

Sindh Univ. Res. Jour. (Sci. Ser.) Vol.49(1) 239-242 (2017)

SINDH UNIVERSITY Research JOURNAL (SCIENCE SERIES)

Ratios of the Ring Class Numbers and Class Numbers of a Real Quadratic Field

A. TARIQ, S. I. A. SHAH, A. ALI⁺⁺

Department of Mathematics, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan

Received 11th July 2016 and Revised 2nd March 2017

Abstract: For a non-square integer n > 1, let $K = Q(\sqrt{n})$ be a real quadratic field. In this paper we prove the existence of a new family of infinitely many rings of conductors > 1 whose ratios of ring class numbers and class numbers of K are divisible by a given power of 2 as an extension of our previous work. In addition, we extend the family in our previous work to a countable number of families, each consisting of infinitely many rings of conductors > 1 such that the ratios for each successive family are exactly divisible by a progressively higher power of 2.

Keywords: Real quadratic field, Ring class number, Class number.

1. INTRODUCTION

Let K be a real quadratic field $Q(\sqrt{n})$ over the rationals Q and d be the field discriminant of K. For an integer $n = df^2$, f denotes the conductor of the ring $Z[1, f\omega]$, which is a subring of the ring $Z[1, \omega]$ of integers in K over the ringZ of rational integers. Here $h_{+}(d)$ and $h_{+}(df^{2})$ denote the class number and the ring class number of K in the narrow sense, respectively. In (Tariq et al., 2016) the authors showed that for a canonical decomposition $\prod_{j=1}^{r} f_j$ of f into odd primes f_j such that $f_j = 2s_j - 1$ remained inert in $K (1 \le j \le r)$, the ratio $\frac{h_+(df^2)}{h_+(d)}$ was divisible by the product of powers of distinct primes and that there existed infinitely many such rings exactly divisible by a power of 2. We now extend our result to odd primes of the form $f_i = 2s_i + 1$ that are completely decomposed in $K (1 \le j \le r)$ proving the existence of another family of infinitely many such rings of conductors f >1 whose ratios $\frac{h_+(df^2)}{h_+(d)}$ are divisible by the product of powers of distinct primes and exactly divisible by a power of 2. In addition, we recognize that our previous family can be extended to a countable number of families of infinitely many rings of conductors > 1whose ratios are exactly divisible by an increasing power of 2 for each subsequent family of the collection.

2. <u>PRELIMINARIES</u>

We state the following two lemmas which are fundamental to this work.

Lemma 2.1(Tariq *et al.*, 2016) Let *K* be a real quadratic field with the field discriminant *d* and ε be the fundamental unit > 1 of *K*. Then for an odd prime *f*, it holds that

$$\varepsilon^{f-1} \equiv 1 \pmod{f} \quad if \quad \left(\frac{d}{f}\right) = 1, \tag{1}$$
$$\varepsilon^{f+1} \equiv \pm 1 \pmod{f} \quad if \quad \left(\frac{d}{f}\right) = -1.(2)$$

Let *E* be the minimum exponent > 0 such that $\varepsilon \equiv \pm 1 \pmod{f}$. Then it holds that $E \mid f + 1$. Here $\left(\frac{\cdot}{f}\right)$ means the Legendre symbol.

Lemma 2.2 (Alacaand Williams, 2004, Hasse, 1964) Let *K* be a real quadratic field of prime discriminant $p \equiv 1 \pmod{4}$. Then the norm of the fundamental unit is equal to -1.

It is known that $h_+(d) = 2 h(d)$ if $N_K(\varepsilon) = +1$ and $h_+(d) = h(d)$ if $N_K(\varepsilon) = -1$ or K is an imaginary quadratic field with the fundamental unit ε of K and the field discriminant d. We denote by Z_f the ring $\mathbf{Z}[1, f\omega]$ of conductor f with $\omega = \frac{d+\sqrt{d}}{2}$ in the ring $Z_K = \mathbf{Z}[1, \omega]$ of integers in K. By the definition of ring class number, $h_+(df^2)$ coincides with the order $\#(A_f/P_f)$ of the factor group A_f/P_f for the fractional ideal group A_f and the principal ideal subgroup P_f of A_f in the ring Z_f under the equivalence relation $\mathfrak{A} \sim \mathfrak{B}$ for $\mathfrak{A}, \mathfrak{B} \in A_f$ if there exists $\gamma \in Z_f$ such that $\mathfrak{B} = \gamma \mathfrak{A}$ with $N_K(\gamma) > 0$. Now we state the ring class number formula.

Theorem 2.3 (Cohn, 1994) Let $K = \mathbf{Q}(\sqrt{df^2})$ be a quadratic field with the field discriminant *d* and the conductor *f*. Then the ring class number formula holds;

$$\begin{cases} h_+(df^2) = h_+(d)f \prod_{p|f} (1 - \frac{\left(\frac{d}{p}\right)}{p})/E_+ \\ h(df^2) = h(d)f \prod_{p|f} (1 - \frac{\left(\frac{d}{p}\right)}{p})/E \end{cases} \end{cases}$$

with the products over the primes p|f. Here, if d < 0, $h_+(d) = h(d)$ and $E_+ = 1$ holds, except $E_+ = 2$ or 3 for d = -4 or -3, respectively. If d > 0, E_+ (resp. E)

denotes the exponent of the least power of the totally positive fundamental unit ε_+ (resp. fundamental unit ε) such that $\varepsilon_+{}^{E_+}(\operatorname{resp.}\varepsilon^E)$ belongs to the ring $Z_f = \mathbf{Z}[1, f\omega]$, where $\omega = \frac{d+\sqrt{d}}{2}$ and $\left(\frac{d}{p}\right)$ denotes the Kronecker symbol.

The contribution of this paper is described in the following section 3.

3. <u>RESULTS</u>

We now extend the main result of (Tariq *et al.*, 2016) to odd primes of the form $f_j = 2q_j + 1$ that are completely decomposed in K $(1 \le j \le r)$ proving the existence of another family of infinitely many such rings of conductors f > 1 whose ratios $\frac{h_+(df^2)}{h_+(d)}$ are exactly divisible by a power of 2.

Theorem 3.1 Let *K* be a real quadratic field with the prime discriminant $p \equiv 1 \pmod{4}$ and *f* be the conductor $\prod_{j=1}^{r} f_j$ of the ring $\mathbb{Z}[1, f\omega]$ with odd prime factors f_j such that $f_j = 2$. $q_j + 1$, with odd numbers q_j , $\left(\frac{p}{f_j}\right) = 1$ and $f_j > u_0 v_0 (1 \le j \le r)$, where $\frac{u_0 + v_0 \sqrt{p}}{2}$ is the fundamental unit> 1 of *K*. Put $Z_f = \mathbb{Z}[1, f\omega]$. Then there exist infinitely many rings Z_f such that $2^{r-1} \parallel \frac{h_+(pf^2)}{h_+(p)}$.

Proof Since $f_j = 2$. $q_j + 1$ and $\left(\frac{p}{f_j}\right) = 1$ $(1 \le j \le r)$, it follows from Lemma 2.1 that $E_{f_j+}| 2$. q_j , where q_j is an odd number $\prod_{i=1}^{s} q_{j_i}$ with odd primes q_{j_i} . From Lemma $2.2, E_{f_j+}|E_{f_j}$, since $\varepsilon_+^{E_{f_j}} = (\varepsilon^2)^{E_{f_j}} = (\varepsilon^{E_{f_j}})^2 \in Z_{f_j}$. Thus $E_{f_j+}|2.q_j$. Hence it is deduced that i) $E_{f_j+} = 1$, ii) $E_{f_j+} = 2$,iii) $E_{f_j+} = q_{l_1} \cdots q_{l_k}$ or iv) $E_{f_j+} = 2.q_{l_1} \cdots q_{l_k}$ for $\{l_1, \cdots, l_k\} \subseteq \{j_1, \cdots, j_s\}$. i) For $\varepsilon = \frac{u_0 + v_0 \sqrt{p}}{2}$, by Lemma 2.2 we have $\varepsilon_+^1 = \varepsilon^2 = \frac{(u_0^2 + v_0^2 p)/2 + u_0 v_0 \sqrt{p}}{2}$ with $f_j \nmid u_0 v_0$, so $\varepsilon_{+}^{1} \notin Z_{f_{j}}$ $(1 \le j \le r)$. Thus $E_{f_{j}+} \ne 1$. ii) If $\varepsilon_{+}^{2} \in Z_{f_{j}}$, then for $\varepsilon_{+}^{2} = \frac{u_{2}+v_{2}\sqrt{p}}{2}$ with $v_{2} = u_{1}v_{1} = \left[\frac{u_{0}^{2}+v_{0}^{2}p}{2}\right]u_{0}v_{0}$, it follows that $v_{2} \equiv 0 \pmod{t}$ holds for any t|f. For $f_{j}|f$ it holds that $f_{j} > u_{0}v_{0}$ which gives $u_{0}^{2} + v_{0}^{2}p \equiv 0 \pmod{f_{j}}$. Thus it deduces that $\left(\frac{-p}{f_{j}}\right) = 1$ which is a contradiction to our choice of f_{j} , where $f_{j} \equiv 3 \pmod{4}$ and $\left(\frac{p}{f_{j}}\right) = 1$. Therefore, it follows that $E_{f_{j}+} \ne 2$ $(1 \le j \le r)$.

iii) If $E_{f_j+} | q_j = q_{j_1} \cdots q_{j_s}$ then from $\varepsilon_+{}^{q_j} = \varepsilon^{2.q_j} = \varepsilon^{f_j-1} \equiv \varepsilon \cdot \varepsilon^{-1} = 1 \pmod{f_j}$ it follows that $\varepsilon_+{}^{q_j/2} \in Z_{f_j}$ which is a contradiction to the assumption of E_{f_j+} since q_j is odd. Thus $E_{f_j+} \neq q_{l_1} \cdots q_{l_k}$ for $\{l_1, \cdots, l_k\} \subseteq \{j_1, \cdots, j_s\}$. Then the case iv) $E_{f_j+} = 2.q_{l_1} \cdots q_{l_k}$ only holds for $\{l_1, \cdots, l_k\} \subseteq \{j_1, \cdots, j_s\}$. Thus by the ring class number formula, for $f = \prod_{j=1}^r f_j$, we obtain

$$\frac{h_{+}(pf^{2})}{h_{+}(p)} = f \prod_{j=1}^{r} \frac{\frac{f_{j}^{-1}}{f_{j}}}{E_{+}} = \frac{\prod_{j=1}^{r}(f_{j}^{-1})}{\operatorname{lcm}\left[E_{f_{1}+},E_{f_{2}+},\cdots,E_{f_{r}+}\right]} = 2^{r} \cdot \frac{\prod_{j=1}^{r}q_{j}}{\operatorname{lcm}\left[E_{f_{1}+},E_{f_{2}+},\cdots,E_{f_{r}+}\right]}, \text{ which deduces that}$$

 $2^{r-1} \parallel \frac{h_+(pf^2)}{h_+(p)}$. We show that this family of rings $\mathbb{Z}[1, f\omega]$ consists of infinitely many Z_f if each conductor f is a product of odd primes f_j such that $f_j = 2$. $q_j + 1$ with odd q_j and $\left(\frac{p}{f_j}\right) = 1$. For an odd prime f_1 such that $\left(\frac{p}{f_1}\right) = \left(\frac{f_1}{p}\right) = 1 = \left(\frac{n_p}{p}\right)$ with $(f_1, p) = 1$ and a quadratic residue n_p modulo p, it follows that there exist infinitely many primes f_1 congruent to $f_1 \pmod{p}$ and congruent to $n_p \pmod{p}$ from Dirichlet's Theorem on Arithmetic Progression. For odd primes f_1 we can choose $f_1 = 2$. $q_1 + 1$ such that $f_1 \equiv 3 \pmod{4}$ with an odd q_1 and $f_1 \equiv n_p \pmod{p}$. This completes the proof of the existence of infinitely many rings of conductors f whose ratios of the ring class numbers and the class numbers are exactly divisible by a given power of 2.

The following experiments owe to GP/PARI Version 2.7.3. This example is an illustration of Theorem 3.1.

Example 1 Let $K = Q(\sqrt{p})$ with p = 13. For $f = \prod_{j=1}^{r} f_j$, let $f_j = 2, q_j + 1$ with odd numbers q_j and $\left(\frac{p}{f_j}\right) = 1 \ (1 \le j \le r)$. Then we see that $2^{r-1} \parallel \frac{h_+(df^2)}{h_+(d)}$.

j	$f_j = 2. q_j + 1$	$\left(\frac{13}{f_i}\right)$	$E_{f_j^+}$	
1	43 = 2.3.7 + 1	1	2.3.7	
2	79 = 2.3.13 + 1	1	2.13	
3	103 = 2.3.17 + 1	1	2.3.17	
4	107 = 2.53 + 1	1	2.53	
5	$127 = 2.3^2.7 + 1$	1	2.3 ² .7	
6	131 = 2.5.13 + 1	1	2.5	
$\frac{h_+(pf_1^{2})}{h_+(p)} = 1 = 2^0,$		$\frac{h_+(p(f_1.f_2)^2)}{h_+(p)} = 6 =$		
$2^1.3, \frac{h_+}{2}$	$\frac{(p(f_1.f_2.f_3)^2)}{h_+(p)} = 36 = 2^2.$	3 ² ,		
$\frac{h_+(p(f_1.f_1))}{h_+}$	$\frac{f_2 \cdot f_3 \cdot f_4}{(p)} = 72 = 2^3 \cdot 3^2,$			
$\frac{h_+(p(f_1,f_1))}{h_1}$	$\frac{f_2 \cdot f_3 \cdot f_4 \cdot f_5)^2}{f_4(p)} = 3024 = 2^{-1}$	$4.3^3.7^1$,		
$h_+(p(f_1$	$\frac{1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6)^2}{h_+(p)} = 7$	8624 = 2	$5.3^3.7^1.13^1.$	
T 21	+ 4 2	1. 6.1	$h_{+}(pf^{2})$	

The next characterizes the equality of the ratio $\frac{h_+(pf^2)}{h_+(p)}$ to the power of 2.

Theorem 3.2 Let *K* be a real quadratic field with prime discriminant $p \equiv 1 \pmod{4}$. Let $\prod_{j=1}^{r} f_j$ be the canonical decomposition of the conductor *f* with odd prime factors $f_j = 2$. $q_j + 1$ for odd primes q_j such that $\left(\frac{p}{f_j}\right) = 1$ and $f_j > u_0 v_0 (1 \le j \le r)$ for the fundamental unit $\frac{u_0 + v_0 \sqrt{p}}{2} > 1$ of *K*. Then for the ratio of the ring class number $h_+(pf^2)$ and the class number $h_+(p)$ of *K* in the narrow sense, it holds that

$$\frac{h_+(df^2)}{h_+(d)} = 2^{r-1}$$

Proof Since $f_j = 2$. $q_j + 1$ and $\left(\frac{p}{f_j}\right) = 1$ $(1 \le j \le r)$, it follows from Theorem 3.1 that $E_{f_j+} = 2$. q_j only holds since q_j is prime and ε_{+}^{-1} , $\varepsilon_{+}^{-2} \notin Z_{f_j}$ $(1 \le j \le r)$ as $f_i > u_0 v_0$. Therefore, by the ring class number formula.

for
$$f = \prod_{j=1}^{r} f_j$$
, we have $\frac{h_+(pf^2)}{h_+(p)} = f \prod_{j=1}^{r} (\frac{f_j-1}{f_j})/E_+ = 2^r \cdot \frac{q_1 \cdot q_2 \cdots q_r}{\lim [E_{f_1+}, E_{f_2+}, \cdots, E_{f_r+}]} = 2^{r-1}.$

The next example shows several applications of Theorem 3.2.

Example 2 Let $K = Q(\sqrt{p})$ with p = 17. For $f = \prod_{j=1}^{r} f_j$, let $f_j = 2$. $q_j + 1$ with distinct odd primes q_j and $\frac{\binom{p}{f_j}}{j} = 1$, $(1 \le j \le r)$. that $\frac{h_+(pf^2)}{h_+(p)} = 2^{r-1}$. j $f_j = 2$. $q_j + 1$ $(\frac{17}{2})$ E_{f_j+1}

J	$\mathbf{J}_j = 2 \cdot \mathbf{q}_j + 1$	$\left(\frac{1}{f_j}\right)$	\mathbf{E}_{f_j} +
1	43 = 2.23 + 1	1	2.23
2	59 = 2.29 + 1	1	2.29
3	359 = 2.179 + 1	1	2.179
4	383 = 2.191 + 1	1	2.191
5	467 = 2.233 + 1	1	2.233

$$\frac{\frac{h_{+}(pf_{1}^{-2})}{h_{+}(p)} = 2^{0}, \qquad \frac{\frac{h_{+}(p(f_{1},f_{2})^{2})}{h_{+}(p)} = 2 = 2^{1},$$

$$\frac{\frac{h_{+}(p(f_{1},f_{2},f_{3})^{2})}{h_{+}(p)} = 4 = 2^{2}, \qquad \frac{\frac{h_{+}(p(f_{1},f_{2},f_{3},f_{4})^{2})}{h_{+}(p)} = 8 = 2^{3},$$

$$\frac{\frac{h_{+}(p(f_{1},f_{2},f_{3},f_{4},f_{5})^{2})}{h_{+}(p)} = 16 = 2^{4}.$$

The association between the canonical decomposition of $f_j \pm 1$ for each odd factor f_j of f and the prime decomposition of E_{f_j+} becomes quite obvious in the next theorem. By taking $f_j = 2^2 \cdot q_j - 1$ such that $\left(\frac{p}{f_j}\right) = -1$, where p is the discriminant of K, we show that $2^2 | E_{f_j+}$.

Theorem 3.3 For a real quadratic field K with a prime discriminant $p \equiv 1 \pmod{4}$ and a conductor f of the ring $Z[1, f\omega]$ with r odd prime factors f_i such that $f_i =$ $2^2 \cdot q_j - 1$ with odd numbers $q_j \cdot \left(\frac{p}{f_j}\right) = -1$ and $f_j > -1$ $u_1v_1(1 \le j \le r)$, where $\frac{u_1+v_1\sqrt{p}}{2}$ is the totally positive fundamental unit $\varepsilon_+ > 10 f K$, there exist infinitely many rings $Z_f = \mathbf{Z}[1, f\omega]$ such that $2^{2(r-1)} \parallel \frac{h_+(pf^2)}{h_+(p)}$ **Proof**Since $f_j = 2^2$. $q_j - 1$ and $\left(\frac{p}{f_j}\right) = -1$, $(1 \le j \le r)$, it follows that $E_{f_i+}|2^2 \cdot q_j$, where q_j is an odd number $\prod_{i=1}^{s} q_{j_i}$ with odd primes q_{j_i} . Hence it is deduced that
$$\begin{split} E_{f_{j}+} &= 1, E_{f_{j}+} = 2, E_{f_{j}+} = 2^2, \qquad E_{f_{j}+} = q_{l_1} \cdots q_{l_k}, \\ E_{f_{j}+} &= 2, q_{l_1} \cdots q_{l_k} \quad \text{or} \quad E_{f_{j}+} = 2^2, q_{l_1} \cdots q_{l_k} \quad \text{for} \end{split}$$
 $\{l_1,\cdots,l_k\}\subseteq\{j_1,\cdots,j_s\}.$ For $\varepsilon = \frac{u_0 + v_0 \sqrt{p}}{2}$, by Lemma 2.2 we have $\varepsilon_+^1 = \varepsilon^2 = \frac{(u_0^2 + v_0^2 p)/2 + u_0 v_0 \sqrt{p}}{2}$ with $f_j \nmid u_0 v_0$ since $\begin{aligned} u_1 v_1 &= \left[\frac{u_0^2 + v_0^2 p}{2}\right] u_0 v_0 > u_0 v_0, \text{ so } \varepsilon_+^{-1} \notin Z_{f_j} \\ (1 \le j \le r). \text{ Thus } E_{f_j +} \ne 1. \\ \text{For } \varepsilon_+^{-2} &= \left(\frac{u_1 + v_1 \sqrt{p}}{2}\right)^2 = \frac{(u_1^2 + v_1^2 p)/2 + u_1 v_1 \sqrt{p}}{2} \text{ with } \\ f_j \nmid u_1 v_1, \text{ so } \varepsilon_+^{-2} \notin Z_{f_j} (1 \le j \le r). \text{ Thus } E_{f_j +} \ne 2. \end{aligned}$ If $\varepsilon_{+}^{2^{2}} \in Z_{f_{i}}$, then for $\varepsilon_{+}^{2^{2}} = \frac{u_{4} + v_{4}\sqrt{p}}{2}$ with $v_4 = u_2 v_2 = \left[\frac{u_1^2 + v_1^2 p}{2}\right] u_1 v_1$, it follows that $v_4 \equiv 0 \pmod{i}$ holds for any t|f. For $f_j|f$ it holds that $f_j > u_1 v_1$ which gives $u_1^2 + v_1^2 p \equiv 0 \pmod{f_i}$. Since $p \equiv 1 \pmod{4}$, we have $u_1^2 - v_1^2 p = 4$. Substituting $v_1^2 p = u_1^2 - 4 \ln u_1^2 + v_1^2 p \equiv 0 \pmod{f_j}$ gives $u_1^2 \equiv 0 \pmod{f_j}$ 2 (mod f_j) from which it follows that $\left(\frac{2}{f_j}\right) = 1$, a contradiction to the assumption of f_j since $\left(\frac{2}{f_j}\right) = -1$ for $f_i \equiv 3 \pmod{8}$. On the other hand, by substituting $u_1^2 = v_1^2 p + 4$ in $u_1^2 + v_1^2 p \equiv 0 \pmod{f_j}$, we get $(v_1p)^2 \equiv -2p \pmod{f_j}$ implying that $\left(\frac{-2p}{f_i}\right) = 1$. But

 $\begin{pmatrix} -\frac{2p}{f_j} \end{pmatrix} = \begin{pmatrix} -\frac{1}{f_j} \end{pmatrix} \begin{pmatrix} \frac{2}{f_j} \end{pmatrix} \begin{pmatrix} \frac{p}{f_j} \end{pmatrix} = (-1)(-1)(-1) = -1 \text{ for } \\ f_j \equiv 3 \pmod{8} \text{ giving } f_j \equiv 3 \pmod{4} \text{ which results in a contradiction. Therefore, it follows that } E_{f_j+} \neq 2^2 (1 \le j \le r). \text{ By } \varepsilon_+^{2.q_j} = \varepsilon_+^{\frac{f_j+1}{2}} = \varepsilon^{f_j+1} \equiv \varepsilon^{\sigma}. \varepsilon = -1 \pmod{f_j}, \text{ since } p \equiv 1 \pmod{4}, \text{ it follows that } (\varepsilon_+^{q_j})^2 \equiv -1 \pmod{f_j} \text{ but } \begin{pmatrix} -\frac{1}{f_j} \end{pmatrix} = 1 \text{ is a contradiction } \\ to \text{ the assumption of } f_j. \text{ Thus } E_{f_j+} \neq 2.q_{l_1} \cdots q_{l_k} \text{ for } \\ \{l_1, \cdots, l_k\} \subseteq \{j_1, \cdots, j_s\}. \text{ This also rules out the possibility } E_{f_j+} = q_{l_1} \cdots q_{l_k}. \text{ Then the case } E_{f_j+} = 2^2.q_{l_1} \cdots q_{l_k} \text{ only holds for } \{l_1, \cdots, l_k\} \subseteq \{j_1, \cdots, j_s\}. \text{ Thus by the ring class number formula, for } f = \prod_{j=1}^r f_j, \text{ we obtain } \end{cases}$

$$\frac{h_{+}(pf^{2})}{h_{+}(p)} = f \prod_{j=1}^{r} \frac{\frac{fj^{+1}}{f_{j}}}{E_{+}} = \frac{\prod_{j=1}^{r} (f_{j}+1)}{\lim [E_{f_{1}+},E_{f_{2}+},\cdots,E_{f_{r}+}]} = 2^{2r} \cdot \frac{\prod_{j=1}^{r} q_{j}}{\lim [E_{f_{1}+},E_{f_{2}+},\cdots,E_{f_{r}+}]}, \text{ which deduces that}$$

$$2^{2(r-1)} \parallel \frac{h_{+}(pf^{2})}{h_{+}(p)}. \text{ We show that the family of rings}$$

 $\mathbf{Z}[1, f\omega]$ consists of infinitely many Z_f if each conductor f is a product of odd primes f_j such that $f_j = 2^2 \cdot q_j - 1$ with odd q_j and $\left(\frac{p}{f_j}\right) = -1$. For an odd prime f_1 such that $\left(\frac{p}{f_1}\right) = \left(\frac{f_1}{p}\right) = -1 = \left(\frac{n_p}{p}\right)$ with $(f_1, p) = 1$ and a quadratic non-residue n_p modulo p, it follows that there exist infinitely many primes f_1 congruent to $f_1 \pmod{p}$ and congruent to $n_p \pmod{p}$ from Dirichlet's Theorem on Arithmetic Progression. For odd primes f_1 we can choose $f_1 = 2^2 \cdot q_1 - 1$ such that $f_1 \equiv 3 \pmod{8}$ with an odd q_1 and $f_1 \equiv n_p \pmod{p}$. This completes the proof of the existence of infinitely many rings of conductors f whose ratios of the ring class numbers and class numbers are exactly divisible by a much higher power of 2 as compared to Theorem 4.2 of (Tariq *et al.*, 2016).

By stating the next theorem, we have proved that there exist a countable number of families of infinitely many rings Z_f whose ratios of the ring class numbers and class numbers are exactly divisible by an increasing power of 2 with each successive family in the set. This countable collection is a consequence of Theorem 4.2 (Tariq *et al.* 2016), Theorem 3.3 and the next theorem weighed together. The proof of Theorem 3.4 trails an outline of the proof of Theorem 3.3 with modifications for $f_i \equiv 7 \pmod{8}$ $f_i \equiv 3 \pmod{8}$ in Theorem 3.3.

Theorem 3.4 Let *K* be a real quadratic field with the prime discriminant $p \equiv 1 \pmod{4}$ and f be the conductor $\prod_{j=1}^{r} f_j$ of the ring $\mathbb{Z}[1, f\omega]$ with odd prime factors f_j such that $f_j = 2^n \cdot q_j - 1$ with odd numbers q_j , $n > 2, \left(\frac{p}{f_j}\right) = -1$ and $f_j > u_0 v_0 (1 \le j \le r), \frac{u_0 + v_0 \sqrt{p}}{2}$ is

the fundamental unit> 10*fK*. Then there exist infinitely many rings $Z_f = \mathbf{Z}[1, f\omega]$ such that $2^{n(r-1)} \parallel \frac{h_+(pf^2)}{h_+(p)}$. The next example affirms the efficacy of Theorem 3.4. **Example 3** Let $K = \mathbf{Q}(\sqrt{p})$ with p = 17. For $f = \prod_{j=1}^r f_j, n = 3$, let $f_j = 2^n \cdot q_j - 1$ with odd numbers q_j and $\left(\frac{p}{f_j}\right) = -1$ $(1 \le j \le r)$. Then we see that $2^{n(r-1)} \parallel \frac{h_+(pf^2)}{f_j}$.

		$h_+(p)$						
-	j	$f_j = 2^n \cdot q_j - 1$	$\left(\frac{17}{6}\right)$	$E_{f_j^+}$				
			$\langle J_j \rangle$					
	1	$23 = 2^3 \cdot 3 - 1$	-1	$2^3.3$				
	2	$71 = 2^3 \cdot 3^2 - 1$	-1	$2^3.3^2$				
	3	$167 = 2^3 \cdot 3.7 - 1$	-1	2 ³ .7				
	4	$199 = 2^3 \cdot 5^2 - 1$	-1	$2^3.5^2$				
	5	$439 = 2^3 \cdot 5.11 - 1$	-1	$2^3.5.11$				
h_+	(pf_1^2)	$1 = 2^0 = \mathbf{2^{3(1-1)}},$						
11	+(P)							
$\frac{h_+(p(f_1.f_2)^2)}{h(p_1)} = 24 = 2^3 \cdot 3^1 = 2^{3(2-1)} \cdot 3^1,$								
$n_{+}(p)$								
$\frac{h_+(p(f_1.f_2.f_3)^2)}{h_+(n)} = 576 = 2^6 \cdot 3^2 = \mathbf{2^{3(3-1)}} \cdot 3^2,$								
	$n_{\pm}(p)$							
h_+	$\frac{h_{+}(p(f_{1},f_{2},f_{3},f_{4})^{2})}{4608} = 2^{9}, 3^{2} = 2^{3(4-1)}, 3^{2},$							

 $\frac{\frac{h_{+}(p)}{h_{+}(p(f_{1}.f_{2}.f_{3}.f_{4}.f_{5})^{2})}}{\frac{h_{+}(p)}{h_{+}(p)}} = 184320 = 2^{12}.3^{2}.5^{1} = 2^{3(5-1)}.3^{2}.5^{1}.$

4. <u>CONCLUSION</u>

A comprehensive relationship between the prime decompositions of $f_j \pm 1$ and $E_{f_{j+}}$ is observed which needs a further study into the phenomena of parallel decompositions of $f_j \pm 1$ and $E_{f_{j+}}$. This would allow to investigate whether there exists infinitely many rings of conductors > 1 whose ratios are exactly divisible by a power of an oddprime p.

ACKNOWLEGEMNT

The authors wish to appreciate the facility of the downloaded GP/PARI Version 2.7.3.

REFERENCES:

Tariq, A., T. Nakahara, R. Qureshi and S.I.A. Shah (2016). Exact Divisibility of the Ring Class Numbers of a Real Quadratic Field. SURJ, vol. 48(2): 441-444.

Alaca, Ş. and K. S. Williams (2004). Introductory algebraic number theory, Cambridge: *Cambridge University Press*.

Hasse, H. (1964). VorelesungenÜber Zahlentheorie, Second Edition, Die Grundlehlen der Mathematischen Wissenshaften in Einzeldarstellungen, Bd. 59, New York: *Springer-Verlag*, Berlin- Göttingen- Heidelberg.

Cohn, H. (1994). Introduction to the construction of class fields, New York: *Dover Publications Inc.*