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Abstract 

The main purpose of this research is to develop and improve the Simpson’s 1/3-type 

quadrature scheme numerically utilizing the geometric mean derivative for the Riemann- 

Stieltjes integral. The proposed scheme of Simpson’s 1/3-type is described in basic form 

and also in composite form. The performance of the proposed scheme is compared with 

existing schemes by experimental results using MATLAB. It has been noted in numerical 

results that the performance of new proposed scheme is more efficient against the 

existing schemes in terms of errors, computational cost, and average CPU time. 
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Introduction 
Numerical integration has been used to estimate a numeric value of a definite 

integral and it has several applications in engineering where the area of the 

function is computed by the curve. The definite integrals of such functions f(x) 

= ex  and f(x) = sin x2 cannot be evaluated analytically, so that they are solved 

numerically. The numerical method for the evaluation of definite integral is 

known as quadrature. Most of the  work has been done on the numerical 

integration for the Riemann integral in the literature. However, little work has 

been focused on numerical integration for the Riemann-Stieltjes integral. 

Riemann-Stieltjes integral (RS-integral) is defined in [1] as 
b 

 f (x) d (x) , where f is integrand and  is  integrator.  
a 

RS-integrals have several applications in the fields of Operator theory, 

Functional analysis, Complex analysis, Statistics and probability theory and 

others. 
 

In literature, the following papers [2] and [3] presented the derivative-based 

closed Newton-Cotes quadrature schemes for the Riemann integral. However, 

[4] presented a new four-point closed quadrature rule by the modification of [2] 

in Simpson’s 3/8 rule using midpoint derivative. Shaikh, [5] discussed the 

numerical solution of integral equations using quadrature method. In literature, 

the following papers [6] and [7] presented the inequalities on quadrature rules 

for the RS-integral. Zhao et al., [8] presented the quadrature rule of trapezoid- 

type for the RS-integral using the midpoint derivative. 
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Zhao et al., [9] proposed the composite form of trapezoid 

rule for the RS-integral using derivative-based approach. 

Memon et al., [10] modified the [8] scheme for the RS- 

integral using experimental work. Memon et al., [11] 

proposed a new heronian mean derivative-based 

Simpson’s 1/3 scheme for the RS-integral with 

experimental work. 

 
Definition of quadrature rules for the Riemann 

integral 
The basic formula of a definite integral over the 

closed interval [a, b] is defined in [1] as 
 

b                               n 

In this study, a new derivative-based Simpson’s 1/3 

scheme is developed for the RS-integral using the 

geometric mean. The proposed scheme is verified and 

compared by numerical experiments in terms of errors, 

cost efficiency and time efficiency. 

 
Materials and Methods 

 
Here n+1 are separate integration points at x0, x1, 
…,xn  inside the closed interval [a, b] and n+1 are 

weights wi, i = 0, 1, 2, ..., n. If the points of 
integration are equally divided over the closed 
interval [a, b] then 

 f ( x)dx   wi f (xi ) (1) x = a+ih, where h = (b-a)/n. 

a  i =0 

Some Existing Scheme for the RS-integral 
The basic forms of some existing schemes: T [6], ZT [8], MZT [10], are described for the RS-integral in (2)-(4) as: 
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Proposed Geometric Mean Derivative-Based Simpson’s 1/3 Scheme for the Riemann-Stieltjes Integral 

The basic proposed geometric mean derivative-based Simpson’s 1/3 GMS13 scheme for the RS-integral is defined in (8) as 
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The precision of this scheme is 4. 

The composite form of the proposed GMS13 scheme is GMCS13 scheme for the RS-integral is defined in (9) as 
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Table 2: Average CPU time obtained to achieve at 

most 1E-05 absolute error in quadrature variants for 

Examples 1-3. 

Quadrature 

Variants 

CPU time (in seconds) 

Example 

1 

Example 

2 

Example 

3 

CT 68.04 12.82 432.30 

ZCT 552.60 153.98 6469.38 

MZCT 31.90 6.14 32.54 

GMCS13 27.61 5.84 31.20 
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Results and Discussion 
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The performance of proposed GMCS13 scheme for the 10
-1

 

RS-integral is tested by experimental results in the 10
-2
 

comparison of existing schemes CT, ZCT and MZCT -3 

schemes. Three numerical problems have been tested 
-4 

for   each   scheme   taken   from   [11],   which   were 
10

 

determined utilizing MATLAB. The results of all 

schemes are noted in Intel (R) Core (TM) Laptop 

having RAM 8.00GB with processing speed 1.00GHz- 

1.61GHz. Double precision arithmetic is used for 

numerical results. 

Example 1. 

-5 

10 
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0  2  4  6  8  10  12  14  16  18  20 

Fig 1. Comparison of absolute errors versus 

number of rstrips to all schemes for Example 1 
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Example 2. 

∫  �𝑖� � �(� 3 ) = -59.655908136641912 10
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Example 3. 

∫  � � � �𝑖� � = 187.4269314248657 10
-8

 

In Figs. 1-3, the absolute errors of proposed GMCS13 scheme 
have been compared against the existing schemes CT, ZCT and 

MZCT and finally, it is noted from numerical results that the 

errors of proposed GMCS13 scheme reduced rapidly whereas 

the errors of existing schemes reduced slowly for all examples. 

Table 1: Computational cost obtained to achieve at 

most 1E-05 absolute error in quadrature variants for 

Examples 1-3.
 

-10 
10 

0  10  20  30  40  50  60  70  80  90  100 

Number of strips 

Fig 2. Comparison of absolute errors versus 

number of strips to all schemes for Example 2 
 

2 

10 

 
        ZCT 

0 

10
 

 

Quadrature 
 

Computational cost 

GMCS13 

Variants Example 1 Example 

2 

Example 

3 -4
 

10 

CT 439 1415 2503 

ZCT 1043 3503 6253 

MZCT 73 78 78 

GMCS13 59 45 66 
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Fig 3. Comparison of absolute errors versus number 

of strips to all schemes for Example 3 
 

It is observed from Table 1 and Table 2 that the proposed 

Scheme obtained minimum computational cost and took 

smaller average CPU time to achieve the error 10-5 in 

comparison of others existing schemes for Examples 1-3. 
 

Conclusion 
A new efficient Simpson’s 1/3-type quadrature scheme with 

geometric mean derivative was proposed for the RS-integral. 

Three numerical problems were examined in order to show the 

performance  of  proposed  scheme  in  comparison  of  three 

existing schemes. The overall performance of proposed scheme was efficient numerically against the existing schemes. 
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