

1. INTRODUCTION
 Today the smartphones are carrying much
more data with them as compared to a traditional
phone. Too many applications are available through
which users can easily extend their phone features.
Numerous amounts of data availability have gained
the attention of hackers. Recently it is reported that
google play store contains some of the applications
which appear as a legitimate application but are
encountered spying on user data. These applications
once installed on the phone can to use the phone
resources and sending user data to remote location
without your consent. The spying on user datais
accomplished by abusing the android permission
system.

A. Android Security

To understand the importance of security for
android devices, we discuss some famous security
incidents and the permission systems of android.

Security Incidents of Android Devices:The number
of spy applications for mobile phone operating
systems generally and android framework
specifically are increasing. In 2016, some
applications were identified which were recording
the data of users from the usage of the resources in
the phone and further and sending them to remote
server by misusing the android permission system.
Trend Micro in July 2016, discovered an updated
version of a very popular game GO Pokémon(Micro

2017) which contained a trojan inside it and
available at third-party app stores. The trojan could
access the SMS, calls, phonebook, camera, audio
recorder, Gmail account and could even turn on or
off the Wi-Fi of a mobile phone.

Similarly, in Aug 2017, two applications
SonicSpy(Micro 2017) and FakeToken(Micro
2017)wereidentified at google play store deploying
the same attack of recording personal information
and sending it to remote servers. SonicSpy was
integrated into messaging applications and has
affected more than 4,000 mobile systems before
they get detected. A “FakeToken” was inserted into
buy-a-ride application that would keep recording
the user’s financial credentials when they pay for a
ride in the application. Later on, it was identified as
mobile ransomware. In Sep 2017, another
application as GO Keyboard(Micro 2017) was
reported which could record a user information and
transmit it to a server in China. It could even
execute the code from a remote server on your
mobile device.

Android Permission System: In android OS, the
permission management system controls the access
to resources and data. An application explicitly
declares the permission for the resources they want
to use, in the app manifest file. The application can
request the permissions at install time or at runtime.

Abstract: There has been a significant increase in the use of Android platform in the last decades mainly because of the features
that it offers, i.e., open-source architecture, a wide range of Application Programming Interface (API). For controlling access to
resources and data, the android platform offers contains a permission management system. However, recently several third-party
applications are found abusing the android permission system. Such applications misuse the granted permissions without user
knowledge. Some of the researchers have proposed permission managers which revoke the third-party application permissions to
stop the misuse. Although such security applications allow users to revoke the app permissions, however, it is difficult for the users
to differentiate between a genuine resource access and a malicious access. In this research work, a security application has been
developedthat presents useful monitoring information to usersto help them in deciding on which applications should be restricted
from using the phone resources and data. It monitors applications' and systems' activities (e.g., process importance, screen on/off
information) and calculates the corresponding risk to notify user about the resource access. If further enables the user to revoke the
granted permissions to an android application by considering such resource access reports.

Keywords: Security, privacy, android applications, resources

Monitoring And Controlling Access to Privacy Sensitive Resources of Android System

http://doi.org/10.26692/sujo/2020.03.08

SINDH UNIVERSITYRESEARCH JOURNAL (SCIENCE SERIES)

SindhUniv. Res. Jour. (Sci. Ser.) Vol. 52 (01) 49-56 (2020)

S. JAN, A. RAUF*, R. SAEED*, N. M. FANCY*, F. Q. KHAN**, G. AHMAD++***, K. AZAM****

National Center for Cyber Security-UETP, Dept: of CS&IT, University of Engineering & Technology, Peshawar, Pakistan.

Received 24th September 2019 and Revised 16th January 2020

++Corresponding Authoremail: gulzar@uetpeshawar.edu.pk, sadeeqjan@uetpeshawar.edu.pk
* Department of Computer Science, University of Peshawar, Peshawar, Pakistan.
** Dept: of IT, Faculty of Computing & IT, King Abdulaziz University, Jeddah, Saudi Arabia
*** Dept: of Electrical Engineering, University of Engineering & Technology Peshawar, Pakistan.
**** Dept: of Mechanical Engineering, University of Engineering & Technology Peshawar, Pakistan.

S. JAN et al., 50

In Android version 5.1.1 (SDK 22) and previous
versions, users are asked about the permissions
when installing an application. They can either
accept all permissions or reject them, however, in
the latter case, the application installation will fail.
There is no option to customize the permissions,
i.e., accept some while reject others.

In Android version 6.0 (SDK 23) and above, the
new concept of runtime permissions is introduced
which resolves these issues, however not
completely. Users are asked about granting a
permission at runtime which can either be allowed
or denied. However, the user is held responsible in
this case and when they have limited knowledge of
permissions, they might allow all of them to get the
application installed quickly. Users do not know if
the application is genuinely using the resource or
not. Therefore, it is difficult for him to decide
whether to allow or deny the permission. There is a
need to provide users more useful information
through which he can differentiate between genuine
or malicious resource access.

B. Problem Analysis and Motivation
For the proof of concept, we have conducted an

experiment by using penetration testing tools. The
tools we have used are Kali Linux penetration
testing distribution (Tedi Heriyanto and Lee Allen
2014)., Metasploit framework (Kennedy et al.
2011) and some real android devices. A spy
application is generated using payloads already
present in Metasploit framework. This spy
application is then packaged with a genuine android
application with the help of Apktool. The final
packaged spy application is installed on two android
real devices with different versions.

It is observed on the first device that the spy
application work as genuine application and the user
will not be aware of spyware working at the
backend. The spyware is able to collect data and
send to a server on request even when the phone
screen is off and the phone is locked.On the second
device, it is observed that the permission list is
displayed when the application starts using the
resource once which might put user to think why it
is asking to use camera when I have not initiated it.
However, if the user once allows it will not ask
again for the permission and will start using the
resource. Hackers may set the interface to ask
permission for once.

With this observation, we have concluded that
most of the spy applications act as genuine. They
ask permissions genuinely and afterward misuse
them. They can even operate when the screen is off
and the phone is locked. They are usually initiated
by the internal commands and not by user
interaction.

2. LITERATURE REVIEW

Previously a lot of research is carried out to
detect and prevent phone resources and data from
spy applications. For handling permission abuse,
permission managers havebeen introduced by using
four different techniques Apk modification,
Customized ROM, Hooking technique and AppOps
API (Tools 2014).The solution based on Apk
modification normally work in a fashion to
disassemble android applications, perform the
required changes by the users, reassembles and
finally reinstalls the updated version. Customized
ROM based solutions update some of the core
functionalities of android operating system to
achieve desired results.Another popular method is
called Hooking where the running code’s is
modified to interrupt the normal execution of a
process. Google also introduced the AppOpsAPI in
Android 4.3. It has an application at the user
interface level enabling the users for revoking
application permissions for various resources in the
phone dynamically.

Advanced permission manager(Tools S.
2016)works by modifying .apk files to update the
permission list already defined inside the
application. Appguard application(Backes et al.
2013) comes with predefined security policies. The
apk files are extracted to “classes.dex” by the
process of decompilation and rewrites of some of
the code. In(Do et al. 2014) an ideal permission
removal system is presented. The system
decompiles the apk file and extracts java code file
from it rather than dex code files like in(Backes et
al. 2013). This is because removing permission
dependent code from java files is quite easy then
from dex files. A privacy-enforcing framework is
presented in(Neisse et al. 2016) that decompiles the
android apk and extracts the byte code. The byte
code and the concrete security policy set by the user
arepassed to the instrumentation system, which
generates the instrumented byte code.

CyanogenMod(Kondik 2016) is a user-defined
ROM consisting of several functions along with the
permission control system through which the users
can grant/deny various permissions when required.
The APEX(Nauman et al. 2010)framework enables
users for granting permissions and imposing
constraints on various resources based on the
defined/enforced policies. Another extended version
of Android is MockDroid(Beresford et al. 2011)
that can present the resources to users with several
options, e.g., availability, fake value. In addition,
AppFence is also introduced which aims to impose
privacy controls by providing “shadow data” in
place of real data to android applications. AppFence
works by substituting the data with virtual “shadow
data” as per user request. For example, when an
application requests for a contact lists, it may
receive an empty list. Another application called
Permission Tracker(Kern & Sametinger 2012)gives
an overview to the users about the granted
permissions, observe the resources for various

Monitoring and Controlling Access to Privacy...

51

access requests and grant/deny such requests.
Middleware for permission managers(Wang et al.
2015)is based on user-defined ROM providing user
interfaces for controlling permissions and
controlling the potential violations of permission
usage. Ensuring Privacy System(Constantinescu
2015)utilizes the framework for helping in hooking
or extending/replacing various functions. It can
work by revoking the permissions as well as
enabling users in providing fake data to other
unwanted applications regarding permissions.
DelDroid(Hammad et al. 2017)system works by
detecting applications that have already received
unwanted permissions and revoke them by applying
the lease privilege principles.Similarly, another
application called Identidroid(Shebaro et al.
2014)enables users to control access to their
data/resources as well as helps in anonymizing it
with fake values.

LBE (Lets Be Elite) system is based on root-
level controls(Tools 2015) to monitor applications
and notifies users about any access to potentially
sensitive resources. Using this application, run-time
access to resources can be controlled by users. Real-
time monitoring system(Li et al.2015)works by
injecting proxy server into android code for
monitoring permissions and other potential
violations of privacy. Patronus(Wang et al. 2015)is
used for the detection of potentially harmful codes
(e.g., viruses) by analyzing transaction data.
Similarly, DeepDroid(Wang et al. 2015) is a
security application that works by defining how
various resources should be used. Their system is
implemtned via instrumentation of memory of
sensitive processes.

FireDroid(Russello et al. 2013) is another
application for enforcing security policies in
android. In this application, ptrace utility is used for
monitoring processes for security purposes. The
system works by intercepting zygote process and
init.rc file.

PrivacyMod(Silva et al. 2015) and AppOps
Starter (Tools 2014)are extender versions of the
Google API AppOps for monitoring/controlling
confidential data for privacy reasons. The systems
offers run-time notifications, logging permissions
and enabling users for grading/denying such
permissions. AppOps API based solution(Silva et
al. 2015, Tools 2014)is similar in nature and
dependent on the extension of API or to hook it as it
has been deprecated for 3rd-party apps.

3. MATERIALS AND METHODS
The security application presented in this

research consists of two system modules:
Monitoring System (MS) and Controlling System
(CS). The MS monitor the selected privacy sensitive
resources shown in Table 1. The security
application monitors to check for the user consent
about the resource whether in foreground or

background. It creates report for selected privacy
sensitive resources and display it to user.

TABLE 1 MONITORED ANDROID RESOURCES

RESOURCES PERMISSION
Camera CAMERA

Location
ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION

Microphone RECORD_AUDIO

Telephony

CALL_PHONE
PROCESS_OUTGOING_CALL
READ_SMS
RECEIVE_SMS
SEND_SMS
WRITE_SMS

Contacts READ_CONTACTS

For selecting the privacy sensitive resources, we
have categorized the resources into three groups that
are hardware resources, software resources and data
shown in Table 2. Then the resources in each
category are prioritize on the basis of the risk they
impose if assigned to a third-party application. The
resources which are assigned the 1st priority is
considered as privacy sensitive resources. At the
end few resources from each category are selected
for monitoring. The Appendix A: Potentially risky
permissions from(Nauman et al. 2010) is also
considered for selecting the resources for
monitoring.

Architecture of the Proposed Tool:As depicted in
Figure 1, the architecture of our proposed tool
consists of the following two components:

 The Monitoring System (MS)
 The Controlling System (CS)

TABLE 2 PRIORITIES OF RESOURCES

Resources Priority 1 Priority 2

Hardware
Resources

Camera NFC
Gps Speaker
Microphone Battery
Memory Vibrator
Network Flashlight
Bluetooth
Keypad

Software
Resources

SMS Service Maps
Call Service Calendar

Security Tool for Android Permission
System

The Monitoring System (MS)

The Controlling
Systems (CS)

Figure 1 Architecture of the Proposed Tool

S. JAN et al., 52

Mailing applications Notes
Social media Widget

Data
Resources

Contacts Phone state
Message log Account info
Call log Network state
Files Synchronization info

A. The Monitoring System (MS)

The Monitoring System is a system module of
security application that decides about the apps
using the resources in a legitimate way and those
which are using it in an illegal way. For
differentiating between these two types of
applications, we monitor security relevant tasks of
the applications. Such information can be used by
users to identify which apps are harmful and
misusing their resources so that they can be
uninstalled or stopped.

The MS module generates reports containing
information about resources that can be presented to
users. The data included in such reports depict the
status of applications when they are using various
types of resources.

Application Name:The application name is
mentioned in the report which use various types of
resources. For instance, a user may select the
speaker resource to get information about speaker
usage. A list of applications will appear which have
used the speaker resource.

Date and Time of Access:The report also include
the date and time at which a resource e.g., speaker
was used by a particular application.

Duration:Duration for which the resource was used
by a particular application is also an important piece
of information included in these reports. The
duration is recorded by using Dumpsys tool.
Dumpsys tool is used to record the AppOps service.
The facility of searching the record is also available
to extract the duration for which the resource was
used by a particular application.

Date and Time of Release:Resources are utilized
by applications for certain duration of time and then
they are released. Our reports also include the date
and time at which a particular resource is released
by an application. The time of release is also
recorded by dumping the AppOps service file using
Dumpsys tool.

Screen Information:Another important feature that
is recorded in our reports is about the screen on/off,
i.e., it records if the mobile screen was switched off
or On when a resource was accessed. It further
stores the locking status of the device when the
resource was accessed. There are four possibilities
as listed in Table 3. Such information is stored via
APIs (Power Manger/Keyguard Manger).

TABLE 3. SCREEN ON/OFF INFORMATION

Screen On Off
Lock Screen on and

lock
Screen off and
lock

Unlock Screen on and
unlock

Screen off and
unlock

Window Information:Recording about window is
also an important information. This basically
represents the contents of on the screen when the
resource was accessed. Such information helps to
identify how user was interacting with the
application and the platform. It includes the
information about the focused window at the time
of resource access. It also helps to identify whether
the resource was accessed in the background or
foreground, e.g., whether the requesting application
is on focused window or not. The tool Dumpsys is
used for recording this type of information.

Process Information:The last piece of information
that we record in the reports is related to the
executing processes. The class “API
RunningAppProcessInfo” is used to collect the
importance level of various processes as listed in
Table 4 with specific meanings. The importance
level of each process is assigned to
foreground/background. In case of the foreground,
the process is running and user is interacting with it.
On the other hand, for background, the process is
executing however the user is not interacting with it.
Such information can be used to describe the
behaviour of the application.

As listed in Table 4, the initial 4 scenarios are
related to foreground. The reason is that they are all

Monitoring and Controlling Access to Privacy...

53

in the knowledge of the user. On the other hand, if
we look at the last 2 cases, they users may not be
aware of them and therefore they are classified as
background. For recording such type of Process
information, we use the class
RunningAppProcessInfo API. The class can be used
to collect all type of relevant information about a
process.

When we combine all these features, we get a
good overview of the application’s behavior when it
is using a resource. This information is then used by
the report generator for making report of all
modules. Such information is further passed to other
classes (e.g., interface) to present it to user when the
application is opened.

The proposed work presents a policy based on
risk calculation for notifying user about resource
access.However, it is important to note that when
the notifications on each resource access also affects
the stability of the system. In this research work, we
present a policy on how to notify events
whilemaintaining the stability. Our proposed policy
clearly distinguishes when it is required to notify
the user and when it is not required when a resource
is accessed. In addition, the policy also defines
when there is no need to notify users regarding the
events. A value is calculated based on the risk level
and monitoring results for resource accesses.
Further, a value called threshold is also defined.

For every feature, we have wo possibilities, i.e.,
the normal and the abnormal. These possibilities are
listed in Table 5. To calculate the risk, a value of 1
is added for every abnormal outcome. In case of a
normal output, the user notification is suppressed.

• The value of 1 is added to risk level when
the process importance is unknown (in
background)

• In case of the screen off event, 1 is added
again to the risk level.

• In case of the phone lockage, the value of 1
is added to risk level.

• In case of non-focused window, the value of
1 is added to the risk level.

These cases give rise to total sixteen scenarios.
In Table 6, 7 of such cases are listed as the other
cases are not possible. This is because when the
phone’s screen is off or it is locked, then the
focused windows cannot be there for the
application. We have defined the threshold to 2
which means the user will be notified if the risk
level >= 2.

B. The Controlling System (CS)

Through the process of controlling, we take
actions when the applications behave in abnormal
ways. Users of a mobile applications should have
the ability to control how their personal

data/resources are used by applications. Such
actions can consist of Allowing or Disallowing
access to resources by users. Our developed
application presents a spinner widget button to users
where they can opt for allowing or disallowing for
using their resources or whether to present fake data
to the application. The default value is set to
“Allow”. Incase of the user selection of “Disallow”
to a specific resource, the particular application can
no longer use that resources.

TABLE 5. MONITORING FEATURES BEHAVIOUR

Features
Outputs

Abnormal Normal

Process Background/Unknown Foreground
Screen Off On
Phone Lock Unlock
Window Not Focused Focused

TABLE 6. POLICY BASED RISK CALCULATION

No Cases Risk
Calculation

Ris
k

level

Notificatio
n

Case
1

Process(B/U)
, Screen(off),
Phone(L),
Window(NF)

Process(B/U
) +1
Screen(off) +
1
Phone(L) +1
Window(NF
) +1

4 Notify

Case2 Process(B/U)
, Screen(off),
Phone(UL),
Window(NF)

Process(B/U
) + 1
Screen(off) +
1
Window(NF
) + 1

3

 Notify

Case
3

Process(B/U)
, Screen(on),
Phone(L),
Window(NF)

Process(B/U
) +1
Phone(L) +1
Window(NF

) +1

3 Notify

Case
4

Process(B/U)
, Screen(on),
Phone(UL),
Window(NF)

Process(B/U
) +1
Window(NF
) +1

2 Notify

Case
5

Process(B/U)
, Screen(on),
Phone(UL),
Window(F)

Process(B/U
) +1

1 Do not
Notify

Case
6

Process(F),
Screen(on),
Phone(UL),
Window(NF)

Window(NF
) +1

1 Do not
Notify

Case
7

Process(F),
Screen(on),
Phone(UL),
Window(F)

Null 0 Do not
Notify

4. RESULTS & DISCUSSIONS

Easy to use Interface:In this research work, we
have developed an easy to use and efficient
interface for the android application. There exist
many security solutions for android, however, their
use is limited because of the complexities involved
and the requirement of customized ROM. Our

S. JAN et al., 54

developed application does not require any
customized ROM and can be installed by any user
by just downloading it and making a few clicks
without any pre-requisites.

Data and Resource Monitoring:Our developed
application contains a monitoring module which
observes all requests made from various
applications to resources. The information about
start/stop time of resource usage is also recorded.

Access Information Record:All information about
the accesses to resources are recorded. Such
information contains foreground/background
context and user consent/interaction with the
application etc. Such information can be used for
deciding the nature/behavior of an application i.e.,
its genuineness as resource misuse is often done in
(Micro 2016, Micro 2017, Micro 2017, Micro
2017).

Balance between Usability and Event
Notifications:Access to resources are controlled in
real-time by our developed application. However,
notifying the users about each resource access and
asking them for allowing/disallowing these accesses
often annoys the users and affects the usability. To
address this issue, we have developed a policy for
event notification, i.e., the user will not be notified
if he/she has explicitly made interactions with the
application. The user will be asked only when the
application request to use a resource without the
user interaction.

Comprehensive Reports:Our developed application
offers comprehensive reports about the use of each
resource. It consists of the list of applications which
have used that particular resource, the date/time of
resource access, start/end time of usage etc.

Access Controls of Resources/Data:The main aim
of our developed application is to block applications
for using resources without the user consent or give
the application fake data. It provides full control of
resources to users, i.e., in case a user selects to
block a particular application from using a resource,
that particular application can no longer use the
resource. The developed application gives options
to user for blocking the application completely or
allowing with fake data for a particular resource
request. For instance, if the microphone resource is
blocked for some application e.g., MS word, the
microphone can no longer be used by MS word
anymore. On the other hand, if we allow the
resource with fake data, the application will be
presented with the fake data and in this way the
abnormal termination of the application can be
avoided.

5. CONCLUSION AND FUTURE WORK
Mobile applications often misuse our

confidential data and resources without our explicit
consent. There exist applications which look
genuine at first sight however, they may contain
malicious code for sending our sensitive
information to hackers or misusing the phone’s
resources. It is often a challenge for the users to
identify whether an application is using the
resources as per its need or maliciously. A security
monitoring application that can monitors each
resource access in real-time and notifying the user
about it will adversely affect the usability.

This research has presented a security
application thatmonitors how applications are using
selected privacy sensitive resources.When resources
are used by an application, our monitoring security
application records the features and based on the
pre-defined policy, it makes a decision if the user
should be notified for this event or not. The use is
not notified for each resource access and therefore
keeping intact the system usability. The application
generates comprehensive reports about resource
usage. The user is notified for any type of
potentially malicious access to resources or data.
With the help of the reports, users are in a better
position to decide about malicious and legitimate
access to resources. The controlling module of the
security application helps the user in revoking
application permissions when required.

Our developed security application provides
resource-based reports to users. The application can
be extended to application-based interface.
Application-based reportswill include resources
accessed by that particular application and their
details. In future, recording more features for all
resources can be added that will differentiate the
genuine application form malicious application
more precisely. The security application presented
in this research can be updated for the newer
android version.

Another possible future work is to extend the
developed security application to monitor more
resources of the android system. It can also be
enhanced by setting a variable risk threshold value
based on the android user. The variable risk
threshold value will help to decrease the false
negative and false positive rate of the application.

6. ACKNOWLEDGMENT
This research is supported by the Higher

Education Commission (HEC), Pakistan through its
initiative of National Center for Cyber Security for
the affiliated Security Testing-Innovative Secured
Systems Lab (ISSL) established at University of
Engineering & Technology (UET) Peshawar, Grant
No: 2(1078)/HEC/M&E/2018/707.

Monitoring and Controlling Access to Privacy...

55

REFERENCES

Backes, M. (2013)“Appguard--enforcing user
requirements on android apps”,s.l., s.n., pp. 543-548.

Beresford, A. R., Rice, A., Skehin, N. & Sohan, R.,
(2011)“Mockdroid: trading privacy for application
functionality on smartphones”,s.l., s.n., pp. 49-54.

Constantinescu, A. S., (2015)“Ensuring privacy in the
android os by hooking methods in its api”. Journal of
Mobile, Embedded and Distributed Systems, Volume 7,
pp. 107-112.

Do, Q., Martini, B. & Choo, K.-K. R., (2014)“Enhancing
user privacy on android mobile devices via permissions
removal”.s.l., s.n., pp. 5070-5079.

Hammad, M., Bagheri, H. & Malek, S.,
(2017)“Determination and enforcement of least-privilege
architecture in android”.s.l., s.n., pp. 59-68.

Hornyack, P. et al., (2011)“These aren't the droids you're
looking for: retrofitting android to protect data from
imperious applications”.s.l., s.n., pp. 639-652.

Kern, M. & Sametinger, J., (2012)“Permission tracking
in android”. s.l., s.n., pp. 148-155.

Kondik, S., (2016)“Welcome to Cynogenmod”. [Online]
Available at: http://www.cyanogenmod.org/
[Accessed 18 March 2019].

Li, S. (2015)“Real-time monitoring of privacy abuses
and intrusion detection in android system”.s.l., 379-390.

Micro, T., (2016) “Malicious Version of Popular Mobile
Game Pokemon Go App Spotted.” [Online]
Available at:
https://www.trendmicro.com/vinfo/no/security/news/mob
ile-safety/malicious-version-of-popular-mobile-game-
pokemon-go-app-spotted
[Accessed 18 March 2018].

Micro, T., (2017)“FakeToken Android Banking Trojan
Returns as a Ride-sharing App”, Trend Micro Inc.
[Online]
Available at:
https://www.trendmicro.com/vinfo/no/security/news/mob
ile-safety/faketoken-android-banking-trojan-returns-as-a-
ride-sharing-app
[Accessed 2019 March 2019].

Micro, T., (2017)“GO Keyboard Apps Collect and Send
User Data to Remote Servers”. [Online]
Available at:
https://www.trendmicro.com/vinfo/us/security/news/mob
ile-safety/go-keyboard-apps-collect-send-user-data-
remote-servers

Micro, T., (2017)“SonicSpy Android Spyware Found in
Google Play”. [Online]
Available at:
https://www.trendmicro.com/vinfo/no/security/news/mob
ile-safety/sonicspy-android-spyware-found-in-google-
play
[Accessed 18 March 2019].

Nauman, M., Khan, S. & Zhang, X., (2010)“Apex:
extending android permission model and enforcement
with user-defined runtime constraints”. s.l., s.n.,.

328-332.

Neisse, R., Steri, G., Geneiatakis, D. & Fovino, I. N.,
(2016)“A privacy enforcing framework for Android
applications”. computers & security, Volume 62, pp.
257-277.

Russello, G., Jimenez, A. B., Naderi, H. & Mark, W.,
(2013) “Firedroid: Hardening security in almost-stock
android”. s.l., s.n., pp. 319-328.

Shebaro, B., Oluwatimi, O., Midi, D. & Bertino, E.,
(2014)“Identidroid: Android can finally wear its
anonymous suit”. Transactions on Data Privacy.

Silva, P., Amorim, V. J. P., Ribeiro, F. N. & Muzetti, I.,
(2015)“Privacymod: Controlling and monitoring abuse
of privacy-related data by android applications”.s.l., s.n.,
pp. 42-47.

Sun, M., Zheng, M., Lui, J. C. S. & Jiang, X.,
(2014)“Design and implementation of an android host-
based intrusion prevention system”.s.l., s.n., pp. 226-235.

Tools, S., (2016)“Advanced permission manager”.
[Online]
Available at:
https://play.google.com/store/apps/details?id=com.gmail.
heagoo.pmaster&hl=en
[Accessed 18 March 2019].

Tools, L., (2015)“LBE (ROOT)”. [Online]
Available at:
https://play.google.com/store/apps/details?id=com.lbe.se
curity&hl=en
[Accessed 18 March 2019].

Tools, O., (2014)“App Ops starter”. [Online]
Available at:
https://play.google.com/store/apps/details?id=com.schuri
ch.android.tools.appopsstarter&hl=en
[Accessed 18 March 2019].

Wang, D. et al., (2015)“A secure, usable, and transparent
middleware for permission managers on Android”. IEEE
Transactions on Dependable and Secure
Computing,Volume 14, pp. 350-362.

Wang, X., Sun, K., Wang, Y. & Jing, J.,
(2015)“DeepDroid: Dynamically Enforcing Enterprise
Policy on Android Devices”. s.l., s.n.

Kennedy D, O’Gorman J, Kearns D, Aharoni M
(2011): “Metasploit: the penetration testers guide”. No
Starch Press.

Tedi Heriyanto, Lee Allen (2014). “Kali Linux –
Assuring Security by Penetration Testing.”, Packt
Publishing Ltd.

