

SINDH UNIVERSITY RESEARCH JOURNAL (SCIENCE SERIES)

Identification of Dependencies in Task Allocation during Distributed Agile Software Development

F. IJAZ, W. ASLAM++

Department of Computer Science and IT, The Islamia University of Bahawalpur, Bahawalpur, Pakistan

Received 03rd January 2018 and Revised 10th February 2019

1. INTRODUCTION
Agile methods concentrate on individuals

cooperation, respond to changes, produce functional

software rather than strictly following recommendations

and emphasize on customer satisfaction (Cohn, and

Ford, 2003). Distributed Software Development (DSD)

supports availability of experts, minimum development

cost and time. These advantages have a positive impact

on task allocation (Imtiaz and Ikram, 2017).

DSD teams have repeatedly described issues about

task coordination. These contain undetected

modifications of code and communication breaks,

causing cost as well as time overruns that may reduce

the promising productivity benefits of DSD work

structure. Due to task coordination issues, DSD teams

may generally take 2.5 times extra to succeed as

compared to collocated teams (Sutanto, et al., 2015).

Empirical research demonstrates that proper

coordination is required for software project success.

The major principle of coordination is based on

identification of dependencies and relevant approaches

to resolve them. In this regard, Malone and Crowston’s

theory states ‘Coordination is the supervision of all

types of dependencies between activities’ (Strode, 2016)

“.Coordination breakdown is the critical problem.

Identifying dependencies that have emerged in Agile

Software Development (ASD) can support experts to

take applicable coordinative practices

It is necessary to concentrate on initial detailed

analysis for the identification of dependencies, assessing

the impact of changes and minimizing dependencies

among different locations during risk management in

Distributed Agile Software Development (DASD)

(Sundararajan, et al., 2014). Task dependencies may

exist among tasks during a Sprint or across Sprints.

Insufficient identification of dependencies during the

initial planning is a task dependency challenge at the

task level, so is the inability to keenly monitor

dependencies with an intention to resolve them.

Dependencies extending beyond teams to third party

vendors cause many issues such as Sprint interruptions

or terminations. They impact the effectiveness of project

scheduling as well as estimation, which triggers resizing

and rework practices. In software development industry,

dependencies on external vendors are a common reality,

while these issues need further empirical investigation.

It is necessary to minimize task dependencies to

facilitate uncomplicated and earlier development.

Dependencies can be tackled through Agile practices,

for example daily Scrum, planning and review meetings

related to each Sprint. Estimation as well as Sprint

planning formed by long and short term visions can

reduce dependencies contained in features (Hoda, and

Murugesan, 2016). With such problems in focus, we

aim to bring to limelight the intricacies of dependencies

arising due to a DASD setup. The research question

addressed in this paper is: ‘Which dependencies affect

task allocation in DASD?’ According to the importance

of dependencies in DASD, we have identified different

types of dependencies and made their taxonomy. This

paper is arranged in number of sections as follows.

Abstract: There is a growing interest for Distributed Agile Software Development (DASD) in software industry due to multiple

benefits such as availability of resources, low development cost, changeability and customer satisfaction. Carrying out DASD poses
a challenge of effective task allocation, which requires active coordination between dispersed teams. Effective coordination can be

achieved by identifying and managing dependencies in DASD environment. To understand the task allocation complexity due to

dispersed teams at different sites, we identify different types of dependencies in DASD. These dependencies must be recognized as
they have a profound influence on software product achievement using DASD. Identification and understanding them support

management to timely recognize different types of issues that can cause delay, interruptions or even cancellation of Agile Sprints.

DASD being an emerging practice, their understanding also leverages methodical task allocation that can optimize on quality
concerns such as cost of development and quality of product.

Keywords: Agile Software Development, Distributed Software Development, Distributed Agile Software Development, Task
Allocation and Dependencies.

SindhUniv. Res. Jour. (Sci. Ser.) Vol.51 (01) 31-36 (2019)

http://doi.org/10.26692/sujo/2019.01.07

++Corresponding author’s email: waqar.aslam@iub.edu.pk

file:///C:/Users/HP!/Downloads/waqar.aslam@iub.edu.pk

Related Work is explored in Section 2, while

dependencies are identified and their taxonomy built in

Section 3. Objective Optimization based dependencies

are given in Section 4 and conclusions in Section 5.

2. RELATED WORK
Previous research work has pointed out that client

stated software faults are frequently due to dishonored

dependencies these are not identified by software

development team. Results show that logical and work

dependencies are significant, impacting the possibility

of defects exposure in source files (Cataldo, et al., 2009)

For recognizing the possible implications of changes or

the estimation of which requirements must be adapted to

realize changes, it is impossible to understand these

changes in software systems without understanding

dependencies. Dependencies between software objects

often causes further modifications in software (Souza,

and Redmiles, 2008).

According to the results of a systematic literature

review, absence of obvious component or project

ownership and components interdependencies are strong

challenges for component based distributed software

development. A components dependency is the second

highest challenge as different components are generally

developed independently at different locations, while

integration of these components requires coordination to

complete system requirements (Mahmood, et al., 2015).

The development team responsible for developing

dependent components should engage in more

communication than developing independent

components. This is due to the fact that there is a solid

relationship between components interdependencies and

the frequency of required communication between

developers implementing those components. (Fonseca,

et al., 2006). According to the literature analysis,

various coordination issues are identified in DSD. Like

other issues, dependencies related negatively impact the

software quality attributes (Suali, et al., 2017).

During software development, coordination

interruptions increase the number of defects and costs.

According to a study, interpersonal coordination

activities can effectively manage highly interdependent

tasks; however, in DSD these types of informal

coordination activities are expensive. Identification of

dependencies and the coordination requirements, shared

by reasonable activities can decrease software defects.

In reality, of all enterprises surveyed, 81% have

reported that they had coordination problems due

to DSD, and many of them had to re-architect their

software to minimize dependencies between DSD team

members (Sutanto, et al., 2015).. Identification of

factors and dependencies in DASD is increasingly a

focus of research community (Strode, 2016)

3. DEPENDENCIES
Task dependencies indicate the condition that

achievement of specific task is essential to initiate next

task, or the expansion of particular action depends on

the existence of a particular item, where the item can be

an artifact, a person or any material(Strode, 2016).

Identification and supervision of dependencies in DSD

are critical activities affecting productivity and software

quality (Cataldo, and Herbsleb, 2013). There are diverse

categories of coordination issues in DSD, and these

issues are influenced by the nature of concerned

dependencies. Technical, temporal, and process are

coordination issues in DSD. Technical coordination

problems appear when technical dependencies between

chunks of software are not efficiently addressed. For

example, redundant code, incompatible interfaces and

integration problems appear due to lack of technical

coordination. Temporal coordination problems occurdue

to lack of effective management of time dependencies.

For instance, when software activities or software pieces

are not finalized according to project schedule, they

affect completion of others work activities. For

example, testing cannot start prior to completion of

coding stage. Process coordination problems happen due

to lack of monitoring the dependencies in the software

development process. For example, when software

process is not followed, development work is initiated

before the designing activity certified or conflicts about

priorities fixed. (Espinosa, et al., 2007). Taxonomy is

defined as ‘Categorization of systems that classify

phenomena in absolute or complete groups with a

sequence of distinct decisions instructions. Quality

taxonomy should be concise, robust, comprehensive,

extendible, explanatory and useful. (Fig. 1) presents

dependency taxonomy, which represents basic

dependencies, task interdependencies, software

dependencies, Agile dependencies and distributed

environment dependencies.

3.1 Basic Dependencies

Here three basic types of dependencies are defined:

flow, fit and sharing.

Flow dependency: A condition in which specific

activity provides output that is required for other

activity. For example, design specifications are

produced by designer that is required by developer.

F. IJAZ, W. ASLAM, 32

Fig. 1: A taxonomy of dependencies in DASD.

Fit dependency: When outputs are provided by

numerous activities and these have to fit together, for

instance, during the integration phase, when various

components are fit together.

Sharing dependency: When a specific resource is

required by compound activities, such as, time of an

expert technical architect.

Component dependency: Software components having

extreme level of dependencies should be managed

wisely due to their stronger impact on other components

in the architecture. Dependencies of software

components influence development team activities.

Fig. 2: Component dependency.

Component dependency is presented in (Fig 2), wherein

components A (c.A) and D (c.D) are developed at site 1,

component B (c.B) at site 2 and component C (c.C) at

site 3. Component A is dependent on component B,

which is itself dependent on component C, whereas

component C is dependent on component D. These type

of dependencies between components causes

communication overhead due to the involvement of

distributed sites.

3.2 Task Interdependencies

Four types of task interdependencies are recognized

in this category.

Pooled dependence task: Each development team

member finalizes work on his own before tasks are

aggregated. For instance, individual team members code

the software components independently prior tothe

integration of each software component.

Sequential dependence task: Individually team

members have to complete their own work prior to

delivering it to the next member. For instance, during

the development, team members design and create test

cases relevant to their specific responsibilities earlier to

delivering these test cases to the succeeding

development team members who do actual tests.

Reciprocal dependence task: The work passes from

side to side between development team members. For

instance, throughout the debugging process, work flows

between Programmers and Testers back and forth, thus

creating this type of dependency.

Team dependence task: Normally all team members

work simultaneously to identify the issues and offer

solutions. For example, during software requirement

analysis and making set of software requirements, all

team members have to understand and suggest

requirements of users.

Identification of Dependencies in Task Allocation… 33

3.3 Software Dependencies

Three types of dependencies are recognized due to

software artifacts.

Syntactic dependency: It represents explicit

associations among source files that are expressed by

data and functional syntactic dependencies. Their

strength can be evaluated by the number of data and

function/method references that span from a source file

towards another source file (𝑥to 𝑦), denoted as𝑆𝑥𝑦 .

Logical dependency: It represents semantic or indirect

associations among source files and obvious

relationships. These dependencies create an association

between source files that are reformed together

according to a modification requirement(s) by one or

more development team members.

Work flow dependency: It represents definite

relationships between development team members

influenced by workflows and processes.

3.4 Agile Dependencies

To support ASD, previous research presents

information, process and source dependencies, with

information dependencies having stronger impact than

others.

Information dependency: It includes facts about

requirement, expertise, history and task-member

mapping dependencies.

Requirements facts dependency: Correct information

about requirements is significant, while lack of this

information has negative impact on project progress.

Expertise facts dependency: A condition in which

technical or task related information is acknowledged by

a specific team member or a group of team members. In

software development, there are three main categories

of expertise: technical, design, and domain.

Historic facts dependency: A condition in which

information related to previous decisions is required and

absence of this type of information influences project

success.

Task-Member mapping facts dependency: A situation in

which tasks assigned to team members must be well

known. It has crucial role in project progress.

Process dependency: It includes activity and industry

process dependencies.

Activity dependency: It is a dependency relationship in

which progress of an activity is not possible unless other

activity is finished.

Industry process dependency: It is a dependency

relationship in which current business process becomes

a reason to complete tasks in a specific order.

Source dependency: It includes object and technical

dependencies.

Resource dependency: A state in which a resource

(individual, location, or thing) when required, must be

accessible, otherwise resource temporary postponement

or even deadlock may occur. An individual may be a

developer, a programmer or a tester.

Technical dependency: A state when a technical

characteristic of software development influences the

progress, for example, when some component needs to

cooperate with other component. Its existence or

deficiency has an effect on project progress..

3.5 Distributed Environment Dependencies

Distributed locations give rise to landscape, time,

social, technical, information, organizational,

communication and synchronization based

dependencies. These dependencies when considered

with other related factors, complexity during task

allocation is increased (Lamersdorf, et al., 2009).

(Fig. 3) presents distributed environment dependencies.

It shows four sites: 1, 2, 3 and 4, which depend on one

another in some sense, reflecting Distributed

Environment Dependencies (DEDs).

Fig. 3: Distributed Environment Dependencies.

These identified dependencies should be considered

in task allocation method especially in DSD, because

neglecting these dependencies negatively affects the

schedule of project.

Recognizing dependencies in software development

process support task allocation, especially when an

unambiguous task to team member mapping is sought.

(Fig. 4) presents different types of dependencies, such

as sequential dependency (SD), activity dependency

(AD), fit dependency (FT), resource dependency (RD),

team dependence tasks (TDT) and reciprocal

dependence tasks (RDT). According to Agile paradigm,

software development process has Product Backlog

containing user story (US) list and Sprint Backlog

containing task list. After selection of USs for Sprint,

software development phases such as analysis,

designing, coding, testing and integration have SD and

AD. Analysis phase has TDT depending on all DT for

maintaining Sprint Backlog. Integration phase,

including SD and AD, has FT. RDT affects coding and

F. IJAZ, W. ASLAM, 34

testing phases with two way forward and backward

dependencies. All tasks for completion also depend on

entity and knowledge according to their requirements,

which represent ED and KD. (Fig. 4) also shows the

influence of dependencies on various phases of software

development process and relationships of team members

as affected by these dependencies. During task

allocation in DASD, these dependencies should be

considered to decrease complexity due to neglecting

their deep effect.

Fig. 4: Different dependencies identified during software

development process.

4. OBJECTIVE OPTIMIZATION BASED

DEPENDENCIES

Objectives of the development organization also

affect dependencies in DSD. We picked idea from

decision model for task allocation) (Lamersdorf, et al.,

2009)., and used this concept to define dependencies

impact changing due to changes in the development

organization goals. The tasks of the project are related

to different activities such as requirements engineering

(RE), design, implementation and integration. For

example, project development may be distributed at

three sites: Pakistan, Singapore and United States of

America (USA). Development at USA is expensive but

offers excellent skills in RE and design. The Singapore

site is also expensive but less than USA, offering good

implementation and integration capabilities. Pakistan

site has countless differences with two other sites,

especially in language and culture. Still development is

quite inexpensive and offers good implementation skills,

though lack in RE and design experiences. We give

pointers to quality and cost concerns when considered

as development objectives.

Quality Objective: Software quality is defined as ‘The

degree to which a software artifacten counters

established requirements, although, quality determined

by the degree to which those established requirements

correctly show customer needs as well as expectations’

(adapted from ISO/IEC/IEEE 24765:2010) (“IEEE

Standard for Software Quality Assurance Processes -

Redline,” 2014). If an organization aims at good quality,

RE and designing should be completed in USA,

implementation in Pakistan and integration in

Singapore. This condition is represented in (Fig. 5),

which shows dependencies between sites and

development phases.

Fig. 5: Task assignment dependencies with aim on quality.

Cost Objective: According to DSD, software cost

assessment should include software development cost,

software maintenance cost and re-engineering cost.

There are four categories of cost factors such as product,

platform, personnel and project. These factors impact

DSD and are associated to different characteristics of

distributed projects such as spoken, social and time

dissimilarities (Bajta, et al., 2015). If an organization

aims at low cost, all the activities except R A, ought to

be completed in Pakistan. RE preferably needs to be

completed in USA. This condition is represented in

(Fig. 6).

Fig. 6: Task assignment dependencies with aim on cost.

When software development objective changes from

quality to cost (compare Figs 5 and 6), dependencies

change accordingly. For instance, there is less number

of locations in Figure 6 than Figure 5, due to which

there is no FD in (Fig. 6).

Finally it is commented that if an organization aims

at saving time, then all the tasks should be assigned to

one location. It will reduce communication overhead

due to distributed environment dependencies. When task

allocation is done objectively, dependencies in task

allocation strategy change accordingly.

Identification of Dependencies in Task Allocation… 35

5. CONCLUSION
In this paper, we have identified and explored

dependencies in DASD and their taxonomy proposed.

This taxonomy presents basic information about

different types of dependencies such as basic and those

related to software, task-task mutual relations, Agile

process and distributed environment. We have also

presented the relationship of these dependencies during

various phases of software development process.

Different types of dependencies impact the progress of

software development process with varying degree of

impact. We have also identified objective optimization

based dependencies. They describe and point out that

DASD based project objectives change the intensity of

dependencies among distributed team members.

Identification of these dependencies in DASD

contributes to better understanding of required

coordination among distributed team members that

must be recognized during task allocation in DASD.

Future work can be towards a dependency model that

reflects the level of impact of these dependencies

according to their weights in DASD.

REFERENCES:

Aslam, W. and F. Ijaz (2018) “A Quantitative

Framework for Task Allocation in Distributed Agile

Software Development,” IEEE Access, vol. 6,

15380-15390.

Bajta, M. E., A. Idri, J. L. Fernández-Alemán, J. N. Ros,

and A. Toval, (2015) “Software cost estimation for

global software development a systematic map and

review study,” in International Conference on

Evaluation of Novel Approaches to Software

Engineering (ENASE), 197-206.

Cataldo, M. and J. D. Herbsleb, (2013) “Coordination

Breakdowns and Their Impact on Development

Productivity and Software Failures,” IEEE Transactions

on Software Engineering, vol. 39, no. 3, 343-360.

Cohn, M. and D. Ford, (2003) “Introducing an agile

process to an organization [software development],”

Computer, vol. 36, no. 6, 74-78.

Cataldo, M.., A. Mockus, and J. D. Herbsleb, (2009)

“Software Dependencies, Work Dependencies, and

Their Impact on Failures,” IEEE Transactions on

Software Engineering, vol. 35, no. 6, 864-878

Espinosa, J. A., S. A. Slaughter, R. E. Kraut, and J. D.

Herbsleb, (2007) “Team Knowledge and Coordination

in Geographically Distributed Software Development,”

Journal of Management Information Systems, vol. 24,

no. 1, 135-169.

Fonseca, S. B., C. R. B. D. Souza, and D. F. Redmiles,

(2006) “Exploring the Relationship between

Dependencies and Coordination to Support Global

Software Development Projects,” in 2006 IEEE

International Conference on Global Software

Engineering (ICGSE'06), 243-243.

Hoda, R. and L. K. Murugesan, (2016) “Multi-level

agile project management challenges: A self-organizing

team perspective,” Journal of Systems and Software,

vol. 117, no. Supplement C, 245-257.

Imtiaz, S. and N. Ikram, (2017) “Dynamics of task

allocation in global software development,” Journal of

Software: Evolution and Process, vol. 29, no. 1, pp.

e1832.

IEEE Standard for Software Quality Assurance

Processes - Redline, (2014) IEEE Std 730-2014

(Revision of IEEE Std 730-2002) - Redline, 1-231.

Lamersdorf, A., J. Munch, and D. Rombach, (2009) “A

Survey on the State of the Practice in Distributed

Software Development: Criteria for Task Allocation,” in

2009 Fourth IEEE International Conference on Global

Software Engineering, 41-50.

Lamersdorf, A., J. Münch, and D. Rombach, (2009) “A

decision model for supporting task allocation processes

in global software development,” Product-Focused

Software Process Improvement, 332-346

Mahmood, S., M. Niazi, and A. Hussain, (2015)

“Identifying the challenges for managing component-

based development in global software development:

Preliminary results,” in 2015 Science and Information

Conference (SAI), 2015, 933-938.

Sutanto, J., A. Kankanhalli, and B. C. Y. Tan, (2015)

“Investigating Task Coordination in Globally Dispersed

Teams: A Structural Contingency Perspective,” ACM

Trans. Manage. Inf. Syst., vol. 6, no. 2, 1-31.

Strode, D. E (2016) “A dependency taxonomy for agile

software development projects,” Information Systems

Frontiers, vol. 18, no. 1, 23-46,

Sundararajan, S., M. Bhasi, and P. K. Vijayaraghavan,

(2014) “Case study on risk management practice in

large offshore-outsourced Agile software projects,” IET

Software, vol. 8, no. 6, 245-257.

Souza, C. R. B. d. and D. F. Redmiles, (2008) “An

empirical study of software developers' management of

dependencies and changes,” in Proceedings of the 30th

international conference on Software engineering,

Leipzig, Germany, 241-250.

Suali, A. J., S. S. M. Fauzi, and M. H. N. M. Nasir,

(2017) “Developers' coordination issues and its impact

on software quality: A systematic review,” in 2017 3rd

International Conference on Science in Information

Technology (ICSITech), 659-663.

F. IJAZ, W. ASLAM, 36

