04099 0.04081 0.41861 0.03826 0.40348 0.04073 0.04162 0.04162 0.04319 0.04319 4 

0.04093 0.04075 0.41802 0.03821 0.40290 0.04067 0.04156 0.04156 0.04313 0.04313 5 

... ... ... ... ... ... ... ... ... ... ... 

0.03832 0.03815 0.39134 0.03577 0.37719 0.03808 0.03891 0.03891 0.04038 0.04038 121 

0.03846 0.03830 0.39282 0.03590 0.37861 0.03822 0.03906 0.03906 0.04053 0.04053 122 

0.03843 0.03826 0.39243 0.03587 0.37824 0.03818 0.03902 0.03902 0.04049 0.04049 123 

0.03840 0.03824 0.39220 0.03585 0.37801 0.03816 0.03899 0.03899 0.04047 0.04047 124 

0.03835 0.03818 0.39162 0.03580 0.37745 0.03810 0.03894 0.03894 0.04041 0.04041 125 

 

To check the impact of the orthogonalization the ratio of the standard errors of the estimates of the regression 

coefficients obtained for the two types of the data sets in each of the 125 cases and tabulated in (Table-2). 
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Table 2: Ratio of Standard Errors of Estimates of Regression Coefficients for Multicollinear and Orthogonal Data 

 

Ratio of Standard Errors of Estimates of Regression Coefficient 

for Multicollinear to Orthogonal Data 
Case 

�̂�𝟎 �̂�𝟏 �̂�𝟐 �̂�𝟑 �̂�𝟒 

0.99565636521 0.09140323974 0.10094812307 0.10242239094 0.10370484984 1 

0.99565636521 0.09140323974 0.10094812307 0.10242239094 0.10370484984 2 

0.99565636521 0.09140323974 0.10094812307 0.10242239094 0.10370484984 3 

0.99565636521 0.09140323974 0.10094812307 0.10242239094 0.10370484984 4 

0.99565636521 0.09140323974 0.10094812307 0.10242239094 0.10370484984 5 

... ... ... ... ... ... 

0.99565636521 0.09140323974 0.10094812307 0.10242239094 0.10370484984 121 

0.99565636521 0.09140323974 0.10094812307 0.10242239094 0.10370484984 122 

0.99565636521 0.09140323974 0.10094812307 0.10242239094 0.10370484984 123 

0.99565636521 0.09140323974 0.10094812307 0.10242239094 0.10370484984 124 

0.99565636521 0.09140323974 0.10094812307 0.10242239094 0.10370484984 125 

 

3.2 The Problem of Heteroscedasticity 

The heteroscedastic errors are quite common in real 

life situations particularly when cross-sectional data is 

handled. Consequences of heteroscedasity is required to 

be taken care of otherwise regression estimates would 

lose their validity. For the purpose the intensity of the 

heteroscedasticity would play a vital role. We were 

interested to establish a way to gauge the intensity by 

establishing a relation between value of the test statistic 

and the intensity of the heteroscedasticity by means of 

an empirical study. 

 

We drew 100 samples of size 1000 each from 

uniform distribution over the interval 1 and 100 and 

used as 𝑋1. Similar samples were obtained for 𝑋2 

and𝑋3. That is we had 100 sets of 𝑋1, 𝑋2, 𝑋3 which we 

used as sets of explanatory variables in the upcoming 

analysis. We used each set iteratively. 

 

We then generated 100 samples of size 1000 from 

normal distribution with mean 10 and 

variance 1(1)100. Each sample was used to provide 

basic error term. The error term so obtained was already 

heteroscedastic but to add the complexity and to 

intensify the level we multiply each error term with 

product of the respective 𝑋1 and 𝑋2. One hundred error 

terms are thus finalized. 

 

We drew four samples of size 100 each from 

uniform distribution over the interval 1 and 10 and 

tabulated. Each row of the 4 × 100 table was used as 

the set of values assumed for 𝛽0, 𝛽1, 𝛽2, 𝛽3 in defining 

each of the 100 𝑌 variables using the relation 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚 
 

This equipped us with 100 sets of 𝑌, 𝑋1, 𝑋2, 𝑋3 

where presence as well as intensity of the 

heteroscedasticity is already known. 

  

Using each of the above-mentioned set we attempted 

Goldfield Quandt test and compiled the P-Value, F-

Ratio (the test statistic), Standard deviation of the 

residuals calculated earlier. The results produced from 

the analysis are presented as (Table-3). 

 

Table 3: Results of 100 Replications of Goldfield Quandt Test on Data with Known Level of Heteroscedasticity Available in SD Column 

 

P-Value F-Ratio SD Case  P-Value F-Ratio SD Case 

0.0001 1.3906 9129 1  ... ... ... … 

0.0001 1.3960 8727 2  0.1342 1.1046 9006 96 

0.0254 1.1919 8987 3  0.0001 1.4002 8793 97 

0.0000 1.5053 8965 4  0.0000 1.4931 9115 98 

0.0103 1.2316 8855 5  0.0015 1.3053 8844 99 

... ... .... …  0.0534 1.1560 8509 100 

 

3.3 The Problem of Autocorrelation 

The problem of autocorrelated error terms is more 

often encountered in time series data sets. Although 

tests procedures like Durbin Watson Test are available 

to check the presence of problem in the data. The test 

not only is able to detect its presence but it is capable to 

state the negative or positive direction of 

autocorrelation. Mere detection of presence and/or 

direction may not be enough as the strength of the 

autocorrelation does affect the quality of the least 

squares estimates of regression parameters. 

 

 We were interested to gauge the impact of 

autocorrelation on the least squares estimates in terms of 

M. M. IQBAL et al.                                                                                                                                                                                                       84 



its intensity. We were, therefore, intended to establish a 

relation between level of autocorrelation present in the 

error term and its impact on regression estimates. As it 

has already been established that 
  

𝑉𝑎𝑟(�̂�)
𝐴𝑅(1)

= 𝑉𝑎𝑟(�̂�)
𝑂𝐿𝑆

(
1 + 𝑟𝜌

1 − 𝑟𝜌
) 

 

So the knowledge of the level of first order 

autocorrelation 𝜌 would be enough to gauge its impact 

on the variance of the estimate. 

 

For the purpose we generated data with known level 

of first order autocorrelation as follows: 

Suppose in the two variable model the true values of 

intercept and slope coefficient are known thus  
 

𝑌𝑡 = 𝛼 + 𝛽𝑋𝑡 + 휀𝑡 

Thus 

𝐸(𝑌𝑡|𝑋𝑡) = 𝛼 + 𝛽𝑋𝑡 

defines population regression function. If it can be 

assumed that 휀𝑡 is generated by the first order 

autoregressive scheme following the pattern 

휀𝑡 = 𝜌휀𝑡−1 + 𝜈𝑡 
 

Assuming 𝜈𝑡follows all assumptions of ordinary 

least squares estimation procedure. 

Now a sample of appropriate size is drawn from 

standard normal distribution and 휀𝑡 are generated using 
 

휀𝑡 = 𝜌휀𝑡−1 + 𝜈𝑡. 
 

This requires an initial value to begin with. 

The Y variable is then generated using  
 

𝑌𝑌 = 𝑌 + 𝑌𝑌𝑌 + 𝑌𝑌  
 

Twenty different scenarios were used which are 

available in (Table-4). 
 

Table 4: Twenty Scenarios used to Generate First Order Autoregressive Data and Analysis 

 

Scenario 𝜶 𝜷 𝝆 Scenario 𝜶 𝜷 𝝆 

1 3 0.66 +0.1 11 3 0.66 -0.1 

2 6 1.32 +0.2 12 6 1.32 -0.2 

3 9 1.98 +0.3 13 9 1.98 -0.3 

4 12 2.64 +0.4 14 12 2.64 -0.4 

5 15 3.30 +0.5 15 15 3.30 -0.5 

6 18 3.96 +0.6 16 18 3.96 -0.6 

7 21 4.62 +0.7 17 21 4.62 -0.7 

8 24 5.28 +0.8 18 24 5.28 -0.8 

9 27 5.94 +0.9 19 27 5.94 -0.9 

10 30 6.60 +1.0 20 30 6.60 -1.0 

 

4.                           DISCUSSION 

Three subject areas are discussed in turn. 

The standard errors of the least squares estimates of the 

regression coefficients were obtained from collinear 

data. The data was then orthogonalized and standard 

errors of the least squares estimates of the same 

regression coefficients were obtained once again. 

 

As per established theory the variance of the 

standard error of the OLS estimates of the regressors 

gets increased which can be defined as a factor known 

as Variance Inflation Factor. As the multicollinear data 

was first generated and the standard errors of the OLS 

estimates of the four regression coefficients (excluding 

intercept) were obtained. These standard errors were 

used as base for the comparison which is why a 

reversing factor termed as Variance Deflating Factor 

was introduced to see how removal of the collinearity 

deflates the standard error of the OLS estimates of the 

regression coefficients. (Table-3) summarizes the 

comparison by presenting the ratio of the two types of 

standard errors.  

 

The data used in this research was special in the 

sense that control was exercised by the researcher while 

the data was generated. It was found that the empirical 

study performed in this research not only confirms the 

theoretical results but also lets us establish a direction 

relation between intensity of the collinearity and the size 

of the standard error. A uniform deflation factor (10%) 

was observed throughout the study. The standard error 

for the intercept term is found unchanged. One hundred 

heteroscedastic data sets were generated with known 

level of heteroscedasticity and were analysed using 

Goldfield Quandt test. The results were summarized in 

(Table-4). It is apparent from these results that a close 

relation is available in level of heteroscedaticity and 

value of test statistics. That is the level of 

heteroscedasticity and value of test statistics are 

statistically related. 

 

Twenty replications of 100 samples of 1000 

observations were performed for autocorrelated 

scenarios. That is 200 situations were analyzed by 

means of Durbin Watson test. The results are 

summarized in (Table-5). 

 

A clear relation between intensity of the first order 

auto correlation and the value of the test statistic has 

been established. 
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Table 5: Values of Test Statistic for 100 replications of each of the 20 Scenarios (Case of First Order Autoregressive error term) 

 

𝜶 3 6 9 12 15 18 21 24 27 30 3 6 9 12 15 18 21 24 27 30 

𝜷 0.66 1.32 1.98 2.64 3.30 3.96 4.62 5.28 5.94 6.60 0.66 1.32 1.98 2.64 3.30 3.96 4.62 5.28 5.94 6.60 

𝝆 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 

1 1.98 1.71 1.35 1.24 0.95 0.79 0.65 0.39 0.18 0.01 2.24 2.42 2.51 2.79 2.95 3.10 3.34 3.52 3.77 3.99 

2 1.79 1.61 1.36 1.25 0.96 0.80 0.63 0.32 0.17 0.01 2.20 2.40 2.55 2.87 2.97 3.13 3.35 3.55 3.77 3.99 

3 1.81 1.74 1.32 1.16 0.98 0.80 0.53 0.43 0.16 0.01 2.16 2.47 2.72 2.76 2.99 3.18 3.40 3.54 3.72 4.00 

4 1.77 1.57 1.39 1.29 0.93 0.73 0.65 0.36 0.19 0.01 2.28 2.42 2.56 2.74 3.05 3.12 3.34 3.58 3.77 3.99 

5 1.82 1.60 1.30 1.21 1.03 0.84 0.57 0.37 0.18 0.00 2.21 2.36 2.64 2.75 3.03 3.18 3.28 3.57 3.78 3.99 

… ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

96 1.84 1.78 1.53 1.27 0.90 0.80 0.54 0.35 0.20 0.01 2.12 2.38 2.66 2.86 3.06 3.18 3.31 3.57 3.79 3.99 

97 1.86 1.65 1.45 1.18 0.90 0.73 0.56 0.40 0.18 0.01 2.36 2.33 2.57 2.79 2.98 3.20 3.35 3.58 3.71 3.99 

98 1.76 1.58 1.34 1.18 0.99 0.68 0.62 0.31 0.16 0.00 2.13 2.44 2.68 2.79 2.96 3.09 3.35 3.56 3.78 3.99 

99 1.87 1.52 1.40 1.18 1.03 0.77 0.55 0.41 0.16 0.00 2.13 2.40 2.53 2.76 2.88 3.21 3.47 3.58 3.77 3.99 

100 1.83 1.70 1.43 1.15 1.07 0.78 0.55 0.39 0.18 0.03 2.04 2.29 2.61 2.81 2.98 3.20 3.34 3.53 3.78 4.00 

 

5.                              CONCLUSION 

To conclude all of our work related to the violation 

of the assumptions of normality namely, 

multicollinearity, heteroscedastity, and autocorrelation, 

it is very clear that the violation of these three 

assumptions affects the interpretations of the results 

seriously. To check the violation of these three 

assumptions cloning of datasets is made and results are 

compared accordingly. It is very interesting to conclude 

that the generation of datasets is appeared to be very 

useful as we want to check accordingly. The automatic 

process (Minitab and MS Excel 2007 Macros) of data 

generation, for the testing of the violation of these 

assumptions and for the comparison, is adapted. After 

putting the desired level of multicollinearity, 

heteroscedastity, and autocorrelation in the datasets the 

comparison of the results is made which is according to 

the expected results. These results are compared head to 

dead and it is concluded that the violations of these 

assumptions at the desire level of multicollinearity, 

heteroscedastity, and autocorrelation how much affect 

the results and the interpretation of these results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a result, a relationship between the given level of 

multicollinearity, heteroscedastity, and autocorrelation 

is gauged and a serious and proper impact is gauged as 

well. For all the three assumptions an amount of 

violations at specific level is gauged. A very interesting 

process of data cloning is adapted to gauge the expected 

impact on the results which gave us the results as we 

want to compare and interpret. 
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