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1.          INTRODUCTION 

Ordinary Differential equations usually express 

all-natural phenomenon, which come across in this 

universal system. Their usage is present everywhere in 

science, engineering, economics as well as in social 
sciences to name a few as (Lambert, 1973). (Dory, 

1989): Few ordinary differential equations with initial 

value problems are autonomous and non-

autonomousby nature, and solution of suchODE’s with 

IVP’S can be obtained by analytic and numerical 

schemes, but analytic schemes mostly are unable to 

find their solution, so we have to refer numerical 

schemesas described in (Butcher, 2016). Many 

researchers are familiar with such ODE’ssince long 

time and they have formulated numerous schemes for 

thesolutions of suchODE’s asshown in(Owolanke, et 
al.,2017). (Mukaddeset al.,2016) (Ashiriboet al.,2013). 

These schemes are single and multi-step schemes.The 

single step schemes mainly include Euler’s method, 

Modified and Improved methods, Explicit and Implicit 

Runge Kutta method.Whereas multi step schemes 

include Adams interpolation and external interpolation 

formula, prediction and correction formula, that 

methods can be utilized for differential equation as 

well as system of differential equation. Thus, numerical 

methods are very important part for estimating solution 

of  ordinary differential equations, which could not be 

ignored. 
 

 

2. DERIVATION OF THE IMPROVED 

SCHEME 

To illustrate various numerical methods for the 

solution of ordinary differential equations. We consider 

the general first order ordinary differential equation 
with an initial condition, also called Cauchy Problem, 

as given below:   
 

     1,, 00 yxyyxf
dx

dy
nn   

Existence of unique solution of (1) is assumed for the 

integration interval of   nxxx ,0 . Here exact 

solution is denoted by  nxy whereas the numerical 

solution is by ny , taking the step size  
N

xx
h n 0
  

where ,...3,2,1N  

Generally, in n-dimensional real space y , 0y  , ny  and 

f  are regarded as vectors, which are sought by 

integrating  1  from 0x  to hx 0  in the form 

  dxyxfyy
hx

x
nnnn 



 
0

0
1

 

or, in equivalent form 
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We set different s ,such as 1,2,3. First we set 1s , 

then above form can be written as  

 111 kbhyy nn   

In similar manner, we set 2s  
 

 22111 kbkbhyy nn   

 

3s , then above form becomes 

   23322111 kbkbkbhyy nn   

Where 21 ,kk  and 3k  are the slopes, determined by  

 nn yxfk ,1   

    ynn fkchkbhyhaxfk 112

2

12122 ,   

    ynn fkchkbkbhyhaxk 131

2

23213133 ,   

The value of 2k and 3k are expanded by Taylor series. The Taylor series expansion of  nn yxY ,  is   
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Expanding  2k and 3k  in Taylor’s series, after this we substitute the result of  1k  , 2k  and  3k  into 2 , then 

equate the coefficients of powers of h up to 
3h with that of  3 to obtain the following order conditions:  
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This nonlinear system having 8 equations and 10 unknowns.So further we search out that this nonlinear 

systemhas trivial and non-trivial solution, for this purpose we need to determine parameters.One of the solutions of 

the above nonlinear system (4) forms a three-stage  explicit  single step  third  order improved scheme for numerical  

integration of autonomous and non-autonomous initial value problems as given below: 
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After getting this new improved scheme  5 , we will analyse it for its accuracy, convergence, order of 

consistency and linear stability. These are the important terms related to an improved scheme for it to be acceptable 

in the field of computational and applied mathematics as proved in Burden, Richard L., and J. Douglas Faires. 

(2001) 
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3. ERROR ANALYSIS 

The local truncation error of the proposed improved scheme is defined to be 1nT  where  
 

  11   nn yhxyT  

 

Where  xy is the theoretical solution and 1ny is approximate solution. Expanded these intoTaylor series about x 

and collecting the terms in h, the local truncation error (LTE) of the proposed improved scheme is 
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4. CONSISTENCY ANALYSIS 

Definition 4.1 Given an initial value problem        00;, yxyyxfxy nn  ; an improved scheme with 

anincrement function  hyx nn ;,  is said to be consistent, if 

 

 
 

The increment function of the proposed improved scheme is  
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Thus, the proposed improved scheme is shown to be consistent with at least third order accuracy. 
 

5. LINEAR STABILITY ANALYSIS 

To check stability of the improved schemes, we consider Dahlquist’s test problem of the form 
 

    Cyyxy
dx

dy
  ,0; 0  

 

Employing the proposed improved scheme (5)on this test problem, we obtain the following stability function whose 

linear stability region is shown by the unshaded region in the (Fig. 1). 
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Substituting all of these values in (5) , the stability function is found to be of the form: 
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6. NUMERICAL EXPERIMENTS 
In this section, some of the linear and nonlinear Cauchy problems in ordinary differential equations have been 

considered to show the behaviour of the proposed improved scheme against other schemes from well-established 

literature having same order of accuracy. Absolute maximum error, absolute error at the last nodal point of the given 

integration interval and CPU values for time have been presented to observe the performance of the developed 

method in comparison to other methods. Two standard methods called Runge-Kutta Method with Harmonic Mean 

of Three Quantities (RK3HM) (Abdul 1990)  and Runge-Kutta third order method(RK3M)(Butcher, 2016)  as 

shown below  have been chosen to compare the numerical results obtained through the newly developed an 

improved scheme. 
 

Table 1. Errors and CPU values for Cauchy Problem 1 
 

Problem 1. Nonlinear Cauchy problem 

  10,3  yyxy
dx

dy
,            

xex
Exact

2242

2


  

Step-size /method RK3HM RK3M Proposed 

0.1 2.2406e-004 2.1008e-005 1.2688e-005 

2.1363e-004 1.5944e-005 1.1927e-005 

0.0000e+00 0.0000e+00 0.0000e+00 

0.05 5.1698e-005 2.5084e-006 7.6936e-007 

4.9489e-005 1.8970e-006 5.0666e-007 

0.0000e+00 0.0000e+00 0.0000e+00 

0.025 1.2497e-005 3.0722e-007 6.9878e-008 

1.1988e-005 2.3198e-007 2.0308e-008 

0.0000e+00 0.0000e+00 0.0000e+00 

0.0125 3.0773e-006 3.8027e-008 7.5500e-009 

2.9553e-006 2.8697e-008 2.5429e-010 

1.5625e-002 0.0000e+00 0.0000e+00 
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Table 2.Errors and CPU values for Cauchy Problem 2 
 

Problem 2. Nonlinear Cauchy problem 

  10,
2

 y
y

x

dx

dy
,            

3693

1

x
Exact


  

Step-size /method RK3HM RK3M Proposed 

0.1 1.5241e-003 2.2290e-005 1.9548e-005 

1.5241e-003 2.2290e-005 1.9548e-005 

0.0000e+00 0.0000e+00 0.0000e+00 

0.05 3.8551e-004 2.8590e-006 1.0562e-006 

3.8551e-004 2.8590e-006 1.0562e-006 

0.0000e+00 0.0000e+00 0.0000e+00 

0.025 9.7000e-005 3.6139e-007 6.0505e-008 

9.7000e-005 3.6139e-007 3.3426e-008 

0.0000e+00 0.0000e+00 0.0000e+00 

0.0125 2.4332e-005 4.5408e-008 5.9410e-009 

2.4332e-005 4.5408e-008 2.3009e-009 

0.0000e+00 0.0000e+00 0.0000e+00 

 
 

Table 3. Errors and CPU values for Cauchy Problem 3 
 

Problem 3. Nonlinear Cauchy problem 

  10,2  yyx
dx

dy
,            e

t

Exact 3

3

  

Step-size /method RK3HM RK3M Proposed 

0.1 3.1171e-003 6.3568e-005 1.4165e-005 

3.1171e-003 6.3568e-005 1.3359e-005 

0.0000e+00 0.0000e+00 0.0000e+00 

0.05 8.2411e-004 8.4079e-006 1.6414e-006 

8.2411e-004 8.4079e-006 1.2474e-006 

0.0000e+00 0.0000e+00 0.0000e+00 

0.025 2.1194e-004 1.0805e-006 1.9677e-007 

2.1194e-004 1.0805e-006 1.2857e-007 

0.0000e+00 0.0000e+00 0.0000e+00 

0.0125 5.3744e-005 1.3694e-007 2.4068e-008 

5.3744e-005 1.3694e-007 1.4347e-008 

0.0000e+00 0.0000e+00 0.0000e+00 
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7.              RESULTS AND DISCUSSIONS 

The newly developed third order animproved 

scheme is capable of solving Cauchy problems in the 

field ofcomputational and applied mathematics. The 

maximum error and last error with step sizes 0.1, 0.05, 

0.025 and0.0125 are tabulated along-with the values of 

CPU timing in seconds. One may observe from these 

tabulateddatathat the absolute maximum and last error 

produced by the proposed improved scheme are much 

smallerthan the errors produced by other methods 

having same order of accuracy while consuming same 

amount oftime on average.The numerical results 
obtained throughthe proposed improved scheme 

produce numerical values approximately close to the 

exact solution incomparison to the values 

obtainedthrough Runge-Kutta Method with Harmonic 

Mean of Three Quantities andRunge-Kutta third order 

method. Finally, it has been observed that the proposed 

improved scheme is converging faster than the 

RK3HM and Runge-Kutta third order method and it is 

the mosteffective scheme for solving the Cauchy 

problems in ordinary differential equations as long as it 

is comparedwith the numerical schemes having same 
order of local accuracy as that of the proposed 

improved scheme.  
 

8.                            CONCLUSION 

This paper develops a new single third Order 

Improved Scheme for Numerical Integration of Cauchy 
problems in ordinary differential equations. The 

improved scheme is found to be third order accurate 

and explicit in nature. Its linear stability analysis gives 

the stability region which proves conditional stability 

of the proposed improved scheme. Examples in this 

paper proved that it is more accurate and effective 

scheme than some existing standard methods. (Tables 

1 to 3) above show the maximum error, the last error 

and CPU times related to all the numerical schemes 

under consideration for the Cauchy problems with the 

variation in the step size. In addition, absolute errors 
produced by the above numerical schemes are smallest 

in case of the proposed improved scheme as shown by 

the (Fig. 2-4). The computations above evidently 

display the better accuracy of the improved scheme.  
 

 
 

The Runge-Kutta Method with Harmonic Mean 

grows faster in error than third order Runge-Kutta and 

the proposed one. Hence, the proposed improved 

scheme performs best among the numerical schemes 

taken for comparison.  Based on the three Cauchy 

problems solved above, it follows that the proposed 

improved scheme is quite efficient specifically in terms 
of local accuracy. It can be concluded that the proposed 

improved scheme is powerful and effective in finding 

numerical solutions of Cauchy type problems arising 

frequently in the field of computational and applied 

mathematics. 
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