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1.               INTRODUCTION 

Flower classification plays a vital role in a wide 

variety of fields which includes forestry, agriculture, 

fragrance, and medical industries. The automated 

system for flower identification helps to eliminate the 

manual query of flower information from large scale 
databases. The automation also improves the efficiency 

of the flower information retrieval system while 

reducing labor costs and human error at the same time. 

In terms of research, flower classification is a more 

challenging task in comparison to the object 

classification due to similar characteristics such as 

color, appearance, and shape. Moreover, the contextual 

information in terms of surrounding leaves, grass, and 

so forth, does not account for better recognition 

performance (Hiary, et al.,2018). Another reason for 

increased complexity in flower recognition systems is 
the number of species needed to be classified. A study 

reveals that there are more than 250K known flower 

species which can be categorized into 350 families 

(Kenrick, 1999). A wide variety of applications such as 

flower taxonomy, live plant identification (Chi, 2003), 

floriculture industry, plants monitoring system (Larson, 

1992), and content-based image retrieval for flower 

indexing and representation (Das, et al., 1999), heavily 

relies on the accurate flower classification system. 

Although manual systems based on field experts are in 

use they are time-consuming, and prone to human error 

when dealing with large scale datasets. In this regard, 
the demand for automated flower classifications systems 

is increasing and is of great value to the associated 

applications. 

Traditional flower classification systems heavily rely 

on the shape, texture, color, and statistical features 

extracted from the flower images (Khan, et al., 2012; 

Maria-Elena, et al., 2008; Xie, et al., 2017; Yang, et al., 
2014). The recognition performance of such systems 

depends on the quality and the number of features being 

used for the classification of flower species (Maria-

Elenaet al., 2008; Yuning Chai, et al., 2011). Besides, 

human interaction has also been used to improve 

recognition performance (Hsu, et al.,2011; Mottos and 

Feris, 2014). The most commonly used classification 

algorithms for automated flower recognition are support 

vector machines (SVM), logistic regression, and 

shallow classification methods (Chai, et al., 2012; 

Khowaja, et al., 2015; Khowaja, et al., 2019; Khowaja, 
et al., 2018; Khowaja, et al., 2017; Khuwaja, et al., 

2019). These methods learn the representation derived 

from extracted features to classify the flower into their 

respective category. 

As discussed, the existing methods rely on the 

handcrafted features therefore, the recognition 

performance was as good as the quality of information 

represented in the features themselves. The feature 

extraction method includes, speed up robust features 

(SURF), scale-invariant feature transform (SIFT), the 

histogram of oriented gradients (HoG), and local binary 

patterns (LBP)   (Khowaja et al., 2015).   However,   the  
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handcrafted features exhibit two main problems, the 

first is the scalability and flexibility of the feature 

extraction method and the second is the generalization. 

As the size or the categories of the flower are increased 

in the employed dataset the characteristics of the feature 
extraction method need to be changed which is a tedious 

task. The generalization problem refers to the variance 

in the recognition performance as the scalability and 

flexibility of the dataset are altered. These two problems 

motivate the researchers to move towards artificial 

neural networks (ANN) and deep neural networks 

(DNN) which automatically extracts the features 

understandable by the learning networks, therefore, 

copes with the scalability and the flexibility problem 

quite nicely. Moreover, the depth of the DNN allows 

generalizing similar performance on multiple datasets 

with varying characteristics.  

Deep learning techniques have gained a lot of 

interest from the computer vision research community 

due to their superior recognition performance in 

comparison to the shallow learning algorithms. The 

convolutional neural network (CNN) is a kind of deep 

learning technique that is extensively used for different 

computer vision applications. Also, these deep learning 

techniques are compatible with graphical processing 

units (GPUs) which speeds up the processing i.e. 

training and testing time, due to their transformation in 

tensors (Krizhevsky, et al., 2012). The GPUs indeed 
reduce the training time quite significantly yet the 

training of CNNs from scratch is takes a lot of time. The 

current trends are to use transfer learning approaches i.e. 

pre-trained networks, to reduce the training time of very 

deep network architecture. Many studies try to fine-tune 

an existing pre-trained network for the specified 

classification task which significantly reduces the 

training time while achieving improved recognition 

performance. 

In this work, we tackle the flower classification 

problem with existing pre-trained CNNs on large-scale 

datasets. Most of the existing studies fine-tune a single 
pre-trained network for the said classification task. The 

proposed study employs three popular pre-trained 

networks and combines its classification results using 

multiple fusion strategies to improve recognition 

performance. The analysis also explores the use of 

meta-learners for combining the classification results 

from multiple pre-trained network architectures. This 

study provides an extensive comparative analysis for 

multiple fusion strategies along with meta-learners and 

reports state-of-the-art accuracy on popular flower 

classification dataset (Nilsback and Zisserman, n.d.; 

Maria-Elena et al., 2008). 

The rest of the paper is structured as follows:   

Section 2 consolidates the relevant existing studies for 

flower classification. Section 3 provides the details of 

pre-trained network architecture, network parameters, 

and the fusion strategies employed for the recognition 

task. Section 4 presents the experimental results and 

comparison with the existing results. Section 5 
concludes the finding of the paper and presents the 

possible future directions of this study. 

2.           RELATED WORK 

In this section, we present various works that address 

the flower classification problem. This section first 

summarizes the work using hand-crafted features with 

shallow learning methods and then recapitulates the 

works using variants of CNNs. 

The earlier works in the field of flower classification 

focused on extracting meaningful representations in the 

form of hand-crafted features to improve the 

classification performance. Nilsman and Zisserman 
(Maria-Elena et al., 2008) proposed to extract the color 

values using the HSV model as features along with HoG 

and SIFT. (Yuning Chai et al., 2011) used the existing 

features and bi-level co-segmentation (BiCoS) with a 

multi-tasking approach (BiCoS-MT) to recognize a 

large number of flower species. Chai et al. (Chai et al., 

2012) extended their work by extracting fisher vector 

(FV) and principal component analysis (PCA) 

coefficients in addition to the existing features. They 

also extended their previous approach to a higher 

abstraction level by proposing tri-level co-segmentation 
(TriCoS) to improve the classification accuracy. The 

features play an important role to improve recognition 

performance. Keeping this in view, some works 

proposed the feature extraction while allowing the users 

to manually interact with the data. For instance, Zou and 

Nagy (Jie et al., 2004) presented a computer-assisted 

visual interactive recognition (CAVIAR) method which 

allows a user to extract multiple features related to the 

shape and curvature of the flower. (Hsu et al., 2011) 

proposed the use of weighted Euclidean distance from 

the feature space of existing representations along with 

the center area and boundary shape of the flowers. 
Although, the results are promising the use of 

interaction to extract the features loses the essence of 

end-to-end automation of flower classification. 

Following the trend, many other researchers instead 

of using classical features proposed the new extraction 

techniques to represent the flower data. These extracting 

techniques include graph-regularized robust late fusion 

(Guangnan et al., 2012), Haar-features (Zhang, et al., 

2013), bag-of-words using color attention (Khan et al., 

2012), bag-of-frequent local histograms (FLH) 

(Fernando, et al., 2014), dictionary learning based on 
Fisher vectors and FLH (Yang et al., 2014), local 

saliency map using generalized hierarchical matching 

(Qiang et al., 2012), co-occurrence features (Ito and 
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Kubota, 2010), visual adjectives (VAs) along with 

improved FV and SIFT (Xie, et al., 2016), power 

normalization and FV with generalized max-pooling 

(Murray and Perronnin, 2014), and local binary patterns 

with pairwise rotation invariant co-occurrence features 
(Qi et al., 2014). All these studies with hand-crafted 

features use shallow learning methods such as support 

vector machines, random forests or logistic regression to 

classify a flower image. 

The hand-crafted features which represent the data 

well achieved good recognition performance, however, 

the features do not generalize even on the same kind of 

data across different datasets suggesting that features 

need to be designed specifically for the dataset in hand. 

Moreover, designing a method for extracting hand-

crafted features is not an easy task. In light of the above 

limitations, many researchers use deep learning 
techniques to tackle the recognition problem. Amongst 

many, CNN has gained a lot of attention due to its 

capability of extracting high-level features in an 

automated way and achieving superior accuracy than 

the shallow learning algorithms. Few works specifically 

employ CNNs for solving a flower classification 

problem. (Song, et al., 2016)proposed a two-level 

hierarchy for flower classification. They used a pre-

trained network on the target dataset for extracting high-

level features and used those features to train a shallow 

classifier for classifying flowers. This is a classic 
example of transfer learning approach to increase the 

classification accuracy. A similar kind of approach was 

also proposed by (Razavian, et al., 2014) and (QiQian, 

et al.,2015) where they used the features from CNN 

architecture to train a shallow classifier. (Xie, et al., 

2015)focused on the image retrieval problem using 

classification as an integrated task. The said study 

extracted the features from CNN and used nearest-

neighbor estimation for computing the similarity from 

the feature space of the queried image and the candidate 

image. It was based on the simple assumption that 

shorter the distance the queried image would be of the 
same label as the candidate image and vice versa. (Xie 

et al., 2017) tried to increase the capacity of the CNN 

network by introducing reverse-invariant features and 

CNN layers (RI-Deep) and (RI-Conv) while keeping the 

almost same number of model parameters. They show 

that the classification accuracy can be improved by 

increasing the capacity of the network. 

 

A few works have been carried out which modify the 

intrinsic characteristics of the CNN network to improve 

the classification accuracy. (Xie, et al., 2015) proposed 
the use of a task-driven pooling layer instead of average 

or max-pooling to improve the flower image 

representation. (Zheng, et al., 2016) extended their work 

by introducing multi-task driven pooling to make the 

feature maps much smoother and less noisy. (Zhang     

,et al., 2017) proposed the extraction of semantic 

representation combined with contextual modeling 

within the deep architecture pipeline. (Liu, et al.,2016) 

presented a way to extract the convolutional features 
with multiple scales that could target different regions 

of the flowers. Their method was a compromise 

between the accuracy and the network parameters as 

scaling the maps would eventually increase the model 

complexity and the testing time. However, it was 

noticed that such networks lead to the over fitting 

problem, thus do not improve the accuracy ofthe 

testing/validation set. Most of the CNN network 

architectures focus on extending the depth (number of 

layers) which in turn increases the network capacity. 

Another way to increase the capacity is by extending the 

width of the network such as Inception networks. These 
networks not only increase the capacity but also reduce 

the model complexity at the same time. (Xiaoling et al., 

2017) proposed the use of Inception networks for the 

flower classification problem. (Wei, et al., 2017) 

selectively aggregated the convolutional descriptors to 

fine-grain the image retrieval process using 

unsupervised learning. The method was also tested on 

the flower recognition problem. (Xie et al., 2017) 

proposed the fusion of two different networks, one 

focuses on the global geometry of the image while the 

second considers the local parts. The recognition results 
are then fused to improve recognition performance. 

(Wu, et al., 2018) used the transfer learning approach 

for sharing weights from popular pre-trained networks 

and applied on the flower recognition dataset. (Hiary et 

al., 2018) used the segmented flower images for training 

the CNNs suggesting that the network should only learn 

the representation of flower region instead of the objects 

surrounding it such as branches, leaves, grass, and so 

forth. 

 

In this work, we intend to use popular pre-trained 

network architectures to extract the visual features and 
explore different fusion strategies to improve the 

recognition performance for flower images. As per the 

available literature, the studies did not explore the 

fusion of networks with shared weights (transfer 

learning) using adaptive weighting or meta-learners as 

performed in our proposed work.  

3.           PROPOSED METHOD 

We present our methodology in three subsections. 

The first section describes the existing pre-trained 

models being considered for the flower classification. 

The second section presents the transfer learning 
approach which is being used for the said recognition 

task, and the third section shows the method for fusion 

strategies that are used to combine the classification 

results from different CNN architectures. 
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1.1 CNN Architectures: 

As we stated earlier that we will use existing pre-

trained models for fine-tuning the network on the flower 

classification task. In this regard, we employ four pre-

trained networks i.e. VGG19 (Simonyan and Zisserman, 
2014), ResNet101 (He, et al., 2016), DenseNet161 

(Huang, et al., 2017), and GoogleNet (Szegedy et al., 

2015). The VGG network is a classic example of CNN 

which was intended to increase the network capacity 

through the addition of more layers, thus making the 

network deeper. The ResNet network is a variant of 

CNN that uses shortcut connections to add the result 

from the convolutional layer and the provided input. 

This results in the superimposition of the feature maps. 

The ResNets have proved that such operations do 

improve recognition performance significantly. ResNet 

architecture uses identity mapping of the feature maps 
from their immediate preceding layers, if we extend the 

mapping of feature maps from the preceding layers to 

all the subsequent layers by concatenating the input 

compositely, it will result in an architecture which is 

called DenseNet. The DenseNets have been very 

successful in image recognition problems as they 

propagate collective knowledge to all subsequent layers. 

Finally, GoogleNet uses inception like architecture 

which not only extends the depth but also the width to 

increase the network capacity. The inception modules 

use different sizes to extract the feature maps, therefore 
the spliced version of the representation is passed to the 

subsequent layer. Inception-like network architecture 

has proven that it can achieve not onlybetter recognition 

results but also can reduce the computational overhead 

caused by the increased parameters. These pre-trained 

networks have varying characteristics, they are best 

suited for our study as fusing the results from similar 

networks will not contribute to the change in 

performance instead it will only increase the network 

complexity and computational overhead of the 

recognition system. 
 
 

 

 

All of the said architectures focus on multi-class 

classification and therefore employ the cross-entropy 

loss function to update the weights. This loss function 

allows CNN to output the probabilities of the ℒ classes 
for each image. The mathematical formulation for cross-

entropy loss is given in equation (1): 

𝐶𝐸 =  −𝑙𝑜𝑔 (
𝑒𝑠𝑐𝑜𝑟𝑒𝑝𝑜𝑠

∑ 𝑒𝑠𝑐𝑜𝑟𝑒𝑘ℒ
𝑘

)  (1) 

where𝑠𝑐𝑜𝑟𝑒𝑝𝑜𝑠 refers to the classification scores for 

the positive class and 𝑘 represents the number of classes 

i.e. 𝑘 = 1, … , ℒ. The forward propagation step computes 
the gradient response from the neurons and the loss is 

computed. Based on the loss, error back propagates 

throughout the network architecture. We use the same 

loss function for all the pre-trained networks to back 

propagate the error. 

3.2 Transfer Learning from pre-trained models 

There are many types of transfer learning but in this 

an existing pre-trained network trained on the source 

dataset to train the target dataset. In simple words, we 

just employ the pre-trained network and fine-tune it on 

the target dataset. The transfer learning has shown to 
achieve better results as compared to the network 

architecture training from scratch. Moreover, transfer 

learning reduces the computation time for training a 

particular network. An example of transfer learning 

using GoogleNet architecture is shown in (Fig. 1). 

GoogleNet which has been pre-trained on ImageNet 

having large scale dataset and 1000 categories. We use 

the same pre-trained model and re-train (fine-tune) the 

network on small scale dataset such as Oxford 17 and 

Oxford 102 flower datasets, respectively. 
 

3.3 Fusion Strategies: 

A test image when passed through multiple streams 

(i.e. through each pre-trained network), generates class 

probabilities for multiple classes. It is essential to  

 

Fig. 1. Example of Transfer Learning using GoogleNet network architecture 
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provide a way for combining the class probabilities 

from multiple streams to get an improved classification 

performance. We assume that each pre-trained network 

exhibits its strength for specific flower categories. For 

example, GoogleNet may be associated strongly with 
classes having a specific color or pattern whereas 

DenseNet may recognize the class better having unique 

low-level features. The fusion methods are quite 

significant for combining the results from multiple 

streams to improve recognition performance. The most 

popular fusion methods are feature-level and decision-

level fusion. Feature-level fusion is performed by 

concatenating the feature maps extracting from 

convolutional layers of CNN whereas the decision-level 

fusion is performed by combining the class probabilities 

from the individual streams. In this work, we mainly 

focus on the fusion strategies performed at the decision-
level hierarchy. There are several methods through 

which the decision-level fusion is performed. The 

mostly used algorithm is the weighted average fusion 

methods (Feichtenhofer, et al., 2016; Khowaja and Lee, 

2019) where the class probabilities are averaged and the 

class with maximum probability is selected as the final 

label. Another strategy is the adaptive weighting fusion 

mechanism (Khowaja et al., 2017) where the class 

probabilities are combined and averaged out based on 

the proportion of the data available for a specific class. 

It has been shown that the adaptive weighting fusion 
mechanism performs better when there is an imbalance 

in the dataset concerning the available images for a 

specific class. As the employed dataset shows highly 

imbalance characteristics we employ the adaptive 

weighting fusion mechanism for this study. The last 

method is the meta-learning technique where a shallow 

learning method is employed to train on the output class 

probabilities obtained from individual streams. This 

method integrates the predictions adaptively from 

existing pre-trained networks thus we get optimal fusion 

weights for specified categories. Methods such as 

(Khowajaet al., 2019, 2018, 2017; Khuwaja et al., 2019) 
have extensively used the meta-learning technique to 

improve the final classification result. Let’s denote the 

probabilities of a specific class with 𝓅. We stack the 

probabilities of each class as a vector presented in 

equation 2. 

 

𝑀𝐿𝑠𝑐𝑜𝑟𝑒 = [𝓅𝑛
1 𝑇

, … , 𝓅𝑛
𝑘 𝑇

, … , 𝓅𝑛
ℒ𝑇

]
𝑇

∈  ℝℒ𝑛  (2) 

 

where𝑛 is the number of training samples. 

Considering the coefficient vector the fusion weights 

can be learned by any shallow learning classifier such as 

Bayesian networks, logistic regression, or so forth. An 

example of learning of the fusion weights is provided in 

equation 3.  

𝑊𝑖 = arg min
𝑊,…,𝑊ℒ

∑ log(1 + exp[   (1 −𝑛

2𝓅𝑛,𝑘)𝑀𝐿𝑠𝑐𝑜𝑟𝑒
𝑇 𝑊𝑖−1])(3) 

where𝑊𝑖 is the current weight ought to be updated 

and 𝓅𝑛,𝑘 is the class probability of the n-thsample for 

class 𝑘. The final prediction from the individual streams 

will be obtained using the updated weights optimized 

using meta-learner (i.e. shallow classifier stacked on the 

combined output of individual streams).  

4. EXPERIMENTAL RESULTS 

This section presents the analysis and recognition 
performance using pre-trained networks and fusion 

strategies. All of the experiments use PyTorch (Paszke   

et al., 2017) framework using a PC having a clock rate 

of 3.20 GHz, core i7, memory 8 GB, and NVIDIA 

GeForce GT 730 GPU. The dataset and implementation 

details for pre-trained networks and the fusion strategies 

are provided in this section followed by the quantitative 

and qualitative results. 

4.1 Flower Datasets: 

In this study, we used two flower datasets i.e. 

Oxford-17 and Oxford-102. The oxford-17 dataset was 

created by Andrew Zisserman and Maria-Elena at 
Oxford University in 2006. The dataset comprises of 17 

flower categories with 80 images each. The flower 

categories included in this dataset are common in 

Britain. The images in this dataset are of large scale 

having variations in lighting and posture, respectively. 

The challenging aspect of this dataset is that there is a 

lot of inter- and intra-variations amongst the flower 

categories.  

 

The oxford-102 dataset was also created by the 

same authors in 2005. In this dataset, the flower 
categories were extended to 102 having 40-258 images. 

The complexity of inter- and intra-variations amongst 

the flower categories was also enhanced for this dataset 

suggesting that many flower categories have a lot of 

similarities in terms of color and characteristics. 

4.2 Implementation Details: 

The only pre-processing which was applied to the 

flower images were the image resizing. Most of the pre-

trained networks employed in this study consider the 

input image size of 224x224x3 except for GoogleNet 

which considers the input image size of 299x299x3. The 

resized images were passed through the pre-trained 
networks and fine-tuned on the given dataset. All the 

networks are pre-trained on ImageNet, therefore, the 

last layer was trained to classify 1000 categories. 

However, in our case we have to classify between 17 or 

102 categories, in this regard, the last layer was 

removed and was replaced by a new layer that was 

configured to classify either number of categories as per  
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the employed dataset. We used the stochastic gradient 

descent (SGD) optimizer with the learning rate of 0.001 

and decrease by the factor of 0.01 for each subsequent 

layer or block depending on the network architecture. 

The weight attenuation was set to 0.005 and the default 
value of momentum i.e. 0.9 was used for fine-tuning the 

pre-trained networks. We only used 10 epochs for fine-

tuning each of the pre-trained networks. 

 

The fusion strategies play a vital role in improving 

the recognition performance in this study. We used four 

decision-level fusion strategies i.e. Average weighting, 

adaptive weighting, random forest as a meta-learner, 

and Naïve Bayes as a meta-learner. We used the same 

parameters as proposed in (Khowaja et al., 2017) for 

average and adaptive weighting and the same settings as 

proposed in (Khowaja and Lee, 2019) for the meta-
learners, respectively. All the images are augmented in 

terms of rotation, scaling, and translation to increase the 

data magnitude. 

 

4.3 Result and Analysis 

In this subsection, we first present the quantitative 

and qualitative analysis using multiple pre-trained 

networks and their fusion on Oxford-17 and Oxford-102 

datasets and then we compare our results with the 

existing studies to show the increase in recognition 

performance. Table 1 shows the classification accuracy 
on both the datasets using individual pre-trained 

networks as well as the fusion strategies. It is apparent 

from the results that Dense161 performs better than all 

other pre-trained networks on an individual basis. 

Average weighting improves the recognition 

performance for Oxford-17 but decreases the 

recognition performance for Oxford-102 in comparison 

to DenseNet161. An interesting fact to be noticed is that 

the meta-learners perform better than the weighting 

score methods and the best classification accuracy was 

obtained using Naïve Bayes (meta-learner) which is 

99.8% and 98.7% for Oxford-17 and Oxford-102, 
respectively. The results support our assumption that the 

fusion strategies can improve the recognition 

performance significantly and considering the best 

results from Naïve Bayes and the least accuracy from 

VGG19 it can be noticed that the performance was 

improved by 12.2% and 11.9% on Oxford-17 and 

Oxford-102. We performed the tests between the 

accuracies of each flower for VGG19 and Naïve Bayes 

and found that the improvement in accuracy is 

significant with p <0.01 which proves that the         

fusion strategy using Naïve Bayes significantly 
improves the flower recognition performance. We also 

present the qualitative results for flower classification 

(Fig. 2–4). 
 

Table 1 Classification Accuracy using pre-trained networks and 

fusion strategies 

Method/Fusion 

Strategy 

Classification Accuracy 

Oxford-17 Oxford-102 

VGG19 87.6% 86.8% 

GoogleNet 88.4% 89.6% 

ResNet101 95.2% 96.6% 

DenseNet161 96.8% 97.1% 

Fusion (Average 

Weighting) 
97.3% 95.8% 

Fusion (Adaptive 

Weighting) 
98.1% 97.3% 

Fusion (Random 

Forest) 
98.7% 97.6% 

Fusion (Naïve 

Bayes) 
99.8% 98.7% 

 

We intend to compare the classification accuracy of 

the proposed work to that of the existing studies. It is a 

necessary step to showcase whether the proposed 

method only improves the performance from the base 

convolutional pre-trained network or the improvement 

is in general. We compare the results of Oxford-17 and 

Oxford-102 with the existing studies in (Table 2 – 3), 

respectively. 

The results convey the importance of the fusion 

strategies as the best results on both datasets have been 

obtained using the proposed work. The second-best 
accuracy was achieved using FCN-CNN on both the 

datasets which are 1.3 % and 1.6 % less on Oxford-17 

and Oxford-102 than the proposed work, respectively. It 

should also be noted that we only used 10 epochs for 

fine-tuning the individual pre-trained networks on the 

flower dataset for fusing the class probabilities which 

itself is plausible as many existing works fine-tune or 

train for atleast 30 epochs. 

Table 2 Classification accuracy of existing works on Oxford-17 

Datasets and its comparison with the proposed work 

Method 
Classification 

Accuracy 

(Maria-Elena Nilsback and 

Zisserman, 2008) 
88.33 % 

(Ito and Kubota, 2010) 94.19 % 

(Yuning Chai et al., 2011) 91.10 % 

(Guangnan Ye et al., 2012) 91.70 % 

(Qiang Chen et al., 2012) 93.50 % 

(Khan et al., 2012) 95.00 % 

(Fernando et al., 2014) 94.00 % 

(Weiming Hu, Ruiguang Hu, Nianhua 

Xie, Haibin Ling, and Maybank, 

2014) 

91.39 % 

(Yang et al., 2014) 97.80 % 

(G.-S. Xie et al., 2015) 94.80 % 

(Xiaoling Xia et al., 2017) 95.00 % 

(Zhang, Li, et al., 2017) 87.10 % 

(Zhang, Huang, and Tian, 2017) 93.70 % 

(Hiary et al., 2018) 98.50 % 

(Wu et al., 2018) 95.29 % 

(Tian, Chen, and Wang, 2019) 90.50 % 

Proposed Method 99.80 % 
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Table 3 Classification accuracy of existing works on Oxford-102 

Datasets and its comparison with the proposed work 

Method 
Classification 

Accuracy 

(M.-E. Nilsback and Zisserman, n.d.) 72.80 % 

(Chai et al., 2012) 85.20 %  

(Razavian et al., 2014) 86.80 % 

(Murray and Perronnin, 2014) 84.60 % 

(Qi et al., 2014) 84.20 % 

(Qi Qian et al., 2015) 89.45 % 

(Chakraborti, McCane, Mills, and 

Pal, 2016) 
94.80 % 

(Zheng et al., 2016) 95.60 % 

(G.-S. Xie et al., 2017) 96.60 % 

(Wei et al., 2017) 92.10 % 

(Xiaoling Xia et al., 2017) 94.00 % 

(Bakhtiary, Lapedriza, and Masip, 

2017) 
83.20 % 

(L. Xie et al., 2017) 94.01 % 

(Xu, Zhang, and Wang, 2018) 93.51 % 

(Hiary et al., 2018) 97.10 % 

Proposed Work 98.70 % 

 

Fig. 2. An example of flower classification using Naive Bayes 

(meta-learner) fusion strategy using multiple pre-trained 

networks 

 
 

Fig. 3. An example of flower classification using Naive Bayes 

(meta-learner) fusion strategy using multiple pre-trained 

networks 

 
Fig. 4. An example of flower classification using Naive Bayes 

(meta-learner) fusion strategy using multiple pre-trained 

networks 

5.              CONCLUSION 

In this paper, we present a flower classification 
method using transfer learning and fusion strategies. We 

used individual pre-trained networks such as VGG19, 

GoogleNet, ResNet101, and DenseNet161 and fused 

their class probabilities using average weighting, 

adaptive weighting, and meta-learning techniques. The 

use of fusion strategies specifically using meta-learning 

with Naïve Bayes shows significant improvement in 

recognition performance not only concerning the 

individual pre-trained networks but also in comparison 

to the existing studies. The best classification accuracy 

on both Oxford-17 and Oxford-102 has been achieved 

using the proposed work. 

Although we have achieved the best results on both 

flower classification datasets so far, this achievement is 

accomplished at the cost of increased computational 

power. As the existing studies only train individual 

network architecture, we fine-tune four existing 

networks which increase the number of parameters to be 

optimized. Furthermore, adding a meta-learner to learn 

the class probabilities is another computational 

overhead that needs to be considered. Although, the test 

time is not so significant as compared to the recognition 

from individual pre-trained networks it can be reduced 
by applying the fusion strategies at the start of pre-

trained networks. This will not only reduce the testing 

time but also the computational overhead for training as 

the number of parameters will be significantly reduced. 

We intend to apply the feature-level fusion strategies on 

flower classification datasets as our future work to 
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provide a trade-off between computational complexity 

and classification accuracy. 
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