
 

 

 

 

SINDH UNIVERSITY RESEARCH JOURNAL (SCIENCE SERIES) 

 

 
 

Analytical Solution of Lift for Thin Film Flow for Phan Thien Tanner Fluid 

 

S. CHANNER*, K. N. MEMON**++, A. A. GHOTO**, A. M. SIDDIQUI***, S. F.SHAH* 
 

*Department of BSRS, MUET, Jamshoro, Sindh, Pakistan 

 
Received 23rdJuly 2018 and Revised 19th April 2019 

 

 

 

 

 

 

 

 

 
 
 

1. INTRODUCTION 

In recent years, the most attention has been gained 

by non-Newtonian fluids in the several biological and 

industrial technological: mostly in chemical industries, 

bioengineering and material processing. Here 

insufficient belongings of non-Newtonian fluids, for 

example, drilling mud, toothpaste, greases, blood, 

paints, clay coatings, polymer melts etc. It is an 

extensive class of fluids so; no single model can deal 

with each property of such fluids as is done by 

Newtonian fluids (described by the well-known Navier-

Stokes equation). Regarding to this several fundamental 

equations have been considered to anticipate the 

physical structure and nature of such fluids for various 

materials (Abel et al., 2014; Deshpande, and Barigou, 

2001; Memon, et al., 2014; Memon, et al., 2018). It is 

so, difficult regards study in against that of a Newtonian 

fluid, because of that is a nonlinear connection between 

the rate of restraining and shear stress. The Phan Thien 

Tanner model has been designed to a large extent as the 

class of non-Newtonian fluid, by the reason of 

mathematical ease and general industrial applications 

(Memon, et al., 2014; Yong-Li Chen, et al., 2009; 

Schowalter, 1978).  

 

Here our principal concentration is investigation of 

thin layer flow concerning a PTT fluid with the 

temperature dependent fluid viscosity by the use of 

Reynold model (Phan-Thien, Tanner, 1977). In a thin 

film flow, the liquid is partly restricted through one 

boundary whereas the other boundary can relate with 

other liquid, e.g., air. Formation of thin films is based 

on three fundamental expressions namely, centrifugal 

forces, gravitational forces and surface tension. The 

study of thin layer flow is significant concerning 

chemical processing. Examples of everyday life are the 

flow of a tear films in the eye membrane, paint down a 

wall and rainwater running down along a window 

(Siddiqui, et al., 2006, 2012, 2013, 2016, Bird. 1987). 

Here, in our work, fluid is considered viscoelastic with 

variable viscosity consistent to Phan Thein Tanner fluid 

(Sasuiet al., 2018; Mohyuddin et al.,2005); (Mercant 

and Atalık 2012). We have observed theoretically the 

flow of thin film for a Phan Thein Tanner fluid model 

concerning lift problem on aupright belt. Three estates 

are examined, namely QPTT, LPTT and UCM. As the 

best of our insight the results by using perturbation 

methodis not accounted anywhere. 
 

The plan of the research article is ordered as 

follows: Section 2 holds the basic governing equations 

of Phan Thein Tanner model and section number 3 

covers problem considerable and solution. Results and 

discussion be specified intothe section 4 and in Section 

number 5concluding remarks are given. 
 

2 GOVERNING EQUATIONS 

Essential governing equations for incompressible 

Phan Thien Tanner Fluid , includin thermal effects are: 
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The symbol p be the dynamic pressure,  stands 

fordensity, V  represent velocity field, T be extra stress 

tensor, b represent to body force,  for temperature 

distribution,  bethe viscosity coefficient, k  represent to  

thermal conductivity,operator 
Dt

D
 denotes the material 

derivative,
pC  be the specific heat constantand 1A  be 

the 1st Rivlin Ericksen tensor, which is represented as  

1 = ( ) .T A V V                        (4) 

For PTT fluid model constitutive equations (Faraz, N., 

Lei, H., Khan, Y, 2015; A. M. Siddiqui, et al., 

2006;Sasuiet al., 2018) is given as 

,)( 1ATTT  


trf                (5)                    
 

Here   is the relaxation time and symbol for upper 

convected derivativeis 



T , which is characterized as: 

 . ( ) ( )t D
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For PTT fluid model, there are three special cases which 

are commonly used as 

1. Upper Convected Maxwell (UCM) Model   

1)( Ttrf   (7)               

2. Linear PTT (LPTT) Model               

TT trtrf



1)(  (8) 

3.   Quadratic PTT Model (QPTT Model)   
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Where   is parameter represent the “elongational 

behavior” of the fluid model. Phan Thien Tanner fluid 

flow model be there shear thinning and exponential PTT 

fluid model is further thinner than the linear PTT fluid 

model. Shear thinning effects are directly related to the 

value of . Elongational viscosity is inversely 

proportional to  (Siddiqui, et al., 2016).
 

 

3 CONSIDEARABLE PROBLEM AND ITS    

SOLUTION 
Let we take a vessel full of an incompressible Phan 

Thien Tanner fluid with variable temperature dependent 

viscosity. An extensive belt moves upward with 

constant velocityU  and gets a layer of Phan Thien 

Tanner fluid of a uniform thickness   during motion 

but due to gravity fluid tries drain down to the belt. 

Consider the flow of a fluid is parallel, laminar and 

steady. We have assumed p  as gauge pressure. 

 

Here, we have considered xy-coordinate system 

with the end goal that “y-axis” is alongside the belt into 

the upward direction and “x-axis” is normal on belt. In 

like manner, we expect that 
 

[0, ( ),0], ( ), ( )v x x x   V T T only 

 
 

Fig. 1. Physically geometry for fluid flow through vertical belt, 

which is moving through container. 

 

Related boundary conditions concerning the proposed 

problem are 

0 0 ,xy

d
T and at x

dx


       (11)  

00  xatandUv  (12) 

By using equation (10) into continuity equation (1) 

remains identically fulfilled and non-zero equation of 

motion at atmospheric pressure and energy equation 

after using the value of 1st Rivlin Ericksen tensor is 

dx

dT
g

xy
 0     (13)

dx

dv
T

dx

d
k xy

2

2

0


             (14) 

Intigrate to equation (13) W.R.T., X and after applying 

free space boundary condition, we get 

 xgTyx     (15) 

Inserting equation (10) into the equations (4-6), after 

considerable calculations once we obtain: 
 

      0 zxzzxx TtrfTtrfTtrf TTT (16) 

 
dx

dv
TTtrf zxyz T    (17) 

 
dx

dv
T

dx

dv
Ttrf xxxy  T   (18) 

  02 
dx

dv
TTtrf yxyy T   (19) 

 

Since  Ttrf  has one of the values given in equation 

(7) – (9), therefore   0Ttrf . Which implies that 
 

0 xzzzxx TTT     (20) 

By applying these values from equation (20) into the 

equations (17) - (19) we get 
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0yzT  (21)  

 
dx

dv
Ttrf xy T    (22) 

 
dx

dv
TTtrf yxyy 2T  (23) 

Joining equations (22) and (23), we get 
22

.
xy

yy

T
T




   (24)                                      

Which is relationship among ordinary stresses and shear 

and that is Parabola with the axis at 0xyT and a 

vertexof parabola at the origin. The focus of parabola is 

1
0,

8





  
  
  

which lies on axis of 
yyT and opening is 

at upward. 0yyT is tangent to its vertex and as well 

asparabola. After using equation (20) and (24), the tace 

of trace of extra stress tensor can be defined as: 



 22 xyT
tr T    (25) 

Using shear stress (15) in equation (24), normal stress is 

given by 



 222 )(2 xg
Tyy


  (26) 

Rearranging equation (22) after substitute the value of 

yxT  from equation (15), we can write it as 



 ))(( xtrfg

dx

dv 


T
  (27) 

Substituting equation number (15) in  (14), we obtain 

dx

dv
xg

dx

d
k )(0

2

2
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

    (28)   

Analytical solutions of this equation along with the 

boundary conditions (11) -(12) are obtained for three 

cases (7)-(9) in the following subsections: 

 

3.1 Solutions for UpperConvected Maxwell (UCM) 

Model: 

By using UCM model (7) in (27), we get; 



 )( xg

dx

dv 
       (29)  

 making dimensionless by significant the following 

dimensionless parameters: 

01

0

0
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








 x

x
v

U

v
(30) 

Hence equation number (28) and (29), after dropping 

‘*’ becomes 

)1( xS
dx

dv
t  (31) 

dx

dv
xBS

dx

d
rt )1(0

2

2


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Where 
U

g
St

0

2




 denotes Stokes number and 

)( 01

2

0








k

U
Br

 is Brinkman number, Letthe 

temperature dependent fluid viscosity   is given by 

Reynolds model (Farooq, et al., 2013). The 

dimensionless form of this model is  

)(  Le  .  (33) 

Let mL  , where  a small perturbation parameter 

(Siddiqui, et al., 2013, 2006). Expand equation (33) by 

using the Taylor series expansion up to first order and 

then substitute into the equation (31), we get                                                                                        

)1()1( xS
dx

dv
m t    (34)        

Keeping in mind the end goal to explain these kind of 

ordinary differential equations with related boundary 

conditions (11)-(12), here we utilize the perturbation 

method by fascinating the velocity and temperature 

distribution approximately as 







0

),(
i

i

ivxv  and  





0

),(
i

i

ix  (35) 

Insert equation (35) into equation (32), (34), (11) and 

(12) and then solve separately at each order of 

approximation. By using corresponding boundary 

conditions, the systems of equations obtained   are as 

following. 
 

Zeroth order problem 

)1(0 xS
dx

dv
t  (36)    

dx

dv
xBrS

dx

d
t

0

2

0

2

)1( 
 (37) 

,01,1 00  xatv  (38)

100  xat
dx

d               (39) 

First order problem 

00
0

1 
dx

dv
m

dx

dv
                                               (40)           

dx

dv
xBrS

dx

d
t

1

2

1

2

)1( 
 (41) 

,00,0 11  xatv         (42)

101  xat
dx

d (43) 

We are not considering the second order equations 

because of long computations. Solving Equations. (36) 

and (37) with the associated boundary conditions (38) 

and (39), we have 

  )44()1(1
2

1 2

0 x
S

v t 

 

 1)1(
12

1 4

2

0  x
BS rt

  (45)  
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Substituting equations (44) and (45) into equations (40) 

and (41) and then solving with respect to the boundary 

conditions (42) and (43), we obtain 

   2)1()1(3
72

1)1(
2

62

3

2

1  xx
BmS

x
mS

v rtt (46) 

 




















11)1(14

)1(3

2016
1)1(

12 4

824
4

2

1
x

xBmS
x

BmS rtrt (47) 

Inserting Equation (46)–(47) into equation (35), the 

perturbation solutions up to order one are: 

   
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2 2
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“Volume Flow Rate”(VFR) and “Average Velocity” 

(AV) 

The “volume flow rate Q”and ”average velocity V ” 

in dimenshionless form, is specified as: 

 

1

0

)( VdxxvQ (50) 

By utilizing equation number (48) in (50), we acquire, 

6333
1

3

rttt BSmSmS
VQ


  (51) 

Net upward flow can be obtained by taking 

dimensionless average velocity 0V  Equation (51) 

provides 

6333
1

3

rttt BSmSmS 
  (52) 

3.2 Solutions for Linear PTT (LPTT)Model; 

Using LPTT model (8), in equation (27) and 

simplifying with the help of shear stress (15) and 

equation (25), we get 

   3
3

3322
x

g
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g

dx

dv
 
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By non-dimensionalising equation (53) by using 

parameters (30) after dropping ‘*’, we get
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1
2

1 x
DeS

x
S

dx

dv tt 



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Using the Taylor series expansion up to first order from 

equation (33) into equation (54), we get 

323
)1(2)21)(1()31( xDeSmxS

dx

dv
m tt   (55)       

Where 


U
De  is Deborah number. Substituting 

perturbation expansion from equation (35) into the 

equation (55), after separating at each order of 

approximation, we obtain  

Zeroth order problem 

3230 )1(2)1( xDeSxS
dx

dv
tt    (56) 

First order problem 

)1(23 0
0

0
1 xSm

dx

dv
m

dx

dv
t   (57)               

Here again, we are considering up to first order because 

ofsecond-order contain lengthy calculations. Solving 

system of equations. (56) and (37) by using 

corresponding boundary conditions (38) and (39), we 

have 
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Insert equation (58) and (59) into the system of 

equations (57) and (41) and then solving with respect 

conditions from equation (42) and (43), we acquire 
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Inserting Equation (58)–(60) into equation (35), the 

perturbation solutions up to order one are: 
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Using equation (62) in equation (50), get, 
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For net upward flow,equation (51) provides 
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3.3 Solutions for Quadratic PTT (QPTT) Model;

 

By utilizing QPTT model (9) in equation (27) and 

make straightforward with the help of shear stress (15) 

and equation (25), we get 

      )66(
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5

4255

13

3

332
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dx
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


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Now by using dimensionless parameters into the 

equation (66), after dropping ‘*’, we get 
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By Utilizing the Taylor series up to first order from 

equation (33) into equation (67), we acquire 
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By using perturbation series from equation (35) into the 

equation (68), after sorting out at each order of 

approximation, we obtain  

Zeroth order problem 
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Solving system of equations (68) and (37) by using 

corresponding boundary conditions (38) (39), we have 
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Insert equation (70) and (71) into the of equations (69) 

and (41) and then solving the system of ordinary 

differential equation with respect conditions from 

equation (42) and (43), we obtain 
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Inserting Equation (70)–(73) into equation (35), the 

perturbation solutions up to order one are: 
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For utilizing equation (74) in (50), we obtain, 
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For net upward flow of the fluid will be, 
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Table 1. Comparisonof velocity profile with respect to x for the 

special cases of PTT fluid model, when

1,8,2,01.0,002.1,1.0,4 1   BrDeSm t
 

x UCM LPTT QPTT 

0 1 1 1 

0.2 0.732198 0.700961 0.700161 

0.4 0.507883 0.458639 0.457467 

0.6 0.342679 0.285578 0.284275 

0.8 0.242595 0.183038 0.181687 

1 0.209177 0.149188 0.147824 
 

Table 2. Comparison of temperature distribution with respect to x 

for the special cases of PTT fluid model, when

1,4,4,01.0,99.0,01.0,10 1   BrDeSm t
 

x UCM LPTT QPTT 

0 1 1 1 

0.2 1.00969 0.743955 0.737746 

0.4 1.01429 0.562612 0.554578 

0.6 1.016 0.44275 0.434355 

0.8 1.01639 0.374724 0.366296 

1 1.01642 0.3527 0.344272 
 

Fig. 2: Effect of Bron velocity field, when

2,1,,4.1,01.0,15  DeSm t   

 

Fig. 3: Effect of De  on velocity field, when 

01.0,10,4.1,01.0,15   BrSm t
 

Fig..4: Effect of   on velocity field, when

2,10,4.1,01.0,15  DeBrSm t  

 
Fig. 5: difference of m on velocity distribution, when

2,10,4.1,01.0,1  DeBrSt  

 

Fig. 6: difference of tS  on velocity profile, when

2,10,15,01.0,1  DeBrm  
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Fig. 7: differenceof   on velocity profile, when

2,10,15,4.1,1  DeBrmSt  

Fig. 8: Effect of Br  on Temperature when

4,1.0,10,99.0,01.0  DemSt   

Fig. 9: Effect of m  on Temperature when

4,4.0,1.0,99.0,01.0  DeBrS t   

 

Fig. 10: Effect of De  on Temperature when

4.0,1.0,99.0,01.0,10  BrSm t   

Fig. 11: difference of tS  on Temperature when

4.0,1.0,4,01.0,10  BrDem 
 

 

 

Fig. 12: Effect of   on Temperature when

4.0,99.0,4,01.0,10  BrSDem t  

Fig. 13: Effect of   on Temperature when

4.0,99.0,4,1.0,10  BrSDem t 4    4

 RESULTS AND DISCUSSION 

In the overhead sections 1-3, we have 

investigatedtheoritically the thin layer flow utiling 

steady and incompressible Phan Thein Tanner fluid for 

uniform thickness with variable temperature dependent 

viscosity. The approximate analytic solutions have been 

acquired concerning velocity field and for temperature 

by utilizing perturbation method.  The impact of 

distinictparameters on velocity field and for temperature 

is inspected graphically. The effect of the Brinkman 

number Br , Deborah number De , parameter represent 

elongational behavior ,  paramter m,Stokes number 

tS and perturbation parameter  on velocity field as 

well as temperature distribution are observed through 

(Figs. 2-13). In the (Figs. 2-7), it is detected that 

velocity field decrease with increase of 

 andSmDeBr t,,,, . This explain that magnitude 

of velocity increase with the increase of all parameters. 
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The effect of  andSmDeBr t,,,, is shown in the 

(Figs 8-13). In these Figures, one can notice that as 

 andBrmDe ,,, increase, the magnitude of 

temperature distribution increases and decrease for the 

increase of 
tS  The comparison for velocity field and 

temperature distribution for the special cases of PTT 

fluid is also given in (Table1-2) with specified 

parameters and that are declared in caption of the each 
table above. Results obtained in (Table 1-2) are 
calculated mathematically. Tabulated data 
presenting that lifting velocity field and temperature 
distribution of UCM fluid model is higher than LPTT 
fluid model and lifting velocity as well as 
temperature of LPTT fluid model is greater as 
compare to QPTT model. This indicate that lifting 
velocity and temperature distribution of QPTT fluid 
flow is slower than UCM fluid.  
 

5            CONCLUDING REMARKS 

Considering equation for steady, incompressible 

and non-isothermal thermal Phan Thein Tanner fluid for 

uniform thickness with variable temperature dependent 

viscosity on a upright belt concerning lift problem by 

the use of Reynold’s viscosity model. By perturbation 

method, the resultant non-linear differential equation 

has been solvedfor fluid corresponding boundary 

conditions 
 

The resultant non-linear differential equation (DE) 

has beenexplained by Perturbation method for fluid 

corresponding boundary conditions and that is affecting 

and consistent method concerning the projected 

problem. The velocity field, temperature distribution, 

average velocity and flow rate have been solved by 

perturbation technique. Here we have noted that 

UCMfluid model will uplift easily as compare to LPTT 

and QPTT fluid model. 
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