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Abstract:For a non-square integer n >1,let K = Q(+v/n) be a real quadratic field. In this paper we prove the
existence of a new family of infinitely many rings of conductors > 1 whose ratios of ring class numbers
and class numbers of K are divisible by a given power of 2 as an extension of our previous work. In
addition, we extend the family in our previous work to a countable number of families, each consisting of
infinitely many rings of conductors > 1 such that the ratios for each successive family are exactly divisible

by a progressively higher power of 2.

1. INTRODUCTION

Let K be a real quadratic field Q(v/n) over the
rationals Q and d be the field discriminant of K. For an
integer n = df?,f denotes the conductor of the ring
Z[1, fw], which is a subring of the ring Z[1, w] of
integers in K over the ringZ of rational integers. Here
h.(d) and h,(df?)denote the class number and the
ring class number of K in the narrow sense,
respectively. In (Tariq et al., 2016) the authors showed

that for a canonical decomposition [}, f; of f into odd
primes f; such that f; =2s; —1 remained inert in
2
K(1<j <r), the ratio —h;(cg)) was divisible by the
+
product of powers of distinct primes and that there
existed infinitely many such rings exactly divisible by a
power of 2. We now extend our result to odd primes of
the form f; = 2s; + 1 that are completely decomposed
in K(1<j <r) proving the existence of another
family of infinitely many such rings of conductors f >
2
1 whose ratios h;(;'(lt’;)) are divisible by the product of
+
powers of distinct primes and exactly divisible by a
power of 2. In addition, we recognize that our previous
family can be extended to a countable number of
families of infinitely many rings of conductors > 1
whose ratios are exactly divisible by an increasing
power of 2 for each subsequent family of the collection.

2. PRELIMINARIES
We state the following two lemmas which are
fundamental to this work.
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Lemma 2.1(Tariq et al., 2016) Let Kbe a real quadratic
field with the field discriminant d and € be the
fundamental unit > 1of K. Then for an odd prime f, it
holds that

ef1 =1 (modf) if (;é) =1, 1)

e*1 = +1 (mod f) if (;) =-1.(2)

Let E be the minimum exponent > 0 such that € =
+1 (mod f). Then it holds thatE| f + 1. Here (f)
means the Legendre symbol.

Lemma 2.2 (Alacaand Williams, 2004, Hasse, 1964)
Let Kbe a real quadratic field of prime discriminantp =
1(mod 4). Then the norm of the fundamental unit is
equal to—1.

It is known that h,(d) = 2 h(d) if Ng(e) =+1 and
h,(d) = h(d) if Ny(e) =—1 or K is an imaginary
quadratic field with the fundamental unit € of K and the
field discriminant d. We denote by Z; the ring Z[1, fw]

of conductor f with w = %ﬁ in the ring Z, = Z[1, ]

of integers in K. By the definition of ring class number,
h.(df?) coincides with the order #(A,/P;) of the factor
group Ag/P; for the fractional ideal group A and the
principal ideal subgroup Py of Ay in the ring Z; under
the equivalence relation A~B for A, B € A, if there
exists y € Z¢ such that B = yU with Ng(y) > 0. Now
we state the ring class number formula.
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Theorem 2.3 (Cohn, 1994) Let K = Q(\/df?) be a
quadratic field with the field discriminant d and the
conductor f. Then the ring class number formula holds;

()

har®) = n@f | Ja—25/E,

plf
a
[ war?) = @y | Ja- %))/E
plf

with the products over the primes p|f. Here, if d < 0,
h,(d) = h(d)andE, = 1 holds, except E, = 2 or 3 for
d = —4 or —3, respectively. If d > 0, E,.(resp. E)
denotes the exponent of the least power of the totally
positive fundamental unite, (resp. fundamental unit &)
such that e ®+(resp.c®) belongs to the ring Z; =

Z[1, fw], d+Vd and (%) denotes the

Kronecker symbol.
The contribution of this paper is described in the
following section 3.

where o =

3. RESULTS

We now extend the main result of (Tariq et al.,
2016) to odd primes of the form f; = 2q; + 1 that are
completely decomposed in K (1 <j <) proving the
existence of another family of infinitely many such
hi(af?)

rings of conductors f > 1 whose ratios (@

are

exactly divisible by a power of 2.

Theorem 3.1 Let K be a real quadratic field with the

prime discriminant p = 1(mod 4) andfbe the conductor
=1 f; of the ringZ[1, fw] with odd prime factorsf;

such that f; = 2.q; + 1, with odd numbers q;, (—) =1

and  fj > ugve(1 < j < 1), where % is the

fundamental unit>1 of K. Put Z; = Z[1, fw]. Then
there exist infinitely many rings Z, such that 2"~ ||
hi(pf?)

hi(p)

Proof Since f, = 2.q; + 1 and (fﬂ}) =1(1<j<n), it
follows from Lemma 2.1 that Efj+| 2.q;, where g; is an
odd number [];_; g;, with odd primes q;,. From Lemma
2.2,Er 4 |Ey,, since e, i =i = (") e %,
Thus Ef].+|2. q;- Hence it is deduced that i) Ef v = 1,

i) Ef 4 = 2,iii) Ef 4 = qu, - qu,, OF

V) Epjp = 2.qp, qu for{ly, -+, L} < {jr, - Jst-

i)Fore = Imzﬂ by Lemma 2.2 we have

2 2
1_ — (Wotvo P)Z/ +uovoVD, ’”Ithf} tugvo,

240

soe,l ¢ Zs, (1<j<7).ThusEp, # 1.

uz +v/p

i) Ife,2 € Zy,, then for g2 with

172 = u1U1 = [M] uovo, it fO”OWS that
v, = 0(modt) holds for any t|f. For f;|f it holds that
f; > uov, Which gives uy? + v4%p = 0(mod f;).

Thus it deduces that (}—p) = 1 which is a contradiction
J
to our choice of f;, where f; = 3(mod 4) and (%) =1
J

Therefore, it follows that Efj+ 2(1<j<n).

i) If Ef4lq; =qj - qj, then from &, 4 = £24j =
efit = e.e7t = 1(mod f;) it follows that &, %/2 € Zy,
which is a contradiction to the assumption of Ef}.+ since
q; is odd. Thus Er v # qu g for {ly, - L} &
{j1, -, js}. Then the case iv) Ef v = 2.q1, - qu, only

holds for {l;,---, 1} € {j1, -, js}. Thus by the ring class
number formula, for f =[], f;, we obtain

fj—l
naef?) _ ey [Mj=1(5j-1) _
hy(D) j=1 E+ " lem [Efy+EfptrEf ]
1= .
T j=19j , which deduces that
lem [Ep, 4 EfyprrEfps]

r—1 h+(pf)
2 e he(p) o ]
Z[1,fw] consists of infinitely many Z, if each

conductor f is a product of odd primes f; such that f; =
2.q; + 1 with odd g;and (/@) = 1. For an odd prime f;
J

such that (%) = (%) =1= (%’) with (f;,p) = 1and a
quadratic residue n, modulo p, it follows that there
exist infinitely many primes f1' congruent to f; (mod p)
and congruent to n,(mod p) from Dirichlet's Theorem
on Arithmetic Progression. For odd primes fll we can
choose f; =2.q,"+ 1 such that f; = 3(mod 4) with
an odd g, and fl' = n,(mod p). This completes the
proof of the existence of infinitely many rings of
conductors f whose ratios of the ring class numbers and
the class numbers are exactly divisible by a given power
of 2.

We show that this family of rings

The following experiments owe to GP/PARI Version
2.7.3. This example is an illustration of Theorem 3.1.

Example 1 Let K = Q(,/p) with p=13. Forf =
i=1fj let fj=2.q;+1 with odd numbers g;and

)= <j< r—1y h+(@f?
(f,-) 1 (1 <j <r).Thenwe see that 271 | D
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i fi=2.q;+1 (E) Epy
f
1 43=2.3.7+1 1 2.3.7
2 79=2.3.13+1 1 2.13
3 103 =2.3.17+1 1 2.3.17
4 107 =2.53+1 1 2.53
5 127 =2.32.7+1 1 2.32.7
6 131=2.5.13+1 1 2.5

he (f1%)

—1=20 he (0(f1f2)) —6=
h+(p) ' h4(P)
21_3 h @ (frfo-f3)%) =36 = 22. 32'
h4(p)

hye @(f1f2 f3-/)?) =72 = 23 32

h(p) T
hy @(1fof3-fa-f5)%) = 3024 = 24.33. 71

h(p) , o

hy(p(f1- f2- f3- fa- f5- f6)?) — 78624 = 25.33 71 131

h(p)
The next characterizes the equality of the ratio ———
the power of 2.
Theorem 3.2 Let K be a real quadratic field with prime
discriminant p = 1(mod 4). Let[]}_; f;be the canonical
decomposition of the conductorfwith odd prime factors

+(pf ) to

fi =2.q;+1 for odd primesq;such that(fﬁ) = land
J

fi > ugvo(1 < j < r)for the fundamental unitietoy® -

1lofK. Then for the ratio of the ring class

numberh, (pf?)and the class numberh, (p)ofKin the
narrow sense, it holds that

h.(df?)
h.(d)

Proof Since f; = 2.q; + 1 and (%) =1(1<j<r),it
]
follows from Theorem 3.1 that Ef].+ = 2.q; only holds

— 2T—1.

since g; is prime and e le’ e Zs, (Isj<m)as
fj > ugv, .Therefore, by the ring class number formula,

for f = [Ty ;. we have “e22) = £, (220, =

=7 1_

r 4192 Ar

lem [Epy 1 Epyrr Byl
The next example shows several applications of
Theorem 3.2.

Example 2 Let K = Q(,/p)with p=17. For f =
i=1fj» let f; = 2.q; + 1 with distinct odd primes q;

2
and (fﬂ) =1,(1<j<r7). that 2®—pr-1,
J

hy(p)
i fi=2.q+1 (ﬂ) E.
fi
1 43 =223+1 1 2.23
2 50=229+1 1 2.29
3 359 =2.179+1 1 2.179
4 383 =2191+1 1 2.191
5 467 = 2.233+1 1 2.233

241
he @A) _ 50 he UL _ 5 21
h4(p) ' hi(p)
hy @(f1f2-f3)%) =4 = 22 hy @(f1fo-f3-f4)) —g=23
hi(p) hi(p) '
h @(f1fo-f3-faf 5)%) - 16 = 24
hy(p)

The association between the canonical decomposition of
fj £ 1 for each odd factor f; of f and the prime
decomposition of Efj+ becomes quite obvious in the

next theorem. By taking f; = 2%.q; —1 such that

(%) = —1, where p is the discriminant of K, we show
J

that 22| Ey .

Theorem 3.3 For a real quadratic field K with a prime

discriminant p = 1(mod 4) and a conductorfof the ring

Z[1, fw] with r odd prime factors f; such that f; =

2%.q;—1 with odd numbersq,,(%) =—land f; >
J

W (1<j<71), where®2Z is the totally positive

fundamental unit e, > 10fK, there exist infinitely many

2(r—1) h+(l’f)
Z[1, fw] such that 2 I e ()

ProofSince f; = 22.q; — 1 and (fﬂ) =-1,(1<j<7),
J

it follows that Efj+| 22.q;, where g; is an odd number

i=1q;, with odd primes g;,. Hence it is deduced that

=1'Efj+=2’Efj+=22’ Efj+=qll.”qlk’

Ef]+ = Zz.qllmqlk fOI’

ringsZ, =

Efj+
Ef]+ =2.q,q, O
(L, e} € U sk

+
Fore = %, by Lemma 2.2 we have
2+vy%p)/2+ . .
g, l=g? = (uo®+vg P)Z/ uovoﬁWIthfj } ugv, since
24
UV = [w] UV > UgVp, SO £,.1 & Zy,

(1<j <r).Thus Ef v # 1.

z 2+v,2%p)/2 .
For E+2 — (u1+;;1\/5) I ! p)z/ +U1v1VP with

fit vy, s0e,% € Zp, (1< j <7).Thus Ef , # 2.

Ife, 2" € Z; , then for £, = % with

[u12+171217
2

Vy = UpUy = :Iulvl, it fO”OWS that

v, = 0(modt) holds for any t|f. For f;|f it holds that
f; > uyv; which gives u;* + v, ?p = 0 (mod f;). Since
p = 1(mod 4), we have u;? — v,%p = 4. Substituting
v1?p = uy? — 4inuy® + v, °p = 0 (mod £;) gives u,* =
2 (mod f;) from which it follows that (%) =1, a

J
contradiction to the assumption of f; since (fi) =-1
]

for f; = 3(mod 8). On the other hand, by substituting
u?=v’p+4 in w? +v,°p=0(mod f;), we get

(v1p)? = —2p (mod f;) implying that (_f—zf’) = 1. But
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2p VAV (2) = (=D (=1)(=1) = —
() -G F)() = coenen =1 for
fj = 3(mod 8)givingf; = 3(mod 4) which results in a
contradiction. Therefore, it follows that Efj+ *
fi+1
22(1<j<r). By &%= £+JT =¢fitl =
—1(mod f;), since p = 1(mod 4),

(e:7)? = —1 (modf;) but (;—1) =1 is a contradiction
J
to the assumption of f;. Thus EfjJr # 2.q, - qfor

i, b3} {1, ,js}. This also rules out the
possibility Efiv = qu, - q. Then the case Ef v =

22.q;, - qquonly holds for {ly,--, i} € {j1,, s}
Thus by the ring class number formula, for f = ]'[;zlfj,
we obtain

gl =
it follows that

f]+1
maer?) _ e o W)
hy(p) J=t E+ dem[Ep 1 EppEpy]
2r =19/

. , which deduces that
lem [Ef1+'Efz+""'Efr+]

2
220-1) | —h;(’zi)). We show that the family of rings

+

Z[1, fw] consists of infinitely many Z, if each
conductor f is a product of odd primes f; such that f; =

22.q; — 1 with odd q;and (%) = —1. For an odd prime
14 f1\ _ 14 - _
fu such that (£) = (2) = =1 = (%2) with (f,,p) = 1

P
and a quadratic non-residue n,, modulo p, it follows that
there exist infinitely many primes f1' congruent to
fi (mod p) and congruent to n, (mod p) from
Dirichlets Theorem on Arithmetic Progression For odd
prlmes f1 we can choose f1 =22, q1 — 1 such that
f1 = 3(mod 8) with an odd ¢, and f1 = n,(mod p).
This completes the proof of the existence of infinitely
many rings of conductors f whose ratios of the ring
class numbers and class numbers are exactly divisible
by a much higher power of 2 as compared to Theorem
4.2 of (Tariq et al., 2016).

By stating the next theorem, we have proved that
there exist a countable number of families of infinitely
many rings Z; whose ratios of the ring class numbers
and class numbers are exactly divisible by an increasing
power of 2 with each successive family in the set. This
countable collection is a consequence of Theorem 4.2
(Tariq et al. 2016), Theorem 3.3 and the next theorem
weighed together. The proof of Theorem 3.4 trails an
outline of the proof of Theorem 3.3 with modifications
for f; = 7(mod 8) f; = 3(mod 8) in Theorem 3.3.
Theorem 3.4 LetKbe a real quadratic field with the
prime discriminantp = 1(mod 4)and f be the
conductor[[}-, fjof the ringZ[1, fw]with odd prime
factorsfjsuch thatf; = 2™.q; — 1with odd numbersgq;,

n> 2,(2) —landf; > ugvo(1 <j <1),—— u"w"‘/_ is

242

the fundamental unit> 10fK. Then there exist infinitely

n(r-1) h+(pf)
Z[1, fw]such that2 I @)

The next example affirms the efficacy of Theorem 3.4.
Example 3 Let K = Q(,/p)with p=17. For f =
i=1fjm =3, let f; = 2".q; — 1 with odd numbers q;
and (fﬂ) =—1(1<j<r). Then we see that
]
Zn(r 1) Il h+(pf)

many ringsZ, =

hi (@)
i fl—Z".q]-—l (z) Efj+
fi
1 23=2%3-1 -1 23.3
2 71=23.32-1 -1 23.32
3 167 =23.3.7—-1 -1 23.7
4 199 =23.52 -1 -1 23,52
5 439 =23.511—1 -1 23.5.11
he®h) _ 1 _ 90 93(1-1)
hy(p) ,
he @(f1-f2)%) =24 = 23,31 = 232-1) 31
hy(p)
hy (P(f1fa-f3)) =576 = 26.32 = 23(3—1). 32
h(p) '
hy (0(f1 fo-fs-fa)%) = 4608 = 2°.32 = 234-1) 32
h4(p)

hy @(Frfo-f3-faf5)%) = 184320 = 212,32 5l —
hy(p T
23(-1) 32 51,

4. CONCLUSION
A comprehensive relationship between the prime
decompositions of f; + 1 and Ef .+ is observed which

needs a further study into the phenomena of parallel
decompositions of f; + 1and Ef].+. This would allow to

investigate whether there exists infinitely many rings of
conductors > 1 whose ratios are exactly divisible by a
power of an oddprime p.
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