Use of the Daftardar-Jafari polynomials in Optimal Homotopy Asymptotic Method for the solution of one

 Dimensional Heat and Advection-Diffusion EquationsS. SHAH, R. NAWAZ**, M. ULLAH*, J. ZADA**
Department of Mathematic, Xian Jioatong University Xian, Shannxi, China

Received $24^{\text {th }}$ December 2016 and Revised $1^{\text {st }}$ February 2017

> Abstract: In this paper Daftardar-Jafari (DJ) polynomials have been introduced in the Homotopy of Optimal Homotopy Asymptotic Method (OHAM) for finding the approximate solution of one dimensional heat and advection-diffusion equations. The results of proposed method are compared with exact solution to find absolute errors. The obtained results reveal that the proposed scheme is more reliable, explicit and effective.

Keywords: Optimal Homotopy Asymptotic Method with DJ-Polynomials (OHAM-DJ), Heat Equation, Advection-Diffusion Equation.

1.

Partial Differential Equations play a vital role in different fields of Engineering Sciences and Physics such as Thermodynamics, Heat Transform, fluid flow and Wave Propagation. Mostly Partial Differential Equations are non-linear and solution of such type of equations is difficult, so the researchers show their interest in finding the approximate solutions as the exact solutions are rare. Various techniques have been proposed to find the approximate solutions of nonlinear differential equations. The well-known methods for finding the approximate solution of differential equations are RBFM (Hon, and Mao1999). ADM (Wazwaz, 2007), (Wazwaz, 2000), VIM (Noor and Mohyuddin, 2007 and 2008), HPM (Ganji, and Sadighi, 2006), (Liang, and Jeffrey, 2009), and HAM (Liao, 2004), OHAM was introduced by Marinca, et al., 2008, for finding approximate solution of Differential Equations (Marinca, et al., 2008), (Marinca, et al., 2009), (Herisanu, et al., 2008), (Haq et al., 2010) (Ali. et al., 2010) (Nawaz, et al., 2010). This method combines the properties of both asymptotic methods and homotopy based methods. Recently, a new scheme of using Daftardar-Jafari polynomials in the homotopy of OHAM for the analytic solution of non-linear differential equation has been introduced by Ali, et al.,2013, which gives us more accurate results than that of OHAM (Ali, et al., 2013). The author has shown the efficiency of proposed scheme for Nonlinear KleinGordon and Advection equations (Shah, and Nawaz, 2016), (Shah, et al., 2016), Here we use the Optimal Homotopy Asymptotic Method with Daftardar-Jafari (DJ) polynomials (OHAM-DJ) for finding approximate solution of following one dimensional advectiondiffusion equation (Mohebbi and Dehghan, 2010).
$\frac{\partial u}{\partial t}+\beta \frac{\partial u}{\partial s}=\alpha \frac{\partial^{2} u}{\partial s^{2}}, a \leq \mathrm{s} \leq b ; t \geq 0,(1.1)$
subject to the initial condition:
$u(x, 0)=\phi(x) ; s \in[a, b]$,
and the boundary conditions are:
$u(a, t)=y_{0}(t)$,
$u(b, t)=y_{1}(t), \quad t \in[0, T]$.
For $\beta=0$, the advection-diffusion equation reduces to one-dimensional heat equation. The AdvectionDiffusion Equationis of primary significance in many physical systems, especially those involving fluid flow (Dehghan, 2004). It arises regularly in transferring heat energy, vorticityand mass in engineering and chemistry (Noye, 1990). and water transport in soils (Caglar, et al., 2008)

2. FUNDAMENTAL MATHEMATICAL THEORY OF OHAM-DJ.

The basic mathematical theory of OHAM-DJ [18-20] is as follow. Let us consider the nonlinear differential equation
$L(u(r))=F(u(r))+f(r), r \in \Omega_{B\left(u, \frac{\partial u}{\partial n}\right)=0, ~}^{\text {, }}$
with boundary conditions

$$
\begin{equation*}
B\left(v(r, q), \frac{\partial v(r, q)}{\partial n}\right)=0 \tag{2.2}
\end{equation*}
$$

Her L is linear operator, F is Non-linear operator, B is Boundary operator is and f come with common meanings. In view of OHAM-DJ, we erect a homotopy as:

[^0]$(1-q)[L(v(r, q))-f(r)]=h(q))[L(v(r, q))-f(r)+F(v(r, q)]$.
In Eq. (2.3) q is an embedding parameter such that $q \in[0,1], h(q)$ is non-zero auxiliary function for $q \neq 0$, and it is 0 for $q=0$. The unknown function $v(r, q)$ start from $v(r, 0)=u_{0}(r)$ to $v(r, 1)=u(r)$ as q starts from 0 to 1 .
The auxiliary function $h(q)$ is chosen in the form,
\[

$$
\begin{equation*}
h(q)=\sum_{i=1}^{m} q^{i} C_{i} \tag{2.4}
\end{equation*}
$$

\]

The convergence control parameters C_{1}, C_{2}, \ldots, are to be evaluated latter.
Next, we use Taylor's series to expand the function $v(r, q)$ about q,
$V(r, q)=u_{0}(r)+\sum_{m=1}^{\infty} u_{m}\left(r, C_{1}, C_{2}, \ldots, C_{m}\right) q^{m}$.
The nonlinear function $F(v(r, p))$ is decomposed as $F(v(r, p))=F\left(u_{0}\right)+q\left[F\left(u_{0}+u_{1}\right)-F\left(u_{0}\right)\right]+q^{2}\left[F\left(u_{0}+u_{1}+u_{2}\right)-F\left(u_{0}+u_{1}\right)\right]+\ldots$

The expression on the right hand side
$F\left(u_{0}\right),\left[F\left(u_{0}+u_{1}\right)-F\left(u_{0}\right)\right],\left[F\left(u_{0}+u_{1}+u_{2}\right)-F\left(u_{0}+u_{1}\right)\right], \ldots$
are DJ-Polynomials. Precisely, these polynomials are the terms of the Taylor's series of the nonlinear term. The convergence of these polynomials has been proved (Bhalekaret al.,2011).

For simplicity and convenience these polynomials are expressed as:

$$
\begin{aligned}
F_{0} & =F\left(u_{0}\right), \\
F_{m} & =F\left(\sum_{i=0}^{m} u_{i}\right)-F\left(\sum_{i=0}^{m-1} u_{i}\right),
\end{aligned}
$$

we can now express

$$
\begin{equation*}
\left.F(v(r, q))=F_{0}+\sum_{i=0}^{m-1} q^{k} F_{k}\right) . \tag{2.6}
\end{equation*}
$$

Making use of Eq. (2.4), (2.5) and (2.6) into Eq. (2.3) and comparing the coefficient of same powers of θ, the following linear equations can be directly integrated:
$0^{\text {th }}$ order problem:
$L u_{0}=f(r), \quad B\left(u_{0}, \frac{\partial u_{0}}{\partial x}\right)=0$.
$1^{\text {st }}$ order problem:
$L u_{1}=\left(1-C_{1}\right) L u_{0}-C_{1}\left(F_{0}-f\right)$,
$B\left(u_{1}, \frac{\partial u_{1}}{\partial x}\right)=0$.
$2^{\text {nd }}$ order problem:
$L u_{2}=\left(1-C_{1}\right) L u_{1}-C_{1} F_{1}+C_{2}\left(L-F_{0}-f\right), \quad B\left(u_{2}, \frac{\partial u_{2}}{\partial x}\right)=0$,
although we can build higher order problems simply but solutions till second order problems are sufficient to generate tremendous results.
If the series converges in (2.5), for $q=1$ then
$\tilde{v}(r)=\tilde{u}(r)=u_{0}(r)+u_{1}\left(r, C_{1}\right)+u_{2}\left(r, C_{1}, C_{2}\right)$.
By substituting Eq. (2.10) into Eq.(2.1) the resulting residual is
$R\left(r, C_{1}, C_{2}\right)=L(\tilde{u}(r))-F(\tilde{u}(r))-f(r)$,
If $R=0$, then the exact solution is u. In other case, we reduce R over domain of the problem.
The Galerekin's method and the method of Least squares are followed here.

In method of Least Squares, first we build the function

$$
J\left(C_{1}, C_{2}\right)=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \ldots \int_{a_{n}}^{b_{n}} R^{2} d r
$$

and then, minimizing it, we have

$$
\begin{equation*}
\frac{\partial \mathbf{J}}{\partial \mathbf{C}_{1}}=\frac{\partial \mathbf{J}}{\partial \mathbf{C}_{2}}=\mathbf{O} \tag{2.13}
\end{equation*}
$$

and following the Galerekin's method, we explain the following system:
$\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \ldots \int_{a_{n}}^{b_{n}} R \frac{\partial u}{\partial C_{1}} d r=0, \int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \ldots \int_{a_{n}}^{b_{n}} R \frac{\partial u}{\partial C_{2}} d r=0$.

3. APPLICATION OF OHAM-DJ

Example. 3.1:Solution of Heat Equation via OHAM-

 DJ:Now we solve the heat equation is as follow

$$
\begin{equation*}
\frac{\partial u}{\partial u}-\frac{\partial^{2} u}{\partial s^{2}}=0 \tag{3.1.1}
\end{equation*}
$$

with the initial condition is

$$
\begin{equation*}
u_{0}(s, O)=\sin (\pi s) \tag{3.1.2}
\end{equation*}
$$

Exact solution is

$$
\begin{equation*}
w(s, t)=e^{-\pi^{2} t} \sin (\pi s) \tag{3.1.3}
\end{equation*}
$$

Applying the basic idea of OHAM-DJ mentioned in section 2, on Eq. (3.1.1) we have the following:

$0^{\text {th }}$ order problem:

$$
\begin{equation*}
\frac{\partial u_{0}(s, t)}{\partial t}=0, \quad u_{0}(s, O)=\operatorname{Sin}(\pi s) \tag{3.1.4}
\end{equation*}
$$

Its solution is

$$
\begin{equation*}
u_{0}(s, t)=\sin (\pi s) \tag{3.1.5}
\end{equation*}
$$

$1^{\text {st }}$ order problem:
$\left.\frac{\partial u_{1}(s, t)}{\partial t}=\frac{\partial u_{0}(s, t)}{\partial t}+C_{1} \frac{\partial u_{0}(s, t)}{\partial t}-C_{1} \frac{\partial^{2} u_{0}(s, t)}{\partial s^{2}}, \quad u_{1}(s, 0)=0.3 .1 .6\right)$
Its solution is

$$
\begin{equation*}
u_{1}(s, t)=C_{1} \pi^{2} t \sin (\pi s) \tag{3.1.7}
\end{equation*}
$$

$2^{\text {nd }}$ order problem:

$\frac{\partial u_{2}(s, t)}{\partial t}=C_{2} \frac{\partial u_{0}(s, t)}{\partial t}+\frac{\partial u_{1}(s, t)}{\partial t}+C_{1} \frac{\partial u_{1}(s, t)}{\partial t}-C_{2} \frac{\partial^{2} u_{0}(s, t)}{\partial s^{2}}-C_{1} \frac{\partial^{2} u_{1}(s, t)}{\partial s^{2}}, u_{2}(s, 0)=0$.
Its solution is

$$
\begin{equation*}
u_{2}(s, t)=\frac{1}{2} \pi^{2}\left(2 C_{1} t+2 C_{1}^{2} t+2 C_{2} t+C_{1}^{2} \pi^{2} t^{2}\right) \operatorname{Sin}(\pi s) \tag{3.1.9}
\end{equation*}
$$

$3^{\text {rd }}$ order problem:

$$
\begin{align*}
\frac{\partial u_{3}(s, t)}{\partial t} & =C_{2} \frac{\partial u_{0}(s, t)}{\partial t}+\frac{\partial u_{1}(s, t)}{\partial t}+C_{1} \frac{\partial u_{1}(s, t)}{\partial t}-\frac{\partial u_{2}(s, t)}{\partial t}-C_{2} \frac{\partial^{2} u_{0}(s, t)}{\partial s^{2}}-C_{1} \frac{\partial^{2} u_{1}(s, t)}{\partial s^{2}} \\
& u_{3}(s, 0)=0 \tag{3.1.10}
\end{align*}
$$

Its solution is

$$
\begin{align*}
u_{3}(s, t) & =\frac{1}{6} \pi^{2}\left(6 C_{1} t+12 C_{1}^{2} t+6 C_{1}^{3} t+6 C_{2} t+12 C_{1} C_{2} t+6 C_{3} t+6 C_{1}^{2} \pi^{2} t^{2}+6 C_{1}^{3} \pi^{2} t^{2}\right. \\
& \left.+6 C_{1} C_{2} \pi^{2} t^{2}+C_{1}^{3} \pi^{4} t^{3}\right) \operatorname{Sin}(\pi s) \tag{3.1.11}
\end{align*}
$$

Adding equations (3.3.5), (3.3.7), (3.3.9) and (3.3.11),

$$
\begin{equation*}
u(s, t)=u_{0}(s, t)+s_{1}(s, t)+u_{2}(s, t)+u_{3}(s, t) \tag{3.1.12}
\end{equation*}
$$

With the help of least square method, we obtaind the values of unknown constants,
$C_{1}=-0.9983569043416364, C_{2}=0.000001294430269822666$,
$C_{3}=4.065725267344232 \times 10^{(-9)}$
and substituting the values of C_{1}, C_{2}, C_{3} in Eq. (3.1.12), the approximate solution of heat equation is as follow:

$$
\begin{align*}
u(s, t)= & \operatorname{Sin}(\pi s)-9.853387696948161 t \operatorname{Sin}(\pi s)+\frac{1}{2} \pi^{2}(-0.0032782029295024273 t \\
& \left.+9.837197638403133 t^{2}\right) \operatorname{Sin}(\pi s)+\frac{1}{6} \pi^{2}(-0.00002388862903046629 t+ \\
& \left.0.09690421324098253 t^{2}-96.92972218268893 t^{3}\right) \operatorname{Sin}(\pi s) \tag{3.1.13}
\end{align*}
$$

The following table shows the Absolute errors of $3^{\text {rd }}$ OHAM-DJ solution at different time levels. The absolute errors are very small which reveals the good agreement of OHAM-DJ solution with exact solution.

Table 3.1.1: Absoluteerrors of $\mathbf{3}^{\text {rd }}$ order OHAM-DJ solution for example 3.1 at different time level.

$s . t$	$t=0.0001$	$t=0.0005$	$t=0.001$
0.1	2.51504×10^{-12}	2.11553×10^{-12}	2.38698×10^{-14}
0.2	4.78395×10^{-12}	4.024×10^{-12}	4.54081×10^{-14}
0.3	6.58462×10^{-12}	5.53857×10^{-12}	6.23945×10^{-14}
0.4	7.74059×10^{-12}	6.5109×10^{-12}	7.34968×10^{-14}
0.5	8.13893×10^{-12}	6.84597×10^{-12}	7.72715×10^{-14}
0.6	7.74059×10^{-12}	6.5109×10^{-12}	7.34968×10^{-14}
0.7	6.58462×10^{-12}	5.53857×10^{-12}	6.23945×10^{-14}
0.8	4.78395×10^{-12}	4.024×10^{-12}	4.54081×10^{-14}
0.9	2.51504×10^{-12}	2.11553×10^{-12}	2.38698×10^{-14}
1.0	9.9675×10^{-28}	8.38411×10^{-28}	9.44168×10^{-30}

Fig. 1: Comparison of OHAM-DJ solution (solid line) with exact solution (dashed line) for $t=0.001$
Example. 3.2.
The advection-diffusion equation with $\beta=1, \alpha=0.1$ is as follow

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{\partial u}{\partial s}=0.1 \frac{\partial^{2} u}{\partial s^{2}}, 0<\mathrm{s}<1, \quad \mathrm{t}>0 \tag{3.2.1}
\end{equation*}
$$

Withinitial condition
$u(s, O)=\mathrm{e}^{5 s}\left(\operatorname{Cos}\left(\frac{\pi s}{2}\right)+0.25 \operatorname{Sin}\left(\frac{\pi s}{2}\right)\right)$.
Exact solution of Eq. (3.2.1) is
$w(s, t)=\mathrm{e}^{5\left(s-\frac{t}{2}\right)} \mathrm{e}^{\left(\frac{-\pi^{2} t}{40}\right)}\left(\operatorname{Cos}\left(\frac{\pi s}{2}\right)+0.25 \operatorname{Sin}\left(\frac{\pi s}{2}\right)\right)$.
Applying the proposed method OHAM-DJ as discussed in section 2, we obtain $0^{\text {th }}$ order problem:
$\frac{\partial u_{0}(s, t)}{\partial t}=0, \quad u_{0}(s, 0)=\mathrm{e}^{5 s}\left(\operatorname{Cos}\left(\frac{\pi s}{2}\right)+0.25 \operatorname{Sin}\left(\frac{\pi s}{2}\right)\right)$.

Its solution is

$$
\begin{equation*}
u_{0}(s, t)=1 . \mathrm{e}^{5 . s} \operatorname{Cos}(1.5707963267948966 s)+0.25 \mathrm{e}^{5 . s} \operatorname{Sin}(1.5707963267948966 s) . \tag{3.2.5}
\end{equation*}
$$

$1^{\text {st }}$ order problem:
$\frac{\partial u_{1}(s, t)}{\partial t}=\frac{\partial u_{0}(s, t)}{\partial t}+C_{1} \frac{\partial u_{0}(s, t)}{\partial t}+C_{1} \frac{\partial u_{0}(s, t)}{\partial s}-0.1 C_{1} \frac{\partial^{2} u_{0}(s, t)}{\partial s^{2}}, u_{1}(s, 0)=0$.
Its solution is

$$
\begin{align*}
u_{1}(s, t)= & t\left(2.7467401100272344 \mathrm{cle}^{5 . s} \operatorname{Cos}(1.5707963267948966 s)\right. \\
& \left.+0.6866850275068086 \mathrm{cle}^{5 . s} \operatorname{Sin}(1.5707963267948966 s)\right) . \tag{3.2.7}
\end{align*}
$$

$\mathbf{2}^{\text {nd }}$ order problem:

$$
\begin{align*}
& \frac{\partial u_{2}(s, t)}{\partial t}=C_{2} \frac{\partial u_{0}(s, t)}{\partial t}+\frac{\partial u_{1}(s, t)}{\partial t}+C_{1} \frac{\partial u_{1}(s, t)}{\partial t}+C_{2} \frac{\partial u_{0}(s, t)}{\partial s}-0.1 C_{2} \frac{\partial^{2} u_{0}(s, t)}{\partial s^{2}} \\
& -C_{1}\left(\frac{\partial u_{1}(s, t)}{\partial s}+0.1 \frac{\partial^{2} u_{0}(s, t)}{\partial s^{2}}-0.1\left(\frac{\partial^{2} u_{0}(s, t)}{\partial s^{2}}+\frac{\partial^{2} u_{1}(s, t)}{\partial s^{2}}\right)\right), \quad u_{2}(s, 0)=0 . \tag{3.2.8}
\end{align*}
$$

Its solution is

$$
\begin{align*}
& u_{2}(s, t)=e^{5 s}\left(2.7467401100272344 C_{1} t \operatorname{Cos}(1.5707963267948966 s)+\right. \\
& 2.7467401100272344 C_{1}^{2} t \operatorname{Cos}(1.5707963267948966 s)+ \\
& 2.7467401100272344 C_{2} t \operatorname{Cos}(1.5707963267948966 \mathrm{~s})+ \\
& 3.7722906160162113 C_{1}^{2} t^{2} \operatorname{Cos}(1.5707963267948966 s)+ \\
& 0.6866850275068086 C_{1} t \operatorname{Sin}(1.5707963267948966 \mathrm{~s})+ \\
& 0.6866850275068086 C_{1}^{2} t \operatorname{Sin}(1.5707963267948966 s)+ \\
& 0.6866850275068086 C_{2} t \operatorname{Sin}(1.5707963267948966 \mathrm{~s})+ \\
& \left.0.9430726540040528 C_{1}^{2} t^{2} \operatorname{Sin}(1.5707963267948966 s)\right) . \tag{3.2.9}
\end{align*}
$$

$3^{\text {rd }}$ order problem:

$$
\begin{align*}
& \frac{\partial u_{3}(s, t)}{\partial t}=C_{3} \frac{\partial u_{0}(s, t)}{\partial t}+C_{2} \frac{\partial u_{1}(s, t)}{\partial t}+\frac{\partial u_{2}(s, t)}{\partial t}+C_{1} \frac{\partial u_{2}(s, t)}{\partial s}+C_{3} \frac{\partial u_{0}(s, t)}{\partial s} \\
& -0.1 C_{3} \frac{\partial u_{0}^{2}(s, t)}{\partial s^{2}}+C_{2} \frac{\partial u_{1}(s, t)}{\partial s}-0.1 \frac{\partial u_{0}^{2}(s, t)}{\partial s^{2}}+0.1\left(\frac{\partial u_{0}^{2}(s, t)}{\partial s^{2}}+\frac{\partial u_{1}^{2}(s, t)}{\partial s^{2}}\right) \\
& \quad C_{3}\left(\frac{\partial u_{2}(s, t)}{\partial s}-0.1\left(\frac{\partial u_{0}(s, t)}{\partial s}+\frac{\partial u_{1}(s, t)}{\partial s}+\frac{\partial u_{2}(s, t)}{\partial s}+\frac{\partial u_{1}^{2}(s, t)}{\partial s^{2}}\right)+\right. \\
& \tag{3.2.10}\\
& \left.0.1\left(\frac{\partial u_{0}^{2}(s, t)}{\partial s^{2}}+\frac{\partial u_{1}^{2}(s, t)}{\partial s^{2}}\right)\right),
\end{align*}
$$

with boundary condition:

$$
u_{3}(s, 0)=0
$$

Whose solution is
$5.493480220054469 C_{1}^{2} \operatorname{Cos}(1.5707963267948966 s)-$
$2.746740110027235 C_{1}^{3} \operatorname{Cos}(1.5707963267948966 s)-$
$2.7467401100272344 C_{2} \operatorname{Cos}(1.5707963267948966 \mathrm{~s})-$
$5.493480220054469 C_{1} C_{2} \operatorname{Cos}(1.5707963267948966 \mathrm{~s})-$
$2.7467401100272344 C_{3} \operatorname{Cos}(1.5707963267948966 \mathrm{~s})-$
$13.331108582108026 C_{1}^{2} t \operatorname{Cos}(1.5707963267948966 s)-$
$10.437844907070225 C_{1}^{3} t \operatorname{Cos}(1.5707963267948966 s)-$
$10.437844907070225 C_{1} C_{2} t \operatorname{Cos}(1.5707963267948966 \mathrm{~s})-$
$6.102848442267399 C_{1}^{3} t^{2} \operatorname{Cos}(1.5707963267948966 s)+$
$0.2887166941154069 C_{1} \operatorname{Sin}(1.5707963267948966 \mathrm{~s})-$
$1.3733700550136172 C_{1}^{2} \operatorname{Sin}(1.5707963267948966 s)-$
$0.6866850275068087 C_{1}^{3} \operatorname{Sin}(1.5707963267948966 s)-$
$0.6866850275068086 C_{2} \operatorname{Sin}(1.5707963267948966 s)-$
$1.3733700550136172 C_{1} C_{2} \operatorname{Sin}(1.5707963267948966 \mathrm{~s})-$
$0.6866850275068086 C_{3} \operatorname{Sin}(1.5707963267948966 \mathrm{~s})+$
$0.7930297241612521 C_{1}^{2} t \operatorname{Sin}(1.5707963267948966 s)-$
$0.5465577919234269 C_{1}^{3} t \operatorname{Sin}(1.5707963267948966 s)-$
$0.5465577919234268 C_{1} C_{2} t \operatorname{Sin}(1.5707963267948966 \mathrm{~s})+$
$0.36304109196625733 C_{1}^{3} t^{2} \operatorname{Sin}(1.5707963267948966 s)$.

From equations (3.2.5), (3.2.7), (3.2.9), and (3.2.11), we obtain:

$$
\begin{equation*}
u(x, t)=u_{0}(s, t)+u_{1}(s, t)+u_{2}(s, t)+u_{3}(s, t) \tag{3.2.12}
\end{equation*}
$$

The values of unknown constants are obtained by least square method, for $t=0.0001$ the values of $C_{1}=-0.0007977074697195564, C_{2}=-451.8410780151379$, and $C_{3}=901.9643760326104$.
Now putting the values of C_{1}, C_{2} and C_{3} in Eq. (3.2.12), we get the approximate solution of heat equation:

$$
\begin{align*}
u(s, t)= & \left.e^{5 s} \operatorname{Cos}(1.5708 s)+0.25 e^{5 s} \operatorname{Sin}(1.5708 s)+t\left(-0.0021911 e^{5 s} \operatorname{Cos}\right) 1.5708 s\right)- \\
& \left.0.000547774 e^{5 s} \operatorname{Sin}(1.5708 x)\right)-e^{5 s} t(-1238.35 \operatorname{Cos}(1.5708 s)-3.76219 t \operatorname{Cos}(1.5708 s) \\
& +3.09787 \times 10^{-9} t^{2} \operatorname{Cos}(1.5708 s)-309.588 \operatorname{Sin}(1.5708 s)-0.196999 t \operatorname{Sin}(1.5708 s) \\
& \left.-1.84284 \times 10^{-10} t^{2} \operatorname{Sin}(1.5708 s)\right)+e^{5 s}(-1241.09 t \operatorname{Cos}(1.5708 s)+ \\
& \left.2.40045 \times 10^{-6} t^{2} \operatorname{Cos}(1.5708 s)-310.273 t \operatorname{Sin}(1.5708 s)+6.00112 \times 10^{-7} t^{2} \operatorname{Sin}(1.5708 s)\right) \tag{3.2.13}
\end{align*}
$$

The following table shows the Absolute errors of $3^{\text {rd }}$ OHAM-DJ solution at different time levels. The absolute errors reveal the good agreement of OHAM-DJ solution with exact solution.

Table 3.2: Absoluteerrors of $3^{\text {rd }}$ order OHAM solution for example 3.2 at different time levels.

$x . \forall t$	$t=0.0001$	$t=0.0005$	$t=0.001$
0.11	2.51504×10^{-12}	2.11553×10^{-12}	2.38698×10^{-14}
0.12	4.78395×10^{-12}	4.024×10^{-12}	4.54081×10^{-14}
0.13	6.58462×10^{-12}	5.53857×10^{-12}	6.23945×10^{-14}
0.14	7.74059×10^{-12}	6.5109×10^{-12}	7.34968×10^{-14}
0.15	8.13893×10^{-12}	$6.84597 \times 10^{-}$	7.72715×10^{-14}
0.16	7.74059×10^{-12}	6.5109×10^{-12}	7.34968×10^{-14}
0.17	6.58462×10^{-12}	5.53857×10^{-12}	6.23945×10^{-14}
0.18	4.78395×10^{-12}	4.024×10^{-12}	4.54081×10^{-14}
0.19	2.51504×10^{-12}	2.11553×10^{-12}	2.38698×10^{-14}
0.20	9.9675×10^{-28}	8.38411×10^{-28}	9.44168×10^{-30}

The (Fig. 3.2 (a)) shows the plot of Approximate solution and the (Fig. 3.2 (b)) shows the Exact solution, which are in close agreement.

Fig 3.2(a), 3D Approximate solution of $u(s, t)$

Fig 3.2 (b), 3D Exact solution of $w(s, t)$

4. CONCLUSION

In this paper, we applied the newly developed method namely OHAM-DJ to advection diffusion and heat equation. Table-3.1 gives absolute errors of OHAM-DJ solution for heat equation and Table3.2 gives absolute errors of OHAM-DJ solution for Advection Diffusion equation. All these results show good conformity with the exact solution. We concluded that among the existing numerical techniques, OHAMDJ may be considered as a nice modification.

REFRENCES:

Bhalekar, S. and V. Daftardar-Gejji, (2011). "Convergence of the new iterative method". International Journal of Differential Equations.

Caglar, H., M. Ozer and N. Caglar, (2008)."The numerical solution of the one-dimensional heat equation by using third degreeB-spline functions", Chaos, Solitons and Fractals. 38, 1197-1201.

Dehghan, M. (2004). "Weighted finite difference techniques for the one-dimensional advection-diffusion equation", AppliedMathematics and Computation. 147, 307-319.

Ganji, D. D., and A. Sadighi, (2006), "Application of He's homotopy perturbation method to nonlinear coupled systems of reaction diffusion equations", International Journal of Nonlinear Sciences and Numerical Simulation 7,411-418.

Hon, Y. C., and X. Z. Mao, (1999). "A radial basis function method for solving options pricing models", Journal of Financial Engineering, 8, 31-50.

Herisanu, N., V. Marinca, T. Dordea and G. Madescu, (2008), "A new analytical approach to nonlinear vibration of an electric machine", Proc. Romanian. Acad. Series A: Mathematics, Physics, Technical Sciences, Information Science, 9, 229-236.

Haq, S., M. Idrees, and S. Islam, (2010). "Application of optimal Homotopy asymptotic method to eighth order initial and boundary value problems", International Journal of Applied Mathematics and Computation, 2(4), 73-80.

Javed A., S. Islam, S. Islam, G. Zaman, (2010) "The solution of multipoint boundary value roblems by the Optimal Homotopy Asymptotic Method", Computers and Mathematics with Application, 59(6), 2000-2006

Javed A., S., I. A.. Shah, S. Islam and H. Khan (2013) "Application of Optimal Homotopy Asymtotic Method with Daftardar-Jaffari Polynomials to Non-linear

Differential Equations" World Applied Sciences Journal 28(10): 1456-1462.

Liang, S., and D. J. Jeffrey, (2009), "Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation", Preprint submitted to Elsevier.

Liao, S., (2004), "Introduction to the Homotopy Analysis Method",Chapmanand Hall/CRC, FloridaNoor M., A., and S., T., Mohyuddin, (2008), "Variational Iteration Method for Fifth-Order Boundary Value Problems Using He's Polynomials", Mathematical Problems in Engineering,
doi: 10.11,55,954794.

Marinca, V., N. Herisanu, C. Bota and B. Marinca, (2009), "An Optimal Homotopy Asymptotic Method applied to steady flow of a fourth-grade fluid past a porous plate, Applied Mathematics Letters 22, 245-251

Marinca V. and N. Herisanu, (2008), "Application of Optimal Homotopy Asymptotic Method for solving nonlinear equations arising in heat transfer, International s in Heat and Mass Transfer 35, 710-715.
Marinca V. and N. Herisanu, (2009), "Determination of periodic solutions for the motion of a particle on a rotating parabola by means of the Optimal Homotopy Asymptotic Method ", Journal of Sound and Vibration doi: 10. 1016 / j. jsv.. 11. 005.

Marinca, V., N. Herisanu, and I. Nemes, (2008), "An Optimal Homotopy Asymptotic Method with application to thin film flow", Central European Journal of Physics 6, 648-653.

Mohebbi A. and M. Dehghan, (2010)."High-order compact solution of the one-dimensional heat and
advection-diffusion equations", Applied Mathematical Modelling. 34, 3071-3084.

Noor M. A. and S. T. Mohyuddin, (2007), "Variational iteration technique for solving higher order boundary value problems", Applied Mathematics and Computation, vol. 189, no. 2, 1929-1942.

Nawaz, R., M. N. Khalid, S. Islam, and S. Yasin, (2010). "Solution of tenth order boundary value problems using optimal homotopy asymptotic method (OHAM)", Canadian Journal on Computing in Mathematics, Natural Sciences, Engineering and Medicin, 1(2), 37-54.

Noye, B. J. (1990). "Numerical solution of partial differential equations", Lecture Notes.

Shah, S., R. and N. Nawaz, .(2016), "Optimal Homotopy Asymptotic Method with DJ-Polynomials to nonlinear Advection equations".Appli. Environ. Biol. Sci. 6(5), 91-106.

Shah, Z., and S. Shah, (2016) "Use of the DaftardarJafari Polynomial in Optimal Homotopy Asymptotic Method for the solution of linear and nonlinear Klein Gordon equations". Appli. Environ. Biol. Sci. 6(4), 71-81.

Wazwaz, A. M. (2007), "A comparison between the variational iteration method and adomian decomposition method", Journal of Computational and Applied Mathematics, 207, 129-136.

Wazwaz, A. M. (2000), "The Modified Adomian Decomposition Method for Solving Linear and Nonlinear Boundary Value Problems of Tenth-order and Twelfth-order", Int. J. Nonlinear Sci. Num.Simul., 1, 17-24.

[^0]: ${ }^{++}$Corresponding authorsMurad. Ullah
 *Department of Mathematic, Islamia Collage University Peshawer, KP, Pakistan
 **Department of Mathematic, Abdul Wali Khan University Mardan, KP, Pakistan

