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1.                INTRODUCTION 

Let 𝐾 be a real quadratic field 𝑸(√𝑛) over the 

rationals Q and 𝑑 be the field discriminant of 𝐾. For an 

integer 𝑛 =  𝑑𝑓2, 𝑓 denotes the conductor of the ring 

𝑍[1, 𝑓𝜔], which is a subring of the ring 𝑍[1, 𝜔] of 

integers in 𝐾 over the ring𝒁 of rational integers. Here 

ℎ+(𝑑) and ℎ+(𝑑𝑓
2)denote the class number and the 

ring class number of 𝐾 in the narrow sense, 

respectively. In (Tariq et al., 2016) the authors showed 

that for a canonical decomposition ∏ 𝑓𝑗
𝑟
𝑗=1  of 𝑓 into odd 

primes 𝑓𝑗 such that 𝑓𝑗 = 2𝑠𝑗 − 1 remained inert in 

𝐾 (1 ≤ 𝑗 ≤ 𝑟), the ratio 
ℎ+(𝑑𝑓

2)

ℎ+(𝑑)
 was divisible by the 

product of powers of distinct primes and that there 

existed infinitely many such rings exactly divisible by a 

power of 2. We now extend our result to odd primes of 

the form 𝑓𝑗 = 2𝑠𝑗 + 1 that are completely decomposed 

in 𝐾 (1 ≤ 𝑗 ≤ 𝑟) proving the existence of another 

family of infinitely many such rings of conductors 𝑓 >

1 whose ratios 
ℎ+(𝑑𝑓

2)

ℎ+(𝑑)
 are divisible by the product of 

powers of distinct primes and exactly divisible by a 

power of 2. In addition, we recognize that our previous 

family can be extended to a countable number of 

families of infinitely many rings of conductors > 1 

whose ratios are exactly divisible by an increasing 

power of 2 for each subsequent family of the collection. 
 

2.                 PRELIMINARIES 

We state the following two lemmas which are 

fundamental to this work. 

 

Lemma 2.1(Tariq et al., 2016) Let 𝐾be a real quadratic 

field with the field discriminant 𝑑 and ε be the 

fundamental unit > 1of 𝐾. Then for an odd prime 𝑓, it 

holds that 

 

𝜀𝑓−1 ≡ 1 (mod 𝑓)  𝑖𝑓 (
𝑑

𝑓
) = 1,             (1) 

𝜀𝑓+1 ≡ ±1 (mod 𝑓) 𝑖𝑓  (
𝑑

𝑓
) = −1.(2) 

Let 𝐸 be the minimum exponent > 0 such that 𝜀 ≡

±1 (mod 𝑓). Then it holds that𝐸| 𝑓 + 1. Here (
.

𝑓
) 

means the Legendre symbol. 

 

Lemma 2.2 (Alacaand Williams, 2004, Hasse, 1964)   

Let 𝐾be a real quadratic field of prime discriminant𝑝 ≡
1(mod 4). Then the norm of the fundamental unit is 

equal to−1. 
It is known that ℎ+(𝑑) = 2 ℎ(𝑑) if 𝑁𝐾(𝜀) = +1 and 

ℎ+(𝑑) = ℎ(𝑑) if 𝑁𝐾(𝜀) = −1 or 𝐾 is an imaginary 

quadratic field with the fundamental unit 𝜀 of 𝐾 and the 

field discriminant 𝑑. We denote by 𝑍𝑓 the ring 𝒁[1, 𝑓𝜔] 

of conductor 𝑓 with 𝜔 =
𝑑+√𝑑

2
 in the ring 𝑍𝐾 = 𝒁[1, 𝜔]  

of integers in 𝐾. By the definition of ring class number, 

ℎ+(𝑑𝑓
2) coincides with the order #(𝐴𝑓/𝑃𝑓) of the factor 

group 𝐴𝑓/𝑃𝑓 for the fractional ideal group 𝐴𝑓 and the 

principal ideal subgroup 𝑃𝑓 of 𝐴𝑓 in the ring 𝑍𝑓 under 

the equivalence relation 𝔄~𝔅 for 𝔄,𝔅 ∈ 𝐴𝑓 if there 

exists 𝛾 ∈ 𝑍𝑓 such that 𝔅 = 𝛾𝔄 with 𝑁𝐾(𝛾) > 0. Now 

we state the ring class number formula. 
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Theorem 2.3 (Cohn, 1994) Let 𝐾 = 𝑸(√𝑑𝑓2) be a 

quadratic field with the field discriminant 𝑑 and the 

conductor 𝑓. Then the ring class number formula holds; 

 

{
  
 

  
 
ℎ+(𝑑𝑓

2) = ℎ+(𝑑)𝑓∏(1 −
(
𝑑

𝑝
)

𝑝
𝑝|𝑓

)/𝐸+

ℎ(𝑑𝑓2) = ℎ(𝑑)𝑓∏(1 −
(
𝑑

𝑝
)

𝑝
𝑝|𝑓

)/𝐸

 

 

with the products over the primes 𝑝|𝑓. Here, if 𝑑 < 0, 
ℎ+(𝑑) = ℎ(𝑑)and𝐸+ = 1 holds, except 𝐸+ = 2 or 3 for 

𝑑 = −4 or −3, respectively. If 𝑑 > 0, 𝐸+(resp. 𝐸) 

denotes the exponent of the least power of the totally 

positive fundamental unit𝜀+ (resp. fundamental unit 𝜀) 

such that 𝜀+
𝐸+(resp.𝜀𝐸) belongs to the ring 𝑍𝑓 =

 𝒁[1, 𝑓𝜔], where 𝜔 =
𝑑+√𝑑

2
 and (

𝑑

𝑝
) denotes the 

Kronecker symbol.  

The contribution of this paper is described in the 

following section 3. 
 

3.                               RESULTS 

We now extend the main result of (Tariq et al., 

2016) to odd primes of the form 𝑓𝑗 = 2𝑞𝑗 + 1 that are 

completely decomposed in 𝐾 (1 ≤ 𝑗 ≤ 𝑟) proving the 

existence of another family of infinitely many such 

rings of conductors 𝑓 > 1 whose ratios 
ℎ+(𝑑𝑓

2)

ℎ+(𝑑)
 are 

exactly divisible by a power of 2.  

Theorem 3.1 Let 𝐾 be a real quadratic field with the 

prime discriminant 𝑝 ≡ 1(mod 4) and𝑓be the conductor 
∏ 𝑓𝑗
𝑟
𝑗=1  of the ring𝒁[1, 𝑓𝜔] with odd prime factors𝑓𝑗 

such that 𝑓𝑗 = 2. 𝑞𝑗 + 1, with odd numbers 𝑞𝑗, (
𝑝

𝑓𝑗
) = 1 

and 𝑓𝑗 > 𝑢0𝑣0(1 ≤ 𝑗 ≤ 𝑟), where 
𝑢0+𝑣0√𝑝

2
 is the 

fundamental unit> 1 of 𝐾. Put 𝑍𝑓 = 𝒁[1, 𝑓𝜔].  Then 

there exist infinitely many rings 𝑍𝑓 such that 2𝑟−1 ∥

 
ℎ+(𝑝𝑓

2)

ℎ+(𝑝)
. 

Proof Since 𝑓𝑗 = 2. 𝑞𝑗 + 1 and (
𝑝

𝑓𝑗
) = 1 (1 ≤ 𝑗 ≤ 𝑟), it 

follows from Lemma 2.1 that 𝐸𝑓𝑗+| 2. 𝑞𝑗 ,  where 𝑞𝑗 is an 

odd number ∏ 𝑞𝑗𝑖
𝑠
𝑖=1  with odd primes 𝑞𝑗𝑖. From Lemma 

2.2,𝐸𝑓𝑗+|𝐸𝑓𝑗, since 𝜀+
𝐸𝑓𝑗 = (𝜀2)

𝐸𝑓𝑗 = (𝜀
𝐸𝑓𝑗)2 ∈ 𝑍𝑓𝑗. 

Thus 𝐸𝑓𝑗+|2. 𝑞𝑗 . Hence it is deduced that i) 𝐸𝑓𝑗+ = 1, 

 ii) 𝐸𝑓𝑗+ = 2,iii) 𝐸𝑓𝑗+ = 𝑞𝑙1⋯𝑞𝑙𝑘 or  

iv) 𝐸𝑓𝑗+ = 2. 𝑞𝑙1⋯𝑞𝑙𝑘for{𝑙1, ⋯ , 𝑙𝑘} ⊆ {𝑗1, ⋯ , 𝑗𝑠}. 

i) For 𝜀 =
𝑢0+𝑣0√𝑝

2
, by Lemma 2.2 we have 

𝜀+
1 = 𝜀2 =

(𝑢0
2+𝑣0

2𝑝)/2+𝑢0𝑣0√𝑝

2
with𝑓𝑗 ∤ 𝑢0𝑣0, 

so𝜀+
1 ∉ 𝑍𝑓𝑗  (1≤ 𝑗 ≤ 𝑟). Thus 𝐸𝑓𝑗+ ≠ 1. 

ii) If𝜀+
2 ∈ 𝑍𝑓𝑗, then for 𝜀+

2 =
𝑢2+𝑣2√𝑝

2
  with 

𝑣2 = 𝑢1𝑣1 = [
𝑢0

2+𝑣0
2𝑝

2
] 𝑢0𝑣0, it follows that 

𝑣2 ≡ 0(mod𝑡) holds for any 𝑡|𝑓. For 𝑓𝑗|𝑓 it holds that 

𝑓𝑗 > 𝑢0𝑣0 which gives 𝑢0
2 + 𝑣0

2𝑝 ≡ 0(mod 𝑓𝑗). 

Thus it deduces that (
–𝑝

𝑓𝑗
) = 1 which is a contradiction 

to our choice of 𝑓𝑗, where 𝑓𝑗 ≡ 3(mod 4) and (
𝑝

𝑓𝑗
) = 1. 

Therefore, it follows that 𝐸𝑓𝑗+ ≠ 2 (1 ≤ 𝑗 ≤ 𝑟). 

 

 iii) If 𝐸𝑓𝑗+| 𝑞𝑗 = 𝑞𝑗1⋯𝑞𝑗𝑠 then from 𝜀+
𝑞𝑗 = 𝜀2.𝑞𝑗 =

𝜀𝑓𝑗−1 ≡ 𝜀. 𝜀−1 = 1(mod 𝑓𝑗) it follows that 𝜀+
𝑞𝑗/2 ∈ 𝑍𝑓𝑗 

which is a contradiction to the assumption of 𝐸𝑓𝑗+ since 

𝑞𝑗 is odd. Thus 𝐸𝑓𝑗+ ≠ 𝑞𝑙1⋯𝑞𝑙𝑘for {𝑙1, ⋯ , 𝑙𝑘} ⊆

{𝑗1, ⋯ , 𝑗𝑠}. Then the case iv) 𝐸𝑓𝑗+ = 2. 𝑞𝑙1⋯𝑞𝑙𝑘 only 

holds for {𝑙1, ⋯ , 𝑙𝑘} ⊆ {𝑗1, ⋯ , 𝑗𝑠}. Thus by the ring class 

number formula, for 𝑓 = ∏ 𝑓𝑗
𝑟
𝑗=1 , we obtain 

 

ℎ+(𝑝𝑓
2)

ℎ+(𝑝)
= 𝑓∏

𝑓𝑗−1

𝑓𝑗

𝐸+
=𝑟

𝑗=1

∏ (𝑓𝑗−1)
𝑟
𝑗=1

lcm [𝐸𝑓1+,𝐸𝑓2+,⋯,𝐸𝑓𝑟+]
=

2𝑟 .
∏ 𝑞𝑗
𝑟
𝑗=1

lcm [𝐸𝑓1+,𝐸𝑓2+,⋯,𝐸𝑓𝑟+]
, which deduces that  

 

2𝑟−1 ∥
ℎ+(𝑝𝑓

2)

ℎ+(𝑝)
. We show that this family of rings 

𝒁[1, 𝑓𝜔] consists of infinitely many 𝑍𝑓 if each 

conductor 𝑓 is a product of odd primes 𝑓𝑗 such that 𝑓𝑗 =

2. 𝑞𝑗 + 1 with odd 𝑞𝑗and (
𝑝

𝑓𝑗
) = 1. For an odd prime 𝑓1 

such that (
𝑝

𝑓1
) = (

𝑓1

𝑝
) = 1 = (

𝑛𝑝

𝑝
) with (𝑓1, 𝑝) = 1 and a 

quadratic residue 𝑛𝑝 modulo 𝑝, it follows that there 

exist infinitely many primes 𝑓1
ˊ
 congruent to 𝑓1(mod 𝑝) 

and congruent to  𝑛𝑝(mod 𝑝) from Dirichlet's Theorem 

on Arithmetic Progression. For odd primes 𝑓1
ˊ
 we can 

choose 𝑓1
ˊ = 2. 𝑞1

ˊ + 1 such that 𝑓1
ˊ ≡ 3(mod 4) with 

an odd 𝑞1
ˊ and 𝑓1

ˊ ≡ 𝑛𝑝(mod 𝑝). This completes the 

proof of the existence of infinitely many rings of 

conductors 𝑓 whose ratios of the ring class numbers and 

the class numbers are exactly divisible by a given power 

of 2. 

 

The following experiments owe to GP/PARI Version 

2.7.3. This example is an illustration of Theorem 3.1. 

 

Example 1 Let 𝐾 = 𝑸(√𝑝) with 𝑝 = 13. For 𝑓 =

∏ 𝑓𝑗
𝑟
𝑗=1 , let 𝑓𝑗 = 2. 𝑞𝑗 + 1 with odd numbers 𝑞𝑗and 

(
𝑝

𝑓𝑗
) = 1 (1 ≤ 𝑗 ≤ 𝑟). Then we see that  2𝑟−1 ∥  

ℎ+(𝑑𝑓
2)

ℎ+(𝑑)
 . 
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j 𝒇𝒋 = 𝟐. 𝒒𝒋 + 𝟏 
(
𝟏𝟑

𝒇𝒋
) 

𝑬𝒇𝒋+ 

1 𝟒𝟑 = 𝟐. 𝟑. 𝟕 + 𝟏 𝟏 𝟐. 𝟑. 𝟕 

2 𝟕𝟗 = 𝟐. 𝟑. 𝟏𝟑 + 𝟏 𝟏 𝟐. 𝟏𝟑 

3 𝟏𝟎𝟑 = 𝟐. 𝟑. 𝟏𝟕 + 𝟏 𝟏 𝟐. 𝟑. 𝟏𝟕 

4 𝟏𝟎𝟕 = 𝟐. 𝟓𝟑 + 𝟏 𝟏 𝟐. 𝟓𝟑 

5 𝟏𝟐𝟕 = 𝟐. 𝟑𝟐. 𝟕 + 𝟏 𝟏 𝟐. 𝟑𝟐. 𝟕 

6 𝟏𝟑𝟏 = 𝟐. 𝟓. 𝟏𝟑 + 𝟏 𝟏 𝟐. 𝟓 

ℎ+(𝑝𝑓1
2)

ℎ+(𝑝)
= 1 = 𝟐𝟎,        

ℎ+(𝑝(𝑓1.𝑓2)
2)

ℎ+(𝑝)
= 6 =

𝟐𝟏. 3,
ℎ+(𝑝(𝑓1.𝑓2.𝑓3)

2)

ℎ+(𝑝)
= 36 = 𝟐𝟐. 32, 

ℎ+(𝑝(𝑓1.𝑓2.𝑓3.𝑓4)
2)

ℎ+(𝑝)
= 72 = 𝟐𝟑. 32,              

ℎ+(𝑝(𝑓1.𝑓2.𝑓3.𝑓4.𝑓5)
2)

ℎ+(𝑝)
= 3024 = 𝟐𝟒. 33. 71, 

ℎ+(𝑝(𝑓1. 𝑓2. 𝑓3. 𝑓4. 𝑓5. 𝑓6)
2)

ℎ+(𝑝)
= 78624 = 𝟐𝟓. 33. 71. 131. 

The next characterizes the equality of the ratio 
ℎ+(𝑝𝑓

2)

ℎ+(𝑝)
 to 

the power of 2. 

Theorem 3.2 Let 𝐾 be a real quadratic field with prime 

discriminant 𝑝 ≡ 1(mod 4). Let∏ 𝑓𝑗
𝑟
𝑗=1 be the canonical 

decomposition of the conductor𝑓with odd prime factors 

𝑓𝑗 = 2. 𝑞𝑗 + 1 for odd primes𝑞𝑗such that(
𝑝

𝑓𝑗
) = 1and 

𝑓𝑗 > 𝑢0𝑣0(1 ≤ 𝑗 ≤ 𝑟)for the fundamental unit
𝑢0+𝑣0√𝑝

2
>

1of𝐾. Then for the ratio of the ring class 

numberℎ+(𝑝𝑓
2)and the class numberℎ+(𝑝)of𝐾in the 

narrow sense, it holds that 
 

ℎ+(𝑑𝑓
2)

ℎ+(𝑑)
= 2𝑟−1. 

 

Proof Since 𝑓𝑗 = 2. 𝑞𝑗 + 1 and (
𝑝

𝑓𝑗
) = 1 (1 ≤ 𝑗 ≤ 𝑟), it 

follows from Theorem 3.1 that 𝐸𝑓𝑗+ = 2. 𝑞𝑗 only holds 

since 𝑞𝑗 is prime and 𝜀+
1, 𝜀+

2
∉ 𝑍𝑓𝑗  (1≤ 𝑗 ≤ 𝑟) as 

𝑓𝑗 > 𝑢0𝑣0 .Therefore, by the ring class number formula, 

for 𝑓 = ∏ 𝑓𝑗
𝑟
𝑗=1 , we have 

ℎ+(𝑝𝑓
2)

ℎ+(𝑝)
= 𝑓∏ (

𝑓𝑗−1 

𝑓𝑗
)/𝐸+

𝑟
𝑗=1 =

2𝑟 .
𝑞1.𝑞2⋯𝑞𝑟

lcm [𝐸𝑓1+,𝐸𝑓2+,⋯,𝐸𝑓𝑟+]
=2𝑟−1. 

The next example shows several applications of 

Theorem 3.2. 

Example 2 Let 𝐾 = 𝑸(√𝑝)with 𝑝 = 17. For 𝑓 =

∏ 𝑓𝑗
𝑟
𝑗=1 , let 𝑓𝑗 = 2. 𝑞𝑗 + 1 with distinct odd primes 𝑞𝑗 

and (
𝑝

𝑓𝑗
) = 1, ( 1 ≤ 𝑗 ≤ 𝑟). that   

ℎ+(𝑝𝑓
2)

ℎ+(𝑝)
= 2𝑟−1. 

j 𝒇𝒋 = 𝟐. 𝒒𝒋 + 𝟏 
(
𝟏𝟕

𝒇𝒋
) 

𝑬𝒇𝒋+ 

1 43 = 2.23 + 1 1 2.23 

2 59 = 2.29 + 1 1 2.29 

3 359 = 2.179 + 1 1 2.179 

4 383 = 2.191 + 1 1 2.191 

5 467 = 2.233 + 1 1 2.233 

ℎ+(𝑝𝑓1
2)

ℎ+(𝑝)
= 𝟐𝟎,          

ℎ+(𝑝(𝑓1.𝑓2)
2)

ℎ+(𝑝)
= 2 = 𝟐𝟏,    

ℎ+(𝑝(𝑓1.𝑓2.𝑓3)
2)

ℎ+(𝑝)
= 4 = 𝟐𝟐,      

ℎ+(𝑝(𝑓1.𝑓2.𝑓3.𝑓4)
2)

ℎ+(𝑝)
= 8 = 𝟐𝟑, 

ℎ+(𝑝(𝑓1.𝑓2.𝑓3.𝑓4.𝑓5)
2)

ℎ+(𝑝)
= 16 = 𝟐𝟒.    

The association between the canonical decomposition of 

𝑓𝑗 ± 1 for each odd factor 𝑓𝑗 of 𝑓 and the prime 

decomposition of 𝐸𝑓𝑗+ becomes quite obvious in the 

next theorem. By taking 𝑓𝑗 = 2
2. 𝑞𝑗 − 1 such that 

(
𝑝

𝑓𝑗
) = −1, where 𝑝 is the discriminant of 𝐾, we show 

that 22| 𝐸𝑓𝑗+. 

 

Theorem 3.3 For a real quadratic field 𝐾 with a prime 

discriminant 𝑝 ≡ 1(mod 4) and a conductor𝑓of the ring 

𝒁[1, 𝑓𝜔] with 𝑟 odd prime factors 𝑓𝑗 such that 𝑓𝑗 =

22. 𝑞𝑗 − 1 with odd numbers𝑞𝑗,(
𝑝

𝑓𝑗
) = −1and 𝑓𝑗 >

𝑢1𝑣1(1 ≤ 𝑗 ≤ 𝑟), where
𝑢1+𝑣1√𝑝

2
 is the totally positive 

fundamental unit 𝜀+ > 1of𝐾, there exist infinitely many 

rings𝑍𝑓 = 𝒁[1, 𝑓𝜔] such that 22(𝑟−1) ∥  
ℎ+(𝑝𝑓

2)

ℎ+(𝑝)
. 

ProofSince 𝑓𝑗 = 2
2. 𝑞𝑗 − 1 and (

𝑝

𝑓𝑗
) = −1, (1 ≤ 𝑗 ≤ 𝑟), 

it follows that 𝐸𝑓𝑗+| 2
2. 𝑞𝑗 ,  where 𝑞𝑗 is an odd number 

∏ 𝑞𝑗𝑖
𝑠
𝑖=1  with odd primes 𝑞𝑗𝑖. Hence it is deduced that 

𝐸𝑓𝑗+ = 1, 𝐸𝑓𝑗+ = 2, 𝐸𝑓𝑗+ = 2
2, 𝐸𝑓𝑗+ = 𝑞𝑙1⋯𝑞𝑙𝑘, 

𝐸𝑓𝑗+ = 2. 𝑞𝑙1⋯𝑞𝑙𝑘 or 𝐸𝑓𝑗+ = 2
2. 𝑞𝑙1⋯𝑞𝑙𝑘 for 

{𝑙1, ⋯ , 𝑙𝑘} ⊆ {𝑗1, ⋯ , 𝑗𝑠}. 

For 𝜀 =
𝑢0+𝑣0√𝑝

2
, by Lemma 2.2 we have 

𝜀+
1 = 𝜀2 =

(𝑢0
2+𝑣0

2𝑝)/2+𝑢0𝑣0√𝑝

2
with𝑓𝑗 ∤ 𝑢0𝑣0 since 

𝑢1𝑣1 = [
𝑢0

2+𝑣0
2𝑝

2
] 𝑢0𝑣0 > 𝑢0𝑣0, so 𝜀+

1 ∉ 𝑍𝑓𝑗 

(1≤ 𝑗 ≤ 𝑟). Thus 𝐸𝑓𝑗+ ≠ 1.  

For 𝜀+
2 = (

𝑢1+𝑣1√𝑝

2
)
2

=
(𝑢1

2+𝑣1
2𝑝)/2+𝑢1𝑣1√𝑝

2
  with 

𝑓𝑗 ∤ 𝑢1𝑣1, so 𝜀+
2 ∉ 𝑍𝑓𝑗 (1≤ 𝑗 ≤ 𝑟).Thus 𝐸𝑓𝑗+ ≠ 2. 

If𝜀+
22 ∈ 𝑍𝑓𝑗, then for 𝜀+

22 =
𝑢4+𝑣4√𝑝

2
  with 

𝑣4 = 𝑢2𝑣2 = [
𝑢1

2+𝑣1
2𝑝

2
] 𝑢1𝑣1, it follows that 

𝑣4 ≡ 0(mod𝑡) holds for any 𝑡|𝑓. For 𝑓𝑗|𝑓 it holds that 

𝑓𝑗 > 𝑢1𝑣1 which gives 𝑢1
2 + 𝑣1

2𝑝 ≡ 0 (mod 𝑓𝑗). Since  

𝑝 ≡ 1(mod 4), we have 𝑢1
2 − 𝑣1

2𝑝 = 4. Substituting  

𝑣1
2𝑝 = 𝑢1

2 − 4in𝑢1
2 + 𝑣1

2𝑝 ≡ 0 (mod 𝑓𝑗) gives 𝑢1
2 ≡

2 (mod 𝑓𝑗) from which it follows that  (
2

𝑓𝑗
) = 1, a 

contradiction to the assumption of  𝑓𝑗 since (
2

𝑓𝑗
) = −1 

for 𝑓𝑗 ≡ 3(mod 8). On the other hand, by substituting 

𝑢1
2 = 𝑣1

2𝑝 + 4 in 𝑢1
2 + 𝑣1

2𝑝 ≡ 0 (mod 𝑓𝑗), we get 

(𝑣1𝑝)
2 ≡ −2𝑝 (mod 𝑓𝑗) implying that (

−2𝑝

𝑓𝑗
) = 1. But  
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(
−2𝑝

𝑓𝑗
) = (

−1

𝑓𝑗
) (

2

𝑓𝑗
) (

𝑝

𝑓𝑗
) = (−1)(−1)(−1) = −1    for 

𝑓𝑗 ≡ 3(mod 8)giving𝑓𝑗 ≡ 3(mod 4) which results in a 

contradiction. Therefore, it follows that 𝐸𝑓𝑗+ ≠

22(1 ≤ 𝑗 ≤ 𝑟). By 𝜀+
2.𝑞𝑗 = 𝜀+

𝑓𝑗+1

2 = 𝜀𝑓𝑗+1 ≡ 𝜀𝜎 . 𝜀 =
−1(mod 𝑓𝑗), since 𝑝 ≡ 1(mod 4), it follows that 

(𝜀+
𝑞𝑗)2 ≡ −1 (mod𝑓𝑗) but (

−1

𝑓𝑗
) = 1 is a contradiction 

to the assumption of 𝑓𝑗. Thus 𝐸𝑓𝑗+ ≠ 2. 𝑞𝑙1⋯𝑞𝑙𝑘for 

{𝑙1, ⋯ , 𝑙𝑘} ⊆ {𝑗1, ⋯ , 𝑗𝑠}. This also rules out the 

possibility 𝐸𝑓𝑗+ = 𝑞𝑙1⋯𝑞𝑙𝑘. Then the case 𝐸𝑓𝑗+ =

22. 𝑞𝑙1⋯𝑞𝑙𝑘only holds for {𝑙1, ⋯ , 𝑙𝑘} ⊆ {𝑗1, ⋯ , 𝑗𝑠}. 

Thus by the ring class number formula, for 𝑓 = ∏ 𝑓𝑗
𝑟
𝑗=1 , 

we obtain 

ℎ+(𝑝𝑓
2)

ℎ+(𝑝)
= 𝑓∏

𝑓𝑗+1

𝑓𝑗

𝐸+
=𝑟

𝑗=1

∏ (𝑓𝑗+1)
𝑟
𝑗=1

lcm [𝐸𝑓1+,𝐸𝑓2+,⋯,𝐸𝑓𝑟+]
=

22𝑟 .
∏ 𝑞𝑗
𝑟
𝑗=1

lcm [𝐸𝑓1+,𝐸𝑓2+,⋯,𝐸𝑓𝑟+]
, which deduces that  

22(𝑟−1) ∥
ℎ+(𝑝𝑓

2)

ℎ+(𝑝)
. We show that the family of rings 

𝒁[1, 𝑓𝜔] consists of infinitely many 𝑍𝑓 if each 

conductor 𝑓 is a product of odd primes 𝑓𝑗 such that 𝑓𝑗 =

22. 𝑞𝑗 − 1 with odd 𝑞𝑗and (
𝑝

𝑓𝑗
) = −1. For an odd prime 

𝑓1 such that (
𝑝

𝑓1
) = (

𝑓1

𝑝
) = −1 = (

𝑛𝑝

𝑝
) with (𝑓1, 𝑝) = 1 

and a quadratic non-residue 𝑛𝑝 modulo 𝑝, it follows that 

there exist infinitely many primes 𝑓1
ˊ
 congruent to 

𝑓1 (mod 𝑝) and congruent to 𝑛𝑝 (mod 𝑝) from 

Dirichlet's Theorem on Arithmetic Progression. For odd 

primes 𝑓1
ˊ
 we can choose 𝑓1

ˊ = 22. 𝑞1
ˊ − 1 such that 

𝑓1
ˊ ≡ 3(mod 8) with an odd 𝑞1

ˊ and 𝑓1
ˊ ≡ 𝑛𝑝(mod 𝑝). 

This completes the proof of the existence of infinitely 

many rings of conductors 𝑓 whose ratios of the ring 

class numbers and class numbers are exactly divisible 

by a much higher power of 2 as compared to Theorem 

4.2 of (Tariq et al., 2016).   

By stating the next theorem, we have proved that 

there exist a countable number of families of infinitely 

many rings 𝑍𝑓 whose ratios of the ring class numbers 

and class numbers are exactly divisible by an increasing 

power of 2 with each successive family in the set. This 

countable collection is a consequence of Theorem 4.2 

(Tariq et al. 2016), Theorem 3.3 and the next theorem 

weighed together. The proof of Theorem 3.4 trails an 

outline of the proof of Theorem 3.3 with modifications 

for 𝑓𝑗 ≡ 7(mod 8) 𝑓𝑗 ≡ 3(mod 8) in Theorem 3.3. 

Theorem 3.4 Let𝐾be a real quadratic field with the 

prime discriminant𝑝 ≡ 1(mod 4)and 𝑓 be the 

conductor∏ 𝑓𝑗
𝑟
𝑗=1 of the ring𝒁[1, 𝑓𝜔]with odd prime 

factors𝑓𝑗such that𝑓𝑗 = 2
𝑛. 𝑞𝑗 − 1with odd numbers𝑞𝑗, 

𝑛 > 2,(
𝑝

𝑓𝑗
) = −1and𝑓𝑗 > 𝑢0𝑣0(1 ≤ 𝑗 ≤ 𝑟),

𝑢0+𝑣0√𝑝

2
 is 

the fundamental unit> 1of𝐾. Then there exist infinitely 

many rings𝑍𝑓 = 𝒁[1, 𝑓𝜔]such that2𝑛(𝑟−1) ∥  
ℎ+(𝑝𝑓

2)

ℎ+(𝑝)
. 

The next example affirms the efficacy of Theorem 3.4. 

Example 3 Let 𝐾 = 𝑸(√𝑝)with 𝑝 = 17. For 𝑓 =

∏ 𝑓𝑗
𝑟
𝑗=1 ,𝑛 = 3, let 𝑓𝑗 = 2

𝑛. 𝑞𝑗 − 1 with odd numbers 𝑞𝑗 

and (
𝑝

𝑓𝑗
) = −1  (1 ≤ 𝑗 ≤ 𝑟). Then we see that   

2𝑛(𝑟−1) ∥  
ℎ+(𝑝𝑓

2)

ℎ+(𝑝)
. 

j 𝒇𝒋 = 𝟐
𝒏. 𝒒𝒋 − 𝟏 

 
(
𝟏𝟕

𝒇𝒋
) 

𝑬𝒇𝒋+ 

1 23 = 23. 3 − 1 −1 23. 3 

2 71 = 23. 32 − 1 −1 23. 32 

3 167 = 23. 3.7 − 1 −1 23. 7 

4 199 = 23. 52 − 1 −1 23. 52 

5 439 = 23. 5.11 − 1 −1 23. 5.11 

ℎ+(𝑝𝑓1
2)

ℎ+(𝑝)
= 1 = 20 = 𝟐𝟑(𝟏−𝟏),  

ℎ+(𝑝(𝑓1.𝑓2)
2)

ℎ+(𝑝)
= 24 = 23. 31 = 𝟐𝟑(𝟐−𝟏). 31, 

ℎ+(𝑝(𝑓1.𝑓2.𝑓3)
2)

ℎ+(𝑝)
= 576 = 26. 32 = 𝟐𝟑(𝟑−𝟏). 32, 

ℎ+(𝑝(𝑓1.𝑓2.𝑓3.𝑓4)
2)

ℎ+(𝑝)
= 4608 = 29. 32 = 𝟐𝟑(𝟒−𝟏). 32, 

ℎ+(𝑝(𝑓1.𝑓2.𝑓3.𝑓4.𝑓5)
2)

ℎ+(𝑝)
= 184320 =  212. 32. 51 =

𝟐𝟑(𝟓−𝟏). 32. 51. 
 

4.                           CONCLUSION 

A comprehensive relationship between the prime 

decompositions of 𝑓𝑗 ± 1 and 𝐸𝑓𝑗+ is observed which 

needs a further study into the phenomena of parallel 

decompositions of  𝑓𝑗 ± 1and 𝐸𝑓𝑗+. This would allow to 

investigate whether there exists infinitely many rings of 

conductors > 1 whose ratios are exactly divisible by a 

power of an oddprime 𝑝. 
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