

 SINDH UNIVERSITY RESEARCHJOURNAL (SCIENCE SERIES)

Identifying Code Quality issues in Student Projects

G. LAGHARI++, K. DAHRI*, S. NIZAMANI** M. Y. KOONDHAR***, M. HYDER***, A. H. ABRO+,

Institute of Mathematics and Computer Science, University of Sindh, Jamshoro, Pakistan

Received 4th August 2018 and Revised 29st January 2019

1. INTRODUCTION

The software has become an essential and

indispensable element in modern society. Contemporary

society cannot function without software. Thus,

software development is treated professionally like

other professional disciplines under the umbrella of

software engineering. The deriving element in software

is the source code written to produce executable

software.

The source code is, therefore, a valuable asset and

needs to be managed very carefully. However, in the

age of software development agility owing to many

certain factors such as schedule or budget, the design

choices and appropriate solutions are often neglected.

This leads to the messy legacy code affecting the

maintainability. Cunningham defined this phenomenon

as technical debt (Cunningham 1993).

Similarly, Kent Beck refers to these code quality

issues, which can be refactored to support the

maintainability, as code smells(Martin 1999).After the

inception of the term, code smells many best practices,

code conventions, etc., and the tools to detect them have

emerged. Code smells are one of the critical factors

accumulating technical debt (Kruchten 2012).

Research studies on the code analysis of

professional software developers indicate that industrial

code suffers from the code quality issues. Many studies

have been done to understand how these code smells are

introduced in the code base. Some common causes

include lack of skill or awareness, frequently changing

requirements, development technology constraints,

software processes, or schedule pressure, etc. (Sharma

2018).

Since in the university courses, the main focus

gravitates towards teaching the students about

the fundamental theories such as programming

fundamentals, algorithms, and data structures, the main

focus in the code is to get it working irrespective of the

code quality (Dietz 2018). Moreover, students are also

gradedby correctness in their solutions than the variety

of those solutions. Once the assignments are completed,

the code students produce is tossed into the trash. Thus,

students lack incentives to improve the quality of their

code, and their efforts surround on delivering the

working solutions (Dietz 2018).

In this paper, we also posit on the fact that students’

code heavily suffers from the code quality issues. We

take the exploratory data analysis approach to verify our

assumption and also understand which types of code

quality issues are prevalent and how frequently.

The contributions of this paper are empirical

evidence on the code quality issues in students’ projects,

which has the implications for the programming

mentors to also teach clean code besides providing the

students with fundamental theories.

In the rest of the paper, we provide the research

design in Section 2 and report the results in Section 3. In

Section 4, we provide some related work on the analysis

of software code quality. Finally, we conclude the paper

in Section 5.

2. RESEARCH DESIGN

To explore the code quality issues in student

projects, we perform the exploratory data analysis.

Bellow, we describe the datasets, analysis tools and

methods, and the research questions we intend to

answer.

Abstract: Software code quality is important specifically for the maintenance of the software. However, owing to many factors

professional software developers accumulate a large amount of technical debt in their code bases. Students are no exception and they

also commit code quality issues in their code. In this paper, we perform an exploratory analysis of student projects to understand which

code quality issues are prevalent and more frequent. We find that almost all code quality issues are found in student projects. However,

Code Style, Documentation, and Design are more frequently found than other issues.

Keywords: Student projects, software code quality, code smells.

++Corresponding Author: gulsher.laghari@usindh.edu.pk.
*Institute of Information and Communication Technology, University of Sindh, Jamshoro, Pakistan.
**Department of Information Technology, Sindh University Campus Mirpurkhas, Pakistan.
*** Information Technology Centre, Sindh Agriculture University, Tandojam, Pakistan.
+Sindh University Laar Campus @ Badin, Pakistan

SindhUniv. Res. Jour. (Sci. Ser.) Vol. 51 (2) 327-332 (2019)

http://doi.org/10.26692/sujo/2019.6.53

Dataset. Our dataset consists of final year projects of

undergraduate students. We analyze eight final year

projects whose source code is available. One of the

projects is a java desktop application, whereas the

remaining seven projects are Android apps. The code

statistics of the projects are provided in (Table 1). We

use the cloctool (https://github.com/AlDanial/cloc),

which is a static code analysis tool, to compute the code

statistics. We can observe that our dataset contains

projects from small of about 400 lines of code to large

about 8000 lines of code.

Table 1. Code details of final year undergraduate student

projects. The first project is a desktop Java application,

and the remaining projects are Android apps.

Project

J
a
v
a

F
il

es

Number of Lines

B C LOC
Code Generator From UML Class

Diagram 8 819 176 2183

GSM Based Home Appliance

Controlling System Using

Android 9 207 47 440

NotificationSystem 26 755 238 1858

Online EasyBuy 22 695 7062 3529

OrderSystem 14 646 4348 3374

Remote Desktop Sharing of

Computers on Android Phone 20 839 4635 4029

Secure Result Submission And

Inquiry System 17 917 9142 8308

Wheelchair Application 10 590 5243 3598

TOTAL 126 5468 30891 27319

BB = Blank Lines, C = Comments, LOC = Lines of Code

Code quality issues and tool. For the analysis of code

quality issues, we employ a static source code analyzer

tool called PMD (https://pmd.github.io/).

PMD detects common programming flaws by static

analysis of the code and provides support to check many

code quality rules.

In this paper, we check for all the following set of

rules, which the PMD can easily detect if they are

violated in the code.

Best Practices. These are the rules related to

generally accepted best practices. For example, instead

of printing the stack trace, it is best to log it.

Code Style. These rules are about a specific style of

coding for example naming conventions.

Design. These rules dictate the design of the

project. For example, the “Law of Demeter” restricts

objects to "only talk to friends" to reduce coupling.

Documentation. These rules relate to

documentation of the code for example whether or not

the comments are required for particular elements.

Error-prone.These rules concern about the broken

or confusing constructs in the code. For example,instead

of comparing with hard-coded literals in conditionals it

is best to declare constants.

Multithreading. These are the rules about threaded

execution. For example, method level synchronization

can be problematic.

Performance. These rules deal with code

performance. For example, it is efficient to use array

methods to copy the data between the arrays than to

iterating the arrays.

Research questions. In this paper, we assume that the

students’ code does have code quality issues. To better

explore by exploratory data analysis, we ask the

following research questions.

RQ1.Which code quality issues are present in the

projects?

RQ2.How are the code quality issues distributed

across the projects?

RQ3.Which are the most common code quality

issues in student projects?
.

3. RESULTS

In this section, we provide the analysis of the code

quality of student projects and answer the research

questions outlined in the research design section.

Answer to RQ1. Code quality analysis indeed confirms

our assumption that students’ code does suffer from

quality issues. Table 2 provides the summary of code

quality issues in all projects, where we can see that the

code suffers from all quality issues. Amongst all issues,

code style and documentation issues occur most

frequently.

Table 2. A number of quality issues in the projects.

Rule Set Instances

Best Practices 265

Code Style 36339

Design 1049

Documentation 26604

Error-Prone 649

Multithreading 29

Performance 170

TOTAL 65105

Identifying Code Quality issues in Student Projects… 328

https://github.com/AlDanial/cloc
https://pmd.github.io/

(Tables 3-6) provide further information on which

specific rule violations occur for the generic categories

summarized in (Table 1).

Table 3. The type and frequency of rule violations of Best

Practices.

 Rule Instances

Unused Imports 74

Avoid Print Stack Trace 44

System Println 26

Position Literals First In Case Insensitive Comparisons 25

Position Literals First In Comparisons 18

Unused Local Variable 13

ForLoop Can Be Foreach 10

One Declaration Per Line 10

Unused Private Field 7

Avoid Reassigning Parameters 6

J Unit A ssertions Should Include Message 6

Switch Stmts Should Have Default 6

Use Collection Is Empty 6

Loose Coupling 5

Replace Vector With List 3

Unused Private Method 3

Avoid Using Hard Coded IP 2

Use Varargs 1

TOTAL 265

Table 4. The type and frequency of rule violations of Code Style.

 Rule Instances

Field Naming Conventions 18980

Long Variable 15010

Local Variable Could Be Final 735

Method Argument Could Be Final 427

Class Naming Conventions 226

Short Variable 188

Comment Default Access Modifier 163

Default Package 160

Short Class Name 107

At Least One Constructor 102

Control Statement Braces 74

Use Diamond Operator 37

Only One Return 18

Confusing Ternary 13

Linguistic Naming 13

Method Naming Conventions 11

Useless Parentheses 11

Local Variable Naming Conventions 9

Useless Qualified This 9

Unnecessary Local Before Return 8

Premature Declaration 7

Use Under scores In Numeric Literals 7

No Package 5

Duplicate Imports 4

Identical Catch Branches 4

Unnecessary Constructor 4

CallSuper In Constructor 2

Unnecessary Return 2

Avoid Final Local Variable 1

Formal Parameter Naming Conventions 1

Unnecessary Fully Qualified Name 1

TOTAL

36339

Table 5. The type and frequency of rule violations of Design.

 Rule Instances

Law Of Demeter 854

Avoid Catching Generic Exception 54

Immutable Field 29

Excessive Class Length 22

Ncss Count 13

Cyclomatic Complexity 12

Excessive Method Length 11

N Path Complexity 8

Data Class 7

Signature Declare Throws Exception 7

Singular Field 6

Simplify Boolean Expressions 5

Collapsible If Statements 4

Use Utility Class 4

Avoid Deeply Nested If Stmts 2

Excessive Imports 2

Simplify Boolean Returns 2

Too Many Methods 2

Use Object For Clearer API 2

Useless Overriding Method 2

Too Many Fields 1

TOTAL 1049

Table 6. The type and frequency of rule violations of

Documentation.

Rule Instances

Comment Required 16429

Comment Size 10167

Uncommented Empty Constructor 5

Uncommented Empty Method Body 3

TOTAL 26604

Table 7. The type and frequency of rule violations of Error-Prone.

 Rule Instances

Dataflow Anomaly Analysis 282

Bean Members Should Serialize 266

Avoid Duplicate Literals 27

Avoid Literals In If Condition 18

Import From Same Package 7

Empty Catch Block 6

Null Assignment 6

Use Equals To Compare Strings 6

Avoid Field Name Matching Method Name 4

Call Super Last 4

Do Not Call System Exit 4

Assignment In Operand 3

Test Class Without Test Cases 3

Use Locale With Case Conversions 3

Assignment To Non Final Static 2

Compare Objects With Equals 2

Empty If Stmt 2

Missing Serial Version UID 2

Avoid Catching NPE 1

Call Super First 1

TOTAL 649

Table 8. The type and frequency of rule violations of

Multithreading.

Rule Instances

Do Not Use Threads 28

Avoid Synchronized At Method Level 1

TOTAL 29

G. LAGHARI et al., 329

Table 9. The type and frequency of rule violations of

Performance.

 Rule Instances

Add Empty String 48

Use String Buffer For String Appends 42

Avoid Instantiating Objects In Loops 33

Redundant Field Initializer 22

Avoid File Stream 8

String Instantiation 7

Use Array List Instead Of Vector 3

Inefficient String Buffering 2

Too Few Branches For A Switch Statement 2

Boolean Instantiation 1

Inefficient Empty String Check 1

Integer Instantiation 1

TOTAL 170

Answer to RQ2.The distribution of the code quality

issues in the projects is depicted in (Fig 1), while (Fig 2)

provides the summary of these distributions. There we

observe that five projects including the Notification

System, Order System, Remote Desktop Sharing, Result

Submission and Inquiry, and Wheel Chair application do

have all types of code quality issues. It was observed that

only three projects do not have all types of issues. Code

Generator lacks Multithreading related issues, Home

Appliance Controlling requires Performance related

issues, and the Online EasyBuy lacks Error-Prone,

Multithreading and Performance issues. We also notice

that Code Style is the dominant code quality issue and

that too in all projects. Note that the file count in Fig 1

and 2 does not mean unique files. Although there are

only 8 files in Code Generator project yet, the figures

show the file count for Code Style amounting to 50.This

is due to the fact the there are many rules which co-occur

in the same files. Thus the same file counts more than

once.

Answer to RQ3.To answer this question, we report the

topmost code quality issues that affect more files. Fig 3

provides the distribution of code quality issues that span

in at least 10files.We observe that excepting

Multithreading other issues are most common across

projects, yet some issuesare only project specific. Thus,

the most common issues are of type Documentation,

more precisely the Comment Required affecting 109

files in 6 projects.

Fig. 2 The summary of distribution of code quality issues in the projects.

Fig. 1 The distribution of code quality issues in the projects.

Identifying Code Quality issues in Student Projects… 330

Similarly, the At Least One Constructor issue of Code

Style affects 73 files across 5 projects. Other most

common issues of Code Style in clude Method Argument

Could Be Final with file count of 34, Local Variable

Could Be Final with file count of 31, and Short Variable

with file count of 27. On the other hand, Law of Demeter

with file count of 32 is the second most common issue of

Documentation.

Discussion. With an exploratory analysis of a few

student projects, we identify that the students’ code

substantially suffers from code quality issues and that

almost all types of issuesare found in the code. More

specifically students code lacks specific coding style and

documentation, which suggests that students are more

concerned in the working of their code than the quality

of the code. More specifically, they pay less attention to

the maintenance, since the code style and documentation

are more helpful in maintenance.

Since our dataset is small and all the projects are

written in Java, our results cannot be generalized. These

findings provide surface hints on students’ code quality.

This can be helpful for the instructors to pay attention to

code quality in students’ code.

4. RELATED WORK

There are many studies on the code quality in the

projects from kids (Aivaloglou 2016), university

students (Altadmri 2015, Keuning 2017), and even

professional developers (Monden 2002).

Aivaloglou and Felienne performed a large-scale

study on Scratch projects. Scratch is a block level

programming language primarily used to teach

programming to kids. They observed that procedures

and conditional loops were not commonly used in those

projects and those projects had code smells more

especially dead code and code clones (Aivaloglou

2016).

Keuning et al. 2017) explored code quality issues in

large code bases of students and found that laymen

student developers committed substantial code quality

issues. Despite the use of the code quality tools, it had

minimal effect on the improved code quality.

(Monden et al., 2002). study the code clone, which

is a duplicated code section, in a legacy software

consisting of about one million lines of code. They

quantitatively clarified the relation between code clones

and the reliability and maintainability of the software.

More specifically they identified that the modules with

code clones expanding to 200 lines are less reliable and

maintainable (Monden 2002).

(Dietz, et al., 2018) recommend teaching clean code

in the university. Inspired by the fact that universities

can learn from industry to improve programming

courses, they presented code review-driven course for

undergraduates which uses static code analysis tools

coupled with a book on code quality (Dietz 2018).

Stegeman created an empirically validated model of

code quality, which applies to early programming

courses (Stegeman 2014). Later they proposed a

systematic grading scheme by designing a rubric that

NotificationSystem Online EasyBuy OrderSystem Remote Desktop Sharing Result Submission And Inquiry Wheelchair Aplication

0

50

100

B
es

t
P

ra
ct

ic
es

C
o

d
e

S
ty

le

D
es

ig
n

D
o

cu
m

en
ta

ti
o

n

E
rr

o
r

P
ro

n
e

P
er

fo
rm

an
ce

B
es

t
P

ra
ct

ic
es

C
o

d
e

S
ty

le

D
es

ig
n

D
o

cu
m

en
ta

ti
o

n

E
rr

o
r

P
ro

n
e

P
er

fo
rm

an
ce

B
es

t
P

ra
ct

ic
es

C
o

d
e

S
ty

le

D
es

ig
n

D
o

cu
m

en
ta

ti
o

n

E
rr

o
r

P
ro

n
e

P
er

fo
rm

an
ce

B
es

t
P

ra
ct

ic
es

C
o

d
e

S
ty

le

D
es

ig
n

D
o

cu
m

en
ta

ti
o

n

E
rr

o
r

P
ro

n
e

P
er

fo
rm

an
ce

B
es

t
P

ra
ct

ic
es

C
o

d
e

S
ty

le

D
es

ig
n

D
o

cu
m

en
ta

ti
o

n

E
rr

o
r

P
ro

n
e

P
er

fo
rm

an
ce

B
es

t
P

ra
ct

ic
es

C
o

d
e

S
ty

le

D
es

ig
n

D
o

cu
m

en
ta

ti
o

n

E
rr

o
r

P
ro

n
e

P
er

fo
rm

an
ce

Project

F
il

e
C

o
u

n
t

AddEmptyString
AtLeastOneConstructor
AvoidCatchingGenericException
AvoidPrintStackTrace

BeanMembersShouldSerialize
ClassNamingConventions
CommentDefaultAccessModifier
CommentRequired

CommentSize
DataflowAnomalyAnalysis
DefaultPackage
LawOfDemeter

LocalVariableCouldBeFinal
LongVariable
MethodArgumentCouldBeFinal
ShortClassName

ShortVariable
UnusedImports

Fig. 3. Code quality issues which are distributed in atleast 10 files.

G. LAGHARI et al., 331

uses their model to provide feedback to students

(Stegeman 2016).

5. CONCLUSIONS

Developing software professionally is essential

since modern society heavily relies upon software. Code

smells are serious threats that contribute to the technical

debt in software.

Since university courses mainly target teaching

students about fundamental theories, students remain

oblivious to these code quality issues until they join the

industry.

In this paper, we performed the exploratory

analysis of student code focusing on code quality and

verified that students' code indeed accumulates huge

technical debt. Our results indicate that almost all types

of code quality issues occur in student projects. There

are some issues that arise more frequently and are

densely distributed in many files and projects. While

some issues are less common. We found that Code

Style, Documentation, and Design issues are more

prevalent and frequent in student projects.

The results of this study can be helpful specially for

the instructors and students to pay attention to code

quality. This would result in students adopting software

engineering principles early on. Thus, there are long-

term implications, when students start working

professionally.
.

REFERENCES:

Aivaloglou, E., and F. Hermans. (2016) "How kids code

and how we know: An exploratory study on the Scratch

repository." In Proceedings of the 2016 ACM

Conference on International Computing, Research,

53-61. ACM.

Altadmri, A. and N. C. C Brown. (2015) "37 million

compilations: Investigating novice programming

mistakes in large-scale student data." In Proceedings of

the 46th ACM Technical Symposium on Computer

Science, 522-527. ACM.

Cunningham, W. (1993) "The Wy Cash portfolio

management system" ACM SIGPLAN OOPS

Messenger 4, no. 2: 29-30.

Dietz, L. W., J. Manner, S. Harrer, and J. Lenhard.

(2018) "Teaching Clean Code." In Proceedings of the

1st Workshop on Innovative Software Engineering.

Keuning, H., B. Heeren, and J. Jeuring. (2017) "Code

quality issues in student programs." In Proceedings of

the 2017 ACM Conference on Innovation and

Technology in Computer Science, 110-115. ACM.

Kruchten, P., L. R. Nord, and I. Ozkaya (2012).

"Technical debt: From metaphor to theory and practice."

IEEE software 29, no. 6: 18-21.

Martin, F., (1999) “Refactoring: improving the design

of existing code”. Addison-Wesley

Monden, A., D. Nakae, T. Kamiya, Shin-ichi Sato, and

Ken-ichi Matsumoto. (2002)."Software quality analysis

by code clones in industrial legacy software." In

Proceedings Eighth IEEE Symposium on Software

Metrics, pp. 87-94. IEEE, Sharma, Tushar, and

Diomidis Spinellis. "A survey on software smells."

Journal of Systems and Software 138 (2018): 158-173.

Stegeman, M., E. Barendsen, and S. Smetsers. (2014)

"Towards an empirically validated model for assessment

of code quality." In Proceedings of the 14th Koli

Calling international conference on computing research,

99-108. ACM.

Stegeman, M., E. Barendsen and S. Smetsers. (2016)

"Designing a rubric for feedback on code quality in

Programming Courses." In Proceedings of the 16th Koli

Calling International Conference on Computing

Research, 160-164. ACM.

Identifying Code Quality issues in Student Projects… 332

