Sindh UniversityResearch Journal(Science Series)

Ratios of the Ring Class Numbers and Class Numbers of a Real Quadratic Field

A. TARIQ, S. I. A. SHAH, A. ALI ${ }^{++}$
Department of Mathematics, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan

Received $11^{\text {th }}$ July 2016 and Revised $2^{\text {nd }}$ March 2017

Abstract

For a non-square integer $n>1$, let $K=\boldsymbol{Q}(\sqrt{n})$ be a real quadratic field. In this paper we prove the existence of a new family of infinitely many rings of conductors >1 whose ratios of ring class numbers and class numbers of K are divisible by a given power of 2 as an extension of our previous work. In addition, we extend the family in our previous work to a countable number of families, each consisting of infinitely many rings of conductors >1 such that the ratios for each successive family are exactly divisible by a progressively higher power of 2 .

Keywords: Real quadratic field, Ring class number, Class number.

1. INTRODUCTION

Let K be a real quadratic field $\boldsymbol{Q}(\sqrt{n})$ over the rationals \mathbf{Q} and d be the field discriminant of K. For an integer $n=d f^{2}, f$ denotes the conductor of the ring $Z[1, f \omega]$, which is a subring of the ring $Z[1, \omega]$ of integers in K over the ring \boldsymbol{Z} of rational integers. Here $h_{+}(d)$ and $h_{+}\left(d f^{2}\right)$ denote the class number and the ring class number of K in the narrow sense, respectively. In (Tariq et al., 2016) the authors showed that for a canonical decomposition $\prod_{j=1}^{r} f_{j}$ of f into odd primes f_{j} such that $f_{j}=2 s_{j}-1$ remained inert in $K(1 \leq j \leq r)$, the ratio $\frac{h_{+}\left(d f^{2}\right)}{h_{+}(d)}$ was divisible by the product of powers of distinct primes and that there existed infinitely many such rings exactly divisible by a power of 2 . We now extend our result to odd primes of the form $f_{j}=2 s_{j}+1$ that are completely decomposed in $K(1 \leq j \leq r)$ proving the existence of another family of infinitely many such rings of conductors $f>$ 1 whose ratios $\frac{h_{+}\left(d f^{2}\right)}{h_{+}(d)}$ are divisible by the product of powers of distinct primes and exactly divisible by a power of 2 . In addition, we recognize that our previous family can be extended to a countable number of families of infinitely many rings of conductors >1 whose ratios are exactly divisible by an increasing power of 2 for each subsequent family of the collection.

2.

PRELIMINARIES

We state the following two lemmas which are fundamental to this work.

Lemma 2.1(Tariq et al., 2016) Let K be a real quadratic field with the field discriminant d and ε be the fundamental unit >1 of K. Then for an odd prime f, it holds that
$\varepsilon^{f-1} \equiv 1(\bmod f)$ if $\left(\frac{d}{f}\right)=1$,
$\varepsilon^{f+1} \equiv \pm 1(\bmod f)$ if $\left(\frac{d}{f}\right)=-1$.(2)
Let E be the minimum exponent >0 such that $\varepsilon \equiv$ $\pm 1(\bmod f)$. Then it holds that $E \mid f+1$. Here $\left(\frac{\dot{f}}{f}\right)$ means the Legendre symbol.

Lemma 2.2 (Alacaand Williams, 2004, Hasse, 1964) Let K be a real quadratic field of prime discriminant $p \equiv$ $1(\bmod 4)$. Then the norm of the fundamental unit is equal to -1 .
It is known that $h_{+}(d)=2 h(d)$ if $N_{K}(\varepsilon)=+1$ and $h_{+}(d)=h(d)$ if $N_{K}(\varepsilon)=-1$ or K is an imaginary quadratic field with the fundamental unit ε of K and the field discriminant d. We denote by Z_{f} the ring $Z[1, f \omega]$ of conductor f with $\omega=\frac{d+\sqrt{d}}{2}$ in the ring $Z_{K}=\boldsymbol{Z}[1, \omega]$ of integers in K. By the definition of ring class number, $h_{+}\left(d f^{2}\right)$ coincides with the order $\#\left(A_{f} / P_{f}\right)$ of the factor group A_{f} / P_{f} for the fractional ideal group A_{f} and the principal ideal subgroup P_{f} of A_{f} in the ring Z_{f} under the equivalence relation $\mathfrak{A} \sim \mathfrak{B}$ for $\mathfrak{A}, \mathfrak{B} \in A_{f}$ if there exists $\gamma \in Z_{f}$ such that $\mathfrak{B}=\gamma \mathfrak{A}$ with $N_{K}(\gamma)>0$. Now we state the ring class number formula.

Theorem 2.3 (Cohn, 1994) Let $K=\boldsymbol{Q}\left(\sqrt{d f^{2}}\right)$ be a quadratic field with the field discriminant d and the conductor f. Then the ring class number formula holds;

$$
\left\{\begin{aligned}
h_{+}\left(d f^{2}\right) & =h_{+}(d) f \prod_{p \mid f}\left(1-\frac{\left(\frac{d}{p}\right)}{p}\right) / E_{+} \\
h\left(d f^{2}\right) & =h(d) f \prod_{p \mid f}\left(1-\frac{\left(\frac{d}{p}\right)}{p}\right) / E
\end{aligned}\right.
$$

with the products over the primes $p \mid f$. Here, if $d<0$, $h_{+}(d)=h(d) \operatorname{and} E_{+}=1$ holds, except $E_{+}=2$ or 3 for $d=-4$ or -3 , respectively. If $d>0, E_{+}$(resp. E) denotes the exponent of the least power of the totally positive fundamental unit ε_{+}(resp. fundamental unit ε) such that $\varepsilon_{+}{ }^{E_{+}}\left(\operatorname{resp} . \varepsilon^{E}\right)$ belongs to the ring $Z_{f}=$ $\boldsymbol{Z}[1, f \omega]$, where $\omega=\frac{d+\sqrt{d}}{2}$ and $\left(\frac{d}{p}\right)$ denotes the Kronecker symbol.
The contribution of this paper is described in the following section 3 .

3.

RESULTS
We now extend the main result of (Tariq et al., 2016) to odd primes of the form $f_{j}=2 q_{j}+1$ that are completely decomposed in $K(1 \leq j \leq r)$ proving the existence of another family of infinitely many such rings of conductors $f>1$ whose ratios $\frac{h_{+}\left(d f^{2}\right)}{h_{+}(d)}$ are exactly divisible by a power of 2 .
Theorem 3.1 Let K be a real quadratic field with the prime discriminant $p \equiv 1(\bmod 4)$ and f be the conductor $\prod_{j=1}^{r} f_{j}$ of the $\operatorname{ring} Z[1, f \omega]$ with odd prime factors f_{j} such that $f_{j}=2 . q_{j}+1$, with odd numbers $q_{j},\left(\frac{p}{f_{j}}\right)=1$ and $f_{j}>u_{0} v_{0}(1 \leq j \leq r)$, where $\frac{u_{0}+v_{0} \sqrt{p}}{2}$ is the fundamental unit >1 of K. Put $Z_{f}=Z[1, f \omega]$. Then there exist infinitely many rings Z_{f} such that $2^{r-1} \|$ $\frac{h_{+}\left(p f^{2}\right)}{h_{+}(p)}$.
Proof Since $f_{j}=2 . q_{j}+1$ and $\left(\frac{p}{f_{j}}\right)=1(1 \leq j \leq r)$, it follows from Lemma 2.1 that $E_{f_{j}+} \mid 2 . q_{j}$, where q_{j} is an odd number $\prod_{i=1}^{S} q_{j_{i}}$ with odd primes $q_{j_{i}}$. From Lemma $2.2, E_{f_{j}+} \mid E_{f_{j}}$, since $\quad \varepsilon_{+}^{E_{f_{j}}}=\left(\varepsilon^{2}\right)^{E_{f_{j}}}=\left(\varepsilon^{E_{f_{j}}}\right)^{2} \in Z_{f_{j}}$. Thus $E_{f_{j}+} \mid 2 . q_{j}$. Hence it is deduced that i) $E_{f_{j}}=1$,
ii) $E_{f_{j^{+}}}=2$,iii) $E_{f_{j}+}=q_{l_{1}} \cdots q_{l_{k}}$ or
iv) $E_{f_{j}+}=2 . q_{l_{1}} \cdots q_{l_{k}}$ for $\left\{l_{1}, \cdots, l_{k}\right\} \subseteq\left\{j_{1}, \cdots, j_{s}\right\}$.
i) For $\varepsilon=\frac{u_{0}+v_{0} \sqrt{p}}{2}$, by Lemma 2.2 we have $\varepsilon_{+}{ }^{1}=\varepsilon^{2}=\frac{\left(u_{0}^{2}+v_{0}{ }^{2} p\right) / 2+u_{0} v_{0} \sqrt{p}}{2}$ with $f_{j} \nmid u_{0} v_{0}$,
$\operatorname{so} \varepsilon_{+}{ }^{1} \notin Z_{f_{j}}(1 \leq j \leq r)$. Thus $E_{f_{j}+} \neq 1$.
ii) If $\varepsilon_{+}{ }^{2} \in Z_{f_{j}}$, then for $\varepsilon_{+}{ }^{2}=\frac{u_{2}+v_{2} \sqrt{p}}{2}$ with
$v_{2}=u_{1} v_{1}=\left[\frac{u_{0}^{2}+v_{0}^{2} p}{2}\right] u_{0} v_{0}$, it follows that
$v_{2} \equiv 0(\bmod t)$ holds for any $t \mid f$. For $f_{j} \mid f$ it holds that $f_{j}>u_{0} v_{0}$ which gives $u_{0}^{2}+v_{0}^{2} p \equiv 0\left(\bmod f_{j}\right)$.
Thus it deduces that $\left(\frac{-p}{f_{j}}\right)=1$ which is a contradiction to our choice of f_{j}, where $f_{j} \equiv 3(\bmod 4)$ and $\left(\frac{p}{f_{j}}\right)=1$. Therefore, it follows that $E_{f_{j}+} \neq 2(1 \leq j \leq r)$.
iii) If $E_{f_{j}+} \mid q_{j}=q_{j_{1}} \cdots q_{j_{s}}$ then from $\varepsilon_{+}{ }^{q_{j}}=\varepsilon^{2 . q_{j}}=$ $\varepsilon^{f_{j}-1} \equiv \varepsilon . \varepsilon^{-1}=1\left(\bmod f_{j}\right)$ it follows that $\varepsilon_{+}{ }^{q_{j} / 2} \in Z_{f_{j}}$ which is a contradiction to the assumption of $E_{f_{j}+}$ since q_{j} is odd. Thus $E_{f_{j^{+}}} \neq q_{l_{1}} \cdots q_{l_{k}}$ for $\left\{l_{1}, \cdots, l_{k}\right\} \subseteq$ $\left\{j_{1}, \cdots, j_{s}\right\}$. Then the case iv) $E_{f_{j^{+}}}=2 . q_{l_{1}} \cdots q_{l_{k}}$ only holds for $\left\{l_{1}, \cdots, l_{k}\right\} \subseteq\left\{j_{1}, \cdots, j_{s}\right\}$. Thus by the ring class number formula, for $f=\prod_{j=1}^{r} f_{j}$, we obtain
$\frac{h_{+}\left(p f^{2}\right)}{h_{+}(p)}=f \prod_{j=1}^{r} \frac{\frac{f_{j}-1}{f_{j}}}{E_{+}}=\frac{\prod_{j=1}^{r}\left(f_{j}-1\right)}{\operatorname{lcm}\left[E_{\left.f_{1}+, E_{f_{2}+\cdots}, \cdots, E_{f^{+}}\right]}\right.}=$
$2^{r} \cdot \frac{\prod_{j=1}^{r} q_{j}}{\operatorname{lcm}\left[E_{f_{1}+, E_{\left.f_{2}+\cdots, \cdots, E_{f^{+}}\right]}}\right.}$, which deduces that
$2^{r-1} \| \frac{h_{+}\left(p f^{2}\right)}{h_{+}(p)}$. We show that this family of rings $\boldsymbol{Z}[1, f \omega]$ consists of infinitely many Z_{f} if each conductor f is a product of odd primes f_{j} such that $f_{j}=$ 2. $q_{j}+1$ with odd q_{j} and $\left(\frac{p}{f_{j}}\right)=1$. For an odd prime f_{1} such that $\left(\frac{p}{f_{1}}\right)=\left(\frac{f_{1}}{p}\right)=1=\left(\frac{n_{p}}{p}\right)$ with $\left(f_{1}, p\right)=1$ and a quadratic residue n_{p} modulo p, it follows that there exist infinitely many primes f_{1}^{\prime} congruent to $f_{1}(\bmod p)$ and congruent to $n_{p}(\bmod p)$ from Dirichlet's Theorem on Arithmetic Progression. For odd primes f_{1}^{\prime} we can choose $f_{1}^{\prime}=2 . q_{1}{ }^{\prime}+1$ such that $f_{1}^{\prime} \equiv 3(\bmod 4)$ with an odd $q_{1}{ }^{\prime}$ and $f_{1}^{\prime} \equiv n_{p}(\bmod p)$. This completes the proof of the existence of infinitely many rings of conductors f whose ratios of the ring class numbers and the class numbers are exactly divisible by a given power of 2 .

The following experiments owe to GP/PARI Version 2.7.3. This example is an illustration of Theorem 3.1.

Example 1 Let $K=\boldsymbol{Q}(\sqrt{p})$ with $p=13$. For $f=$ $\prod_{j=1}^{r} f_{j}$, let $f_{j}=2 . q_{j}+1$ with odd numbers q_{j} and $\left(\frac{p}{f_{j}}\right)=1(1 \leq j \leq r)$. Then we see that $2^{r-1} \| \frac{h_{+}\left(d f^{2}\right)}{h_{+}(d)}$.

The next characterizes the equality of the ratio $\frac{h_{+}\left(p f^{2}\right)}{h_{+}(p)}$ to the power of 2 .
Theorem 3.2 Let K be a real quadratic field with prime discriminant $p \equiv 1(\bmod 4)$. Let $\prod_{j=1}^{r} f_{j}$ be the canonical decomposition of the conductor f with odd prime factors $f_{j}=2 . q_{j}+1$ for odd $\operatorname{primes} q_{j}$ such that $\left(\frac{p}{f_{j}}\right)=1$ and $f_{j}>u_{0} v_{0}(1 \leq j \leq r)$ for the fundamental unit $\frac{u_{0}+v_{0} \sqrt{p}}{2}>$ 1 of K. Then for the ratio of the ring class number $h_{+}\left(p f^{2}\right)$ and the class number $h_{+}(p)$ of K in the narrow sense, it holds that

$$
\frac{h_{+}\left(d f^{2}\right)}{h_{+}(d)}=2^{r-1}
$$

Proof Since $f_{j}=2 . q_{j}+1$ and $\left(\frac{p}{f_{j}}\right)=1(1 \leq j \leq r)$, it follows from Theorem 3.1 that $E_{f_{j^{+}}}=2 . q_{j}$ only holds since q_{j} is prime and $\varepsilon_{+}{ }^{1}, \varepsilon_{+}{ }^{2} \notin Z_{f_{j}}(1 \leq j \leq r)$ as
$f_{j}>u_{0} v_{0}$.Therefore, by the ring class number formula, for $f=\prod_{j=1}^{r} f_{j}$, we have $\frac{h_{+}\left(p f^{2}\right)}{h_{+}(p)}=f \prod_{j=1}^{r}\left(\frac{f_{j}-1}{f_{j}}\right) / E_{+}=$ $2^{r} \cdot \frac{q_{1} \cdot q_{2} \cdots q_{r}}{\operatorname{lcm}\left[E_{f_{1}+}, E_{f_{2}+}, \cdots, E_{f_{r}+}\right]}=2^{r-1}$.
The next example shows several applications of Theorem 3.2.

Example 2 Let $K=\boldsymbol{Q}(\sqrt{p})$ with $p=17$. For $f=$ $\prod_{j=1}^{r} f_{j}$, let $f_{j}=2 . q_{j}+1$ with distinct odd primes q_{j} and | $\left(\frac{p}{f_{j}}\right)=1,(1 \leq j \leq r)$. that | $\frac{h_{+}\left(p f^{2}\right)}{h_{+}(p)}=2^{r-1}$. | | |
| ---: | :---: | :---: | :---: |
| \boldsymbol{j} | $\boldsymbol{f}_{\boldsymbol{j}}=\mathbf{2} \cdot \boldsymbol{q}_{\boldsymbol{j}}+\mathbf{1}$ | $\left(\frac{\mathbf{1 7}}{\boldsymbol{f}_{\boldsymbol{j}}}\right)$ | $\boldsymbol{E}_{f_{j}+}$ |
| $\mathbf{1}$ | $43=2.23+1$ | 1 | 2.23 |
| $\mathbf{2}$ | $59=2.29+1$ | 1 | 2.29 |
| $\mathbf{3}$ | $359=2.179+1$ | 1 | 2.179 |
| $\mathbf{4}$ | $383=2.191+1$ | 1 | 2.191 |
| $\mathbf{5}$ | $467=2.233+1$ | 1 | 2.233 |

$\frac{h_{+}\left(p f_{1}{ }^{2}\right)}{h_{+}(p)}=\mathbf{2}^{\mathbf{0}}, \quad \frac{h_{+}\left(p\left(f_{1} \cdot f_{2}\right)^{2}\right)}{h_{+}(p)}=2=\mathbf{2}^{\mathbf{1}}$,
$\frac{h_{+}\left(p\left(f_{1} \cdot f_{2} \cdot f_{3}\right)^{2}\right)}{h_{+}(p)}=4=\mathbf{2}^{\mathbf{2}}, \quad \frac{h_{+}\left(p\left(f_{1} \cdot f_{2} \cdot f_{3} \cdot f_{4}\right)^{2}\right)}{h_{+}(p)}=8=\mathbf{2}^{\mathbf{3}}$,
$\frac{h_{+}\left(p\left(f_{1} \cdot f_{2} \cdot f_{3} \cdot f_{4} \cdot f_{5}\right)^{2}\right)}{h_{+}(p)}=16=\mathbf{2}^{\mathbf{4}}$.
The association between the canonical decomposition of $f_{j} \pm 1$ for each odd factor f_{j} of f and the prime decomposition of $E_{f_{j}+}$ becomes quite obvious in the next theorem. By taking $f_{j}=2^{2} \cdot q_{j}-1$ such that $\left(\frac{p}{f_{j}}\right)=-1$, where p is the discriminant of K, we show that $2^{2} \mid E_{f_{j}+}$.

Theorem 3.3 For a real quadratic field K with a prime discriminant $p \equiv 1(\bmod 4)$ and a conductor f of the ring $\boldsymbol{Z}[1, f \omega]$ with r odd prime factors f_{j} such that $f_{j}=$ $2^{2} \cdot q_{j}-1$ with odd numbers $q_{j},\left(\frac{p}{f_{j}}\right)=-1$ and $f_{j}>$ $u_{1} v_{1}(1 \leq j \leq r)$, where $\frac{u_{1}+v_{1} \sqrt{p}}{2}$ is the totally positive fundamental unit $\varepsilon_{+}>1$ of K, there exist infinitely many rings $Z_{f}=\boldsymbol{Z}[1, f \omega]$ such that $2^{2(r-1)} \| \frac{h_{+}\left(p f^{2}\right)}{h_{+}(p)}$.
ProofSince $f_{j}=2^{2} . q_{j}-1$ and $\left(\frac{p}{f_{j}}\right)=-1,(1 \leq j \leq r)$, it follows that $E_{f_{j}+} \mid 2^{2} . q_{j}$, where q_{j} is an odd number $\prod_{i=1}^{S} q_{j_{i}}$ with odd primes $q_{j_{i}}$. Hence it is deduced that $E_{f_{j}+}=1, E_{f_{j}+}=2, E_{f_{j^{+}}}=2^{2}, \quad E_{f_{j}+}=q_{l_{1}} \cdots q_{l_{k}}$, $E_{f_{j}+}=2 . q_{l_{1}} \cdots q_{l_{k}} \quad$ or $\quad E_{f_{j}+}=2^{2} . q_{l_{1}} \cdots q_{l_{k}} \quad$ for $\left\{l_{1}, \cdots, l_{k}\right\} \subseteq\left\{j_{1}, \cdots, j_{s}\right\}$.
For $\varepsilon=\frac{u_{0}+v_{0} \sqrt{p}}{2}$, by Lemma 2.2 we have
$\varepsilon_{+}{ }^{1}=\varepsilon^{2}=\frac{\left(u_{0}{ }^{2}+v_{0}{ }^{2} p\right) / 2+u_{0} v_{0} \sqrt{p}}{2}$ with $f_{j} \nmid u_{0} v_{0}$ since
$u_{1} v_{1}=\left[\frac{u_{0}{ }^{2}+v_{0}{ }^{2} p}{2}\right] u_{0} v_{0}>u_{0} v_{0}$, so $\varepsilon_{+}{ }^{1} \notin Z_{f_{j}}$
$(1 \leq j \leq r)$. Thus $E_{f_{j}+} \neq 1$.
For $\varepsilon_{+}{ }^{2}=\left(\frac{u_{1}+v_{1} \sqrt{p}}{2}\right)^{2}=\frac{\left(u_{1}{ }^{2}+v_{1}{ }^{2} p\right) / 2+u_{1} v_{1} \sqrt{p}}{2}$ with $f_{j} \nmid u_{1} v_{1}$, so $\varepsilon_{+}{ }^{2} \notin Z_{f_{j}}(1 \leq j \leq r)$. Thus $E_{f_{j}} \neq 2$.
If $\varepsilon_{+}{ }^{2^{2}} \in Z_{f_{j}}$, then for $\varepsilon_{+}{ }^{2^{2}}=\frac{u_{4}+v_{4} \sqrt{p}}{2}$ with
$v_{4}=u_{2} v_{2}=\left[\frac{u_{1}^{2}+v_{1}^{2} p}{2}\right] u_{1} v_{1}$, it follows that
$v_{4} \equiv 0(\bmod t)$ holds for any $t \mid f$. For $f_{j} \mid f$ it holds that $f_{j}>u_{1} v_{1}$ which gives $u_{1}{ }^{2}+v_{1}{ }^{2} p \equiv 0\left(\bmod f_{j}\right)$. Since $p \equiv 1(\bmod 4)$, we have $u_{1}{ }^{2}-v_{1}{ }^{2} p=4$. Substituting $v_{1}{ }^{2} p=u_{1}{ }^{2}-4 \mathrm{in} u_{1}{ }^{2}+v_{1}{ }^{2} p \equiv 0\left(\bmod f_{j}\right)$ gives $u_{1}{ }^{2} \equiv$ $2\left(\bmod f_{j}\right)$ from which it follows that $\left(\frac{2}{f_{j}}\right)=1$, a contradiction to the assumption of f_{j} since $\left(\frac{2}{f_{j}}\right)=-1$ for $f_{j} \equiv 3(\bmod 8)$. On the other hand, by substituting $u_{1}{ }^{2}=v_{1}{ }^{2} p+4$ in $u_{1}{ }^{2}+v_{1}{ }^{2} p \equiv 0\left(\bmod f_{j}\right)$, we get $\left(v_{1} p\right)^{2} \equiv-2 p\left(\bmod f_{j}\right)$ implying that $\left(\frac{-2 p}{f_{j}}\right)=1$. But
$\left(\frac{-2 p}{f_{j}}\right)=\left(\frac{-1}{f_{j}}\right)\left(\frac{2}{f_{j}}\right)\left(\frac{p}{f_{j}}\right)=(-1)(-1)(-1)=-1$ for
$f_{j} \equiv 3(\bmod 8)$ giving $f_{j} \equiv 3(\bmod 4)$ which results in a contradiction. Therefore, it follows that $E_{f_{j}+} \neq$ $2^{2}(1 \leq j \leq r)$. By $\varepsilon_{+}{ }^{2 . q_{j}}=\varepsilon_{+}{ }^{\frac{f_{j}+1}{2}}=\varepsilon^{f_{j}+1} \equiv \varepsilon^{\sigma} . \varepsilon=$ $-1\left(\bmod f_{j}\right)$, since $p \equiv 1(\bmod 4)$, it follows that $\left(\varepsilon_{+}{ }^{q_{j}}\right)^{2} \equiv-1\left(\bmod f_{j}\right)$ but $\left(\frac{-1}{f_{j}}\right)=1$ is a contradiction to the assumption of f_{j}. Thus $E_{f_{j}+} \neq 2 . q_{l_{1}} \cdots q_{l_{k}}$ for $\left\{l_{1}, \cdots, l_{k}\right\} \subseteq\left\{j_{1}, \cdots, j_{s}\right\}$. This also rules out the possibility $E_{f_{j}+}=q_{l_{1}} \cdots q_{l_{k}}$. Then the case $E_{f_{j^{+}}}=$ $2^{2} . q_{l_{1}} \cdots q_{l_{k}}$ only holds for $\left\{l_{1}, \cdots, l_{k}\right\} \subseteq\left\{j_{1}, \cdots, j_{s}\right\}$. Thus by the ring class number formula, for $f=\prod_{j=1}^{r} f_{j}$, we obtain
$\frac{h_{+}\left(p f^{2}\right)}{h_{+}(p)}=f \prod_{j=1}^{r} \frac{\frac{f_{j}+1}{f_{j}}}{E_{+}}=\frac{\prod_{j=1}^{r}\left(f_{j}+1\right)}{\operatorname{lcm}\left[E_{f_{1}+}, E_{\left.f_{2}+\cdots, E_{f_{r}+}\right]}^{r}\right.}=$
$2^{2 r} \cdot \frac{\prod_{j=1}^{r} q_{j}}{\operatorname{lcm}\left[E_{f_{1}+}, E_{f_{2}+, \cdots, E_{f_{r}+}}\right]}$, which deduces that
$2^{2(r-1)} \| \frac{h_{+}\left(p f^{2}\right)}{h_{+}(p)}$. We show that the family of rings $\boldsymbol{Z}[1, f \omega]$ consists of infinitely many Z_{f} if each conductor f is a product of odd primes f_{j} such that $f_{j}=$ $2^{2} . q_{j}-1$ with odd q_{j} and $\left(\frac{p}{f_{j}}\right)=-1$. For an odd prime f_{1} such that $\left(\frac{p}{f_{1}}\right)=\left(\frac{f_{1}}{p}\right)=-1=\left(\frac{n_{p}}{p}\right)$ with $\left(f_{1}, p\right)=1$ and a quadratic non-residue n_{p} modulo p, it follows that there exist infinitely many primes f_{1}^{\prime} congruent to $f_{1}(\bmod p)$ and congruent to $n_{p}(\bmod p)$ from Dirichlet's Theorem on Arithmetic Progression. For odd primes f_{1}^{\prime} we can choose $f_{1}^{\prime}=2^{2} . q_{1}^{\prime}-1$ such that $f_{1}^{\prime} \equiv 3(\bmod 8)$ with an odd q_{1}^{\prime} and $f_{1}^{\prime} \equiv n_{p}(\bmod p)$. This completes the proof of the existence of infinitely many rings of conductors f whose ratios of the ring class numbers and class numbers are exactly divisible by a much higher power of 2 as compared to Theorem 4.2 of (Tariq et al., 2016).

By stating the next theorem, we have proved that there exist a countable number of families of infinitely many rings Z_{f} whose ratios of the ring class numbers and class numbers are exactly divisible by an increasing power of 2 with each successive family in the set. This countable collection is a consequence of Theorem 4.2 (Tariq et al. 2016), Theorem 3.3 and the next theorem weighed together. The proof of Theorem 3.4 trails an outline of the proof of Theorem 3.3 with modifications for $f_{j} \equiv 7(\bmod 8) f_{j} \equiv 3(\bmod 8)$ in Theorem 3.3.
Theorem 3.4 Let K be a real quadratic field with the prime discriminant $p \equiv 1(\bmod 4)$ and f be the conductor $\prod_{j=1}^{r} f_{j}$ of the $\operatorname{ring} \boldsymbol{Z}[1, f \omega]$ with odd prime factors f_{j} such that $f_{j}=2^{n} . q_{j}-1$ with odd numbers q_{j}, $n>2,\left(\frac{p}{f_{j}}\right)=-1 \operatorname{and} f_{j}>u_{0} v_{0}(1 \leq j \leq r), \frac{u_{0}+v_{0} \sqrt{p}}{2} \quad$ is
the fundamental unit> 1 of K. Then there exist infinitely many rings $Z_{f}=\boldsymbol{Z}[1, f \omega]$ such that $2^{n(r-1)} \| \frac{h_{+}\left(p f^{2}\right)}{h_{+}(p)}$.
The next example affirms the efficacy of Theorem 3.4.
Example 3 Let $K=\boldsymbol{Q}(\sqrt{p})$ with $p=17$. For $f=$ $\prod_{j=1}^{r} f_{j}, n=3$, let $f_{j}=2^{n} . q_{j}-1$ with odd numbers q_{j} and $\left(\frac{p}{f_{j}}\right)=-1(1 \leq j \leq r)$. Then we see that

$2^{n(r-1)} \\| \frac{h_{+}\left(p f^{2}\right)}{h_{+}(p)}$.			
\boldsymbol{j}	$\boldsymbol{f}_{\boldsymbol{j}}=\mathbf{2}^{\boldsymbol{n}} \cdot \boldsymbol{q}_{\boldsymbol{j}}-\mathbf{1}$	$\left(\frac{\mathbf{1 7}}{\boldsymbol{f}_{\boldsymbol{j}}}\right)$	$\boldsymbol{E}_{f_{j}+}$
$\mathbf{1}$	$23=2^{3} \cdot 3-1$	-1	$2^{3} \cdot 3$
$\mathbf{2}$	$71=2^{3} \cdot 3^{2}-1$	-1	$2^{3} \cdot 3^{2}$
$\mathbf{3}$	$167=2^{3} \cdot 3.7-1$	-1	$2^{3} \cdot 7$
$\mathbf{4}$	$199=2^{3} \cdot 5^{2}-1$	-1	$2^{3} .5^{2}$
$\mathbf{5}$	$439=2^{3} \cdot 5 \cdot 11-1$	-1	$2^{3} \cdot 5 \cdot 11$

$\frac{h_{+}\left(p f_{1}^{2}\right)}{h_{+}(p)}=1=2^{0}=\mathbf{2}^{\mathbf{3 (1 - 1})}$,
$\frac{h_{+}\left(p\left(f_{1} \cdot f_{2}\right)^{2}\right)}{h_{+}(p)}=24=2^{3} \cdot 3^{1}=2^{3(2-1)} \cdot 3^{1}$,
$\frac{h_{+}\left(p\left(f_{1} \cdot f_{2} \cdot f_{3}\right)^{2}\right)}{h_{+}(p)}=576=2^{6} \cdot 3^{2}=2^{3(3-1)} \cdot 3^{2}$,
$\frac{h_{+}\left(p\left(f_{1} \cdot f_{2} \cdot f_{3} \cdot f_{4}\right)^{2}\right)}{h_{+}(p)}=4608=2^{9} \cdot 3^{2}=2^{3(4-1)} \cdot 3^{2}$,
$\frac{h_{+}\left(p\left(f_{1} \cdot f_{2} \cdot f_{3} \cdot f_{4} \cdot f_{5}\right)^{2}\right)}{h_{+}(p)}=184320=2^{12} \cdot 3^{2} \cdot 5^{1}=$ $2^{3(5-1)} \cdot 3^{2} \cdot 5^{1}$.
4.

CONCLUSION

A comprehensive relationship between the prime decompositions of $f_{j} \pm 1$ and $E_{f_{j}}$ is observed which needs a further study into the phenomena of parallel decompositions of $f_{j} \pm 1$ and $E_{f_{j}+}$. This would allow to investigate whether there exists infinitely many rings of conductors >1 whose ratios are exactly divisible by a power of an oddprime p.

ACKNOWLEGEMNT

The authors wish to appreciate the facility of the downloaded GP/PARI Version 2.7.3.

REFERENCES:

Tariq, A., T. Nakahara, R. Qureshi and S.I.A. Shah (2016). Exact Divisibility of the Ring Class Numbers of a Real Quadratic Field. SURJ, vol. 48(2): 441-444.
Alaca, Ş. and K. S. Williams (2004). Introductory algebraic number theory, Cambridge: Cambridge University Press.

Hasse, H. (1964). VorelesungenÜber Zahlentheorie, Second Edition, Die Grundlehlen der Mathematischen Wissenshaften in Einzeldarstellungen, Bd. 59, New York: Springer-Verlag, Berlin• Göttingen• Heidelberg.

Cohn, H. (1994). Introduction to the construction of class fields, New York: Dover Publications Inc.

