

 SINDHUNIVERSITYRESEARCHJOURNAL(SCIENCESERIES)

Context-aware Heterogeneous Service Composition Framework for Pervasive Computing Environments

M. ALJAWARNEH
++, L. D. DHOMEJA*, Y. A. MALKANI**

Institute of Information and Communication Technology, University of Sindh, Jamshoro, Pakistan

Received 20th February 2018 and Revised 03rdth July 2018

1. INTRODUCTION
 In 1991, Mark Weiser outlined the vision of the

computers for the twenty-first century with the name of

ubiquitous computing, now also known as pervasive
computing. According to Mark Weiser’s vision, the

computing will move beyond desktops, become

ubiquitous and invisible to the users (Weiser, 1991).

Putting the light on Weiser’s vision, (Satyanarayanan,

2001) elaborates the invisibility as "complete

disappearance of pervasive computing technology from

a user’s consciousness" and relates this to "minimal user

distractions". Achieving invisibility in pervasive

computing requires allowing applications to adapt

themselves in response to context (i.e. user presence,

user activity, user location, temperature level, light

intensity level etc.). This makes context-awareness in
general and contextual service composition in

particular, a core requirement for pervasive computing

environments

Pervasive computing environments may have a

number of devices (such as PDAs, smart mobile

devices, smart digital TV receivers, smart display

screens, smart cameras and smart electronic appliances)

offering different services. In order for pervasive

computing environments to be able to fulfil user needs

without demanding their attention, services available in

the environment need to be discovered and interacted

with in response to context. The needs of the users may

sometimes be met with a provision of an atomic service,

but most of the times this may involve a composition of

multiple services. The process of discovering services

and composing them based on context is called
contextual service composition. For example, a user

may want to answer the phone call while moving

around in the home. This requires that the speaker and

micro-phone services be discovered and interacted with

based on the user context (i.e. location). As an another

example, a user has comeback home from work and

wants to relax, and this may involve dimming light

value of the room the user is sitting in (e.g. 40% light

intensity value), moderating temperature of room (e.g.,

20-degree room temperature), starting her favourite

music (e.g. Jazzmusic). This requires discovering

various services (e.g. light service, temperature
controlling service, music service, speaker service etc.),

composing them to meet the high-level user goal of

relaxing in the room.

Service Oriented Architecture (SOA) is one of the
promising approaches used for development of

pervasive application because of its loosely-coupled

architecture. Its loosely-coupled architecture allows the

services be developed and managed independently of

each other, which can be discovered and composed

together to meet user needs in pervasive computing

environment. A number of service discovery protocols

have been developed which are based on SOA, such

Abstract: Pervasive computing offers environments in which user needs or tasks are fulfilled without demanding their attention. This

requires discovering a service or a set of services and interacting with them in response to context (i.e. user presence, user activity,

user location, temperature level, light intensity level etc.). In pervasive computing environments, services available in the

environment may be heterogeneous with regard to different service discovery protocols (e.g., UPnP, SLP, JINI, etc.) being used for

their publication, discovery and interaction. Contextual service composition may involve discovery of and interaction with

heterogeneous services based on context, raising an issue of service heterogeneity in pervasive computing environments. In this paper,

we put forward a framework that addresses this issue. The proposed framework has been designed, implemented and evaluated, details

of which are provided in the paper. The performance evaluation results indicate the system can perform well in both local and

distributed settings.

Keywords: Service composition, Contextual Service Composition, Service Discovery Protocols, Heterogeneous Services,

Contextual Service Discovery, and Event-Condition-Action Policy.

Sindh Univ. Res. Jour. (Sci. Ser.) Vol.50(003) 345-354 (2018)

http://doi.org/10.26692/sujo/2018.09.0059

++ Corresponding Author’s E-mail: maljawarneh@scholars.usindh.edu.pk

* Institute of Information and Communication Technology, University of Sindh, Jamshoro, Pakistan.
** Institute of Mathematics and Computer Science, University of Sindh, Jamshoro, Pakistan.

mailto:maljawarneh@scholars.usindh.edu.pk

as JINI (Waldo, 2000), UPnP (UPnP, 2018), OSGi

(Tavares and Valente, 2008), SLP (Guttman, 1999),

Bluetooth SDP (Bluetooth, 2018), Bonjour (Bonjour,

2018), etc. These protocols provide mechanisms and

supporting infrastructure for three primary tasks: (1)
expression and publication of services, (2) discovery of

services and (3) interaction with discovered services.

While these protocols provide the support for three

basic aforementioned tasks, they highly vary in

mechanisms / techniques used to support these three

tasks, thereby raising an issue of heterogeneity. In

pervasive computing environments, an umber of devices

are assumed to be available with each one offering one

service or multiple services and these services may be

based on different service discovery protocols, i.e.,

some of them may be UPnP-based, while others SLP-

based and others JINI-based. An issue of heterogeneity
arises in contextual service composition when the

services involved in composition are built using

different service discovery protocols. Supporting

heterogeneous contextual services composition increases

the potential and diversity of possible application that

can be developed. One of the main goals of our research

has been a provision of the framework for development

of pervasive computing applications involving service

composition based on context. One of the main goals of

our research has been a provision of the framework for

development of pervasive computing applications
involving service composition based on context. One of

the main objectives to achieving this goal is resolving

an issue of heterogeneity of services. We address these

issues and propose a framework for heterogeneous

service composition in pervasive computing

environments.

The reminder of this paper is as follows. Section 2

provides the background to service composition the

description of related work on heterogeneous service

composition. In section 3, we present our proposed

heterogeneous context-aware service composition

framework. Section 4 presents the performance

evaluation of the proposed framework. Finally, the
paper is concluded in section 5.

2. LITERATURE REVIEW

In this section we provide a brief background to

service composition including approaches generally

used in the literature to addressing the issue of

heterogeneous service composition. This section also

provides description of various research efforts focusing

on heterogeneous service composition.

2.1 Background

Service Oriented Architecture (SOA) is the

paradigm that facilitates a process of a service

composition as services are built independently and

maintained separately where they could later be used to

dynamically build an application from those concrete

services(composite service). SOA consists of mainly

three parts (Fig. 1) (1) service provider which is

responsible to build and publish the service, (2) a

service directory that is responsible to register the
services and answer the discovery messages from the

service consumer and (3) service consumer that

discovers the service and directly interacts with the

service.

2.1.1 Service Composition Phases
The process of composition of the services goes

generally into three phases:

a) Composition phase: this phase deals with generating

the description of the composed service, which is

usually written in a standard format understandable by

the underlying supporting infrastructure. This file

description contains the description of the individual

services that are involved in the composition. Different

languages have been developed to write the description

of the composed services, such as Flow (Casati and

Shan, 2001), BPEL (Khalaf, et al., 2005), UML-WSC
(Khalaf, et al., 2002), etc. This description can later be

used to trigger the composition of the services

automatically by its corresponding execution

middleware.

b) Selection phase: in this phase, the composed service

is built by selecting concrete services from the available

services (involved in the composition) based on the

information available in the composed service

description. In this phase, the services are discovered

and bound. There are usually two approaches which are

followed in this phase. (1) static approach and (2)
dynamic approach. In the former, the services are

Fig 1: SOA Three Parts

M. ALJAWARNEH et al., 346

known and selected at the design time, while in the

latter;the services are unknown at the design time and

are automatically discovered, selected and bound at

runtime. In both cases, the outcome of the selection

phase is an executable composed service.

c) Execution phase: this is the last phase of service

composition where the executable composed service is

executed by the underlying system by invoking and

monitoring messages on the constituent services of the

composed service.

2.1.3 Heterogeneous Service Composition

The issue of service heterogeneity arises when the

participating services in the composed service are

developed with different service protocols. In the

literature, three different approaches have been

proposed and used to address the service heterogeneity

issue.

a) Direct (Transparent) Approach:

In this approach, service heterogeneity is addressed

by translating the services from one service discovery

protocol to another and registering them as logical

services. This approach uses a software component
(often called an adapter) for translation of a service

from one protocol to another. The main problem with

such approach is that the number of adapters increases

with the number of services. The research efforts using

this approach include (Allard, et al., 2003; Yérom- et al.

2005; Delphinanto et al., 2007; El Kaed, et al. 2011;

Meliones, et al. 2010).

b) Intermediate (Explicit) Approach:

In this approach, service heterogeneity is addressed

by translating the heterogeneous services (developed
using different SDPs) to a common format, and then the

common format is used for discovery of services.

Realization of this approach includes two software

components – one component to translate the service

description to a common format and the second

component to translate service invocation messages

back to the protocol format. The research efforts using

this approach include (Benmokhtar, et al., 2008;

Yerom-David et al.2006; Cheng, et al. 2012; El Kaed et

al.2011; Kim et al., 2012; Koponen and Virtanen, 2004;

Limam et al. 2007; Nakazawa, To et al., 2006; Raverdy,

et al. 2006; Yang, et al.2012)

c) Client Side Interoperability:

With this approach, the heterogeneity is achieved

by making the client capable of interacting with

different service discovery protocols. The research

efforts using this approach include et al. 2011).

While all of three techniques have been used in the

literature to address service heterogeneity issue, the

literature suggests that intermediate (explicit) is more

promising and widely used approach to addressing

service heterogeneity in service composition, since it
requires translating the heterogeneous servicesto a

common format, allowing discovery of and interaction

with the services in a unified way. In the following

section, we provide a brief overview of systems

exploiting intermediate approach to heterogeneous

service composition, with a special focus on

mechanisms used for expressing composed services and

common platform used forconverting heterogeneous

services into.

2.2 Related Work

(Álamo, et al. 2010) provide a framework that

allows composition of heterogeneous services using a
BPEL composition file. The service heterogeneity issue

is addressed by translating all the services into a

common platform based on OSGi.

(Chauvel, et al.2011) provide an approach to

dynamic service composition of heterogeneous service-

oriented systems. The service heterogeneity is addressed

through translating the services written in a particular

platform (e.g., UPnP, OSGi, etc.) into a corresponding

web service (web service proxy). This means there

would be a web service proxy for each of the protocol-

specific service. The BPEL is used for the composed

service description.

(Reyes, 2010) provide a service composition

language called simple service composition language

(SSCL) for composing heterogeneous services by

extending OSGi framework. The heterogeneity issue is

resolved using two proxies. That enables the discovery

and interaction with the heterogeneous services.

(Davidyuk, et al. 2011) provide the middleware

called MEDUSA, The proposed middleware exploits

Amli framework (Georgantas et al., 2010) for discovery

of heterogeneous services and ubiSOAP framework

(Caporuscio et al., 2009) for interaction with
heterogeneous services. The users are provided with a

set of interfaces to build a composite service.

(Kaldeli, et al .2010a) have developed a

middleware supporting dynamic service composition of

heterogeneous services. This middleware uses AI

planning techniques for creating a plan for the

composed services and rule engine for executing the

created plan in response to events generated by the

sensors in the environment. The service heterogeneity

issue is addressed by translating protocol-specific

services (e.g., UPnP, Web services) into OSGi services.

Context-aware Heterogeneous Service Composition… 347

(Kaldeli, et al.., 2013) provide an extended version

of their middleware discussed in (Kaldeli et al., 2010b).

The added functionality includes (1) triggering the

composition process (includes both planning and

execution) in response to explicitly expressed user
needs and (2) unlike their earlier work where each

service was translated into OSGi format. All

devices/services and their functionality are mapped to

OSGi-UPnP standard format.

(Caruso et al., 2012) provide a framework that uses

two composition engines to enable service composition:

the offline engine used for static service composition

and the online engine for dynamic service composition

with the help of AI planner that plans a composite

service based on user needs. The developed framework

wraps the non-SOAP based services and registers them

in the repository as web services.(Table 1) shown

below summaries the related work.

3. PROPOSED CONTEXT-AWARE

HETEROGENEOUS SERVICE

COMPOSITION FRAMEWORK
In order to address an issue of service heterogeneity

in context-aware service composition, we have designed

and implemented a framework called context-aware

heterogeneous service composition framework. In the

following, we present a high-level architecture of the

framework along with a brief discussion of each of its
components and also briefly discuss implementation of

the framework.

3.1 An Architecture of the Proposed Framework

The high-level architectureof the proposed

framework providing the support for heterogeneous

service composition is shown in (Fig 2).

The proposed Framework has two main

components: (1) Service Composition, (2) Service
Broker. In the following subsection we discussed them

in detail.

3.1.1 Service Composition

That is responsible to carry out the composition

process as dictated in the composed service

descriptions. The subsections presented next describe

the responsibility of each subcomponent in a context-

aware service composition process.

A. Composed Services Description Repository

This component is responsible for maintaining the

description of the composed services in XML format
file. The composed services may be developed by a

developer. The XML file description will have the

description of the constituent services of the composed

service along with their default value of parameters

associated with each of the constituent services.

B. XML to Java Parser

This component is responsible for parsing the XML

description of the composed service and creating a Java

object based on the parsed information. The created

Java object will contain all required information for the

Fig 2: High-level Architecture of the Proposed

Framework

M. ALJAWARNEH et al., 348

constituent services and this object is handed over to the

service composer component, which creates a

composite service.

C. Service Composer

This component is responsible for creating an
object of the composite service from the Java object

containing description of the constituent services of the

composite service. The creation of the composite

service involves discovering the services based on

context and binding them to itself, and then interacting

with the bound services for performing actions using

default parameter values of the services. The discovery

and interaction involved in the process of creation of the

composite service is done through the service broker

component, which is discussed in the next section.

3.1.2 Service Broker

As we discussed above, the services involved in
composition may be heterogeneous (i.e. from different

discovery protocols). The service broker is responsible

to hide the heterogeneity of these services by allowing

the discovery of heterogeneous services and interaction

with them in a unified manner, without the need for

knowing the protocol used to develop these services. In

the following subsections we discuss the service broker

components.

A. Unified Service Discoverer

This component is responsible to allow the

discovery of the services in their respective platform
(the service discovery protocol used to develop the

service), the broker allow the service composition to

interact with heterogeneous services in a unified

manner. The unified service discoverer discovers the

services in two steps: (1) by discovering the protocol in

which the services are developed and(2) initiating a

service discovery request using that protocol.

B. Unified Service Invoker

This component allows the services to be invoked

in a unified manner in the same way as the previous

component by two steps: (1) finding the protocol used

to develop the service, and (2) invoking the service
using that protocol, without the need for a specialized

component (e.g. proxy) to translate the invocation.

C. Service Repository

This component is responsible for receiving

presence notification of each services and maintaining

this information in the repository to facilitate the task of

quick discovery of requested services. As soon as the

service leaves the environment, its information is

removed from the repository. While this is similar to

what is supported by most of the discovery protocols,

there are some discovery protocols that don’t have this
mechanism available such as RMI, JINI. Therefore, in

case of RMI or JINI services, the discovered RMI and

JINI services are cached in this component.

3.2Implementation

The proposed framework was implemented using

Java programming language. The implementation of the
proposed framework consists of various Java objects

including service composer, XML to Java parser and

service broker. These components interact with each

other to realize heterogeneous service composition.

Through the following example scenario, we

discuss implementation of the proposed heterogonous

service composition framework.The example scenario is

that: “While the user at home, someone is knocking at

the door by pressing the doorbell. As the doorbell rings,

the camera mounted at the top of the main gate start

capturing the person picture, and the image of the

person is displayed at rendering device nearest to the
location of the user at home (e.g. room1) and also the

doorbell notification is played on the sound system

nearest to location of the user at home”.

As can be noted from the example above, there are

four services needed to be composed to realize the

scenario: (1) camera service, (2) location service, (3)

display service and (4)speaker service. When someone

knocks the doorbell, the system will respond by

discovering these services and composing them to meet

the high level user need. The composition is context-
aware in that it uses the location service to locate the

current user location and discover the rest of the

involved services based on that location. The XML

description of notification composite service is shown in

(Fig 3).

In order to run this scenario on the implemented

system we have developed simulated context widget

Fig 3: XML description of notification composite

service

Context-aware Heterogeneous Service Composition… 349

to simulate the doorbell notification context in

order to trigger the composition of the services as

dictated by the composite service description. The GUI

that allow sending the name of the composite service is

shown in (Fig 4).

When the Send Context button is pressed, the

simulated context widget passes to service composer the

name of the composite service, which is the name of the

composed service description file saved in the

repository. The message sequence diagram as illustrated

below (Fig 5) shows interaction involved among
various components of the framework for realizing

heterogeneous service composition in response to

context.

To summarize, the proposed framework provides

the support for composing heterogeneous service. The
service heterogeneity issue within the framework is

addressed by the service broker.

Unlike traditional approaches to service

heterogeneity where each service developed using a

particular protocol (e.g., UPnP, SLP) is translated to a

common platform, our framework allows discovery and

interaction with heterogeneous services in a unified

manner, hence eliminates the overhead associated with

translating and managing each service to the common

platform.

4. PERFORMANCE EVALUATION
We present the performance of the proposed

framework for heterogeneous contextual service

composition. Tests conducted under both local and

distributed environment settings include the service

composition time. The service composition time is the

time taken by the system for reading the composed

service description, building the service composition

object and firing the composed service object in

response to context.

We run the scenario discussed earlier 20 times in

both local and distributed settings and measure the total

composition time. The composition time starts from a

point the composite service name is sent by the context

widget until the default values on all services involved

in the composition are implemented.

4.1 Local Testing Environment Setup

In the local setting, we tested the system by running

all system components on one machine with this

configuration: Intel core i5 3360M 2.8 processor with
4GB RAM, windows 10 64bit operating system with

jdk1.7. In this local setting, the proposed system

(heterogeneous service composition framework), the

services from different protocols such as UPnP, RMI,

etc. and the context widget used to send the composite

service name were running on the same machine. The

local setting configuration is shown in (Fig 6).

Test 1:Service composition time in a local setting.

Results: The reported composition time for the test 1

are the average times and presented graphically in

(Fig. 7) along with the standard deviation. The fig 7

shows the average total composition time of 69ms with

Fig 6: Running the System in Local Settings

Fig. 5: Message Sequence Diagram for Heterogeneous

Service Composition

Fig 4: Simulated Context Widget

M. ALJAWARNEH et al., 350

7.85 standard deviations. The total composition time is

divided into three parts: (1) reading the composed

service description from the XML file saved in the

repository, (2) building the composed service object,

this involve discovering the services and binding them
to the composed service objectand (3) interacting with

constituent services by implementing the default values

on them.

The fig 7 clearly indicates that the time for

discovering the services is 13.5ms, which involves the

discovery of services from two heterogeneous protocols.

Unlike existing approaches in which the service
description from every protocol is translated intoa

common format, in our approach the services are

discovered in their native platform, thus eliminating the

overhead associated with translation. The fig 7 indicates

an average time taken by the system to interact with the

discovered services for implementing the user

preferences is 46.2ms. This time includes the time taken

by the system for interaction with two services from

UPnP and two services from RMI protocol in their

native protocols.

4.2 Distributed Testing Environment

In distributed setting, three machines were used.
Machine 1 had these specifications: Intel core i5 3360M

2.8GHz processor, 4GB RAM with Wi-Fi IEEE 802.11

network card, running windows 10 64bit operating

system with jdk1.7. Machine 2 had theses

specifications: Intel core2duo E5300 2.6GHz processor,

2GB RAM with Wi-Fi IEEE 802.11 network card,

running windows XP 32bit operating system with

jdk1.7. Machine 3 had these specifications: Intel core i3

2350M 2.3GHz processor, 4GB RAM with Wi-Fi IEEE

802.11 network card, running windows 10 64bit

operating system with jdk1.7.

Machine 1 was used to run the proposed

heterogeneous service composition framework and the

context widget. Machine 2 was used torun RMI services

and RMI registry, while machine 3 was used to run the

UPnP services. All these machines were connected

together on the same network using Wi-Fi access point

of Institute of Information and Communication

Technology (IICT) at University of Sindh to form a

distributed testing environment. The distributed setting

configuration is illustrated in (Fig. 8).

We ran the same test(discussed earlier)in distributed

setting 20 times (fig8).

Test 2:Service composition time in a distributed setting.

Results: The reported composition time in distributed

setting for the test 2 are the average times and are
presented graphically in fig 9 along with the standard

deviation. The (Fig. 9) shows the average total

composition time of 158ms with 13.42 standard

deviations.

Fig 9: Average Total Composition Times in Distributed

Setting

Fig 8: Running the System in Local Settings

Fig 7: Average Total Composition Times in Local Setting

Context-aware Heterogeneous Service Composition… 351

 As it can be noted from the fig 8 and 9, total

composition time in local settings is 69ms, while in

distributed settings it is 158ms. This increase of 89ms is

due to the network overhead associated with the

distribution of the services across the network. The
major contribution in the total composition time in

distributed settings is of the time taken by the system for

remote interaction with the services to implement user

preferences, which is around 130ms.
.

5. CONCLUSION

One of the core challenges of pervasive computing

environments is a provision of a customized service to

best meet user needs. The provision of such a

customized service may lead to a process in which the

services are discovered and composed based on

contextual information (such as user activity, user
location information, nearby resources, etc.). This

makes contextual service composition a central

requirement for pervasive computing applications. In

contextual service composition, an issue of service

heterogeneity may arise when the services required in

service composition are heterogeneous (for example,

some may be JINI-based, while others UPnP-based,

etc.). In this paper we have addressed this issue and

proposed and implemented the framework called

Context-aware Heterogeneous Service Composition

Framework for Pervasive Computing Environments.

This paper has provided a detailed description of an
approach used in the framework to address an issue of

service heterogeneity, the architecture of the framework

along with its components, implementation and

performance evaluation. This paper also reviews some

relevant systems and summarizes them in the table

mentioning what approach has been taken by them to

address the service heterogeneity issue. Other core

research challenges that need to be addressed in the

field of context-aware service composition in pervasive

computing may well include (1) decoupling of

adaptation decision logic from other parts of an
application to achieve simplification of development

and dynamic programmability and (2) user involvement.

However, the proposed framework can further be

extended to support fault tolerance to cope with service

and power failures – by developing a specific language

for service composition, where the recovery plan of

failure could be incorporated with the composed service

description. Currently, the user preferences are

manually included in the composed service description,

this can be further improved by developing a separate

component for user preferences known as user profile
and dynamically including the user preferences from her

profile in the composed service description.

REFERENCES:
Álamo, J. M. R., H. I. Yang, J. Wong, and C. K. Chang,

(2010). Automatic service composition with

heterogeneous service-oriented architectures. In Aging

Friendly Technology for Health and Independence
9–16. Springer.

Allard, J., V. Chinta, S. Gundala, and G. G. Richard

(2003). Jini meets UPnP: an architecture for Jini/UPnP

interoperability. In Applications and the Internet, 2003.

Proceedings. 2003 Symposium on 268–275.

Benmokhtar, S., P G. Raverdy, A. Urbieta, and R. S.

Cardoso, (2008). Interoperable semantic and syntactic

service matching for ambient computing environments.

In 1st International Workshop on Ad-hoc Ambient

Computing (AdhocAmC).

Bluetooth, S. I. G. (2018). Bluetooth specification,

in “http://www.bluetooth.org/en-us/specification” Last

accessed 20,8,2015. Bluetooth Specification.

Bonjour, A. (2018). Apple Bonjour, in

“https://www.apple.com/support/bonjour/” Last

accessed 20,8,2015. Apple Bonjour.

Bromberg, Y. D. and V. Issarny, (2005). INDISS:

Interoperable discovery system for networked services.
In Proceedings of the ACM/IFIP/USENIX 2005

international Conference on Middleware 164–183.

Bromberg, Y. D., V. Issarny, and P. G. Raverdy, (2006).

Interoperability of service discovery protocols:

Transparent versus explicit approaches. In the 15th IST

Mobile and Wireless Communications Summit.

Caporuscio, M., P. Raverdy, H. Moungla,

M. Caporuscio, P. Raverdy, and H. Moungla, (2009).
ubiSOAP : A Service Oriented Middleware for

Seamless Networking Issarny To cite this version : ubi

SOAP : A Service Oriented Middleware.

Caruso, M., C. Di Ciccio, E. Iacomussi, E., Kaldeli,

A. Lazovik, and M Mecella,. (2012). Service ecologies

for home/building automation. In Proc. 10th
International IFAC Symposium on Robot Control

(SYROCO).

Casati, F., and M. C. Shan, (2001). Dynamic and

adaptive composition of e-services. Information
Systems, 26(3), 143–163.

Chauvel, F., G. Hu, and L. Mei, (2011). Dynamic

interoperability between heterogeneous services. In

M. ALJAWARNEH et al., 352

Proceedings of the 2011 international workshop on

Networking and object memories for the internet of

things 7–8.

Cheng, S. T., C. H. Wang, and G. J. Horng, (2012).
OSGi-based smart home architecture for heterogeneous

network. Expert Systems with Applications, 39(16),

12418–12429.

Davidyuk, O., N. Georgantas, V. Issarny, and J. Riekki,

(2011). MEDUSA: Middleware for end-user

composition of ubiquitous applications. Handbook of

Research on Ambient Intelligence and Smart

Environments: Trends and Perspectives, 11, 197–219.

Delphinanto, A., J. J. Lukkien, A. M. J., Koonen, F. T.

H., den Hartog, A., Madureira, I., Niemegeers, and
F.Selgert, (2007). Architecture of a bi-directional

Bluetooth-UPnP proxy. In Proceedings of the 4th

Annual IEEE Consumer Communications and

Networking Conference, CCNC 2007, 11-13 January

2007, Las Vegas, NV, USA, 34-38.

El Kaed, C., Y. Denneulin, and F. G. Ottogalli, (2011).

Dynamic service adaptation for plug and play device

interoperability. In Proceedings of the 7th International

Conference on Network and Services Managementp.

46–55.

Georgantas, N., V. Issarny, S. Mokhtar, Ben, S. Bianco,

G. Thomson, and P. Raverdy, (2010). Handbook of

Ambient Intelligence and Smart Environments.

https://doi.org/10.1007/978-0-387-93808-0

Grace, P., G. S. Blair, and S. Samuel, (2003).

ReMMoC: A reflective middleware to support mobile

client interoperability. In On The Move to Meaningful

Internet Systems 2003: CoopIS, DOA, and ODBASE

1170–1187. Springer.

Guttman, E. (1999). Service location protocol:

Automatic discovery of IP network services. Internet

Computing, IEEE, 3(4), 71–80.

Kaldeli, E., E. U. Warriach, J. Bresser, A., Lazovik, and
M. Aiello, (2010a). Integrating, composing and

simulating services at home. In Int. Conf. on Service

Oriented Computing (ICSOC).

Kaldeli, E., E. U. Warriach, J. Bresser, A. Lazovik, and

M. Aiello, (2010b). Interoperation, composition and

simulation of services at home. In Service-oriented
computing 167–181. Springer.

Kaldeli, E., E. U. Warriach, A., Lazovik, and M

Aiello,. (2013). Coordinating the web of services for a

smart home. ACM Transactions on the Web (TWEB),

7(2), 10.

Khalaf, R., Mukhi, N., Curbera, F., and Weerawarana,

S. (2005). The business process execution language for
web services. Process-Aware Information Systems, 317.

Kim, J. E., Boulos, G., Yackovich, J., Barth, T., Beckel,

C., and Mosse, D. (2012). Seamless integration of

heterogeneous devices and access control in smart

homes. In Intelligent Environments (IE), 2012 8th

International Conference on 206–213.

Koponen, T., and Virtanen, T. (2004). A service

discovery: A service broker approach. In System

Sciences, 2004. Proceedings of the 37th Annual Hawaii

International Conference on (p. 7--pp).

Limam, N., Ziembicki, J., Ahmed, R., Iraqi, Y., Li, D.

T., Boutaba, R., and Cuervo, F. (2007). OSDA: Open

service discovery architecture for efficient cross-domain

service provisioning. Computer Communications, 30(3),

546–563.

Meliones, A., Economou, D., and Liverezas, I. (2010).

Network adaptation in intelligent environments. In

Intelligent Environments (IE), 2010 Sixth International

Conference on (pp. 225–230).

Nakazawa, J., Tokuda, H., Edwards, W. K., and

Ramachandran, U. (2006). A bridging framework for

universal interoperability in pervasive systems. In

Distributed Computing Systems, 2006. ICDCS 2006.

26th IEEE International Conference on 3Pp.

Park, H., B. Kim, Y., Ko, and D. Lee, (2011). InterX: A

service interoperability gateway for heterogeneous

smart objects. In Pervasive Computing and

Communications Workshops (PERCOM Workshops),

2011 IEEE International Conference on 233–238.

Raverdy, P. G., V. Issarny, R. Chibout, and A. de La

Chapelle, (2006). A multi-protocol approach to service

discovery and access in pervasive environments. In

Mobile and Ubiquitous Systems-Workshops, 2006. 3rd

Annual International Conference on 1–9.

Reyes A J. M. (2010). A Framework for Safe

Composition of Heterogeneous Soa Services in a

Pervasive Computing Environment with Resource

Constraints. Iowa State University, Ames, IA, USA.

Satyanarayanan, M. (2001). Pervasive computing:
Vision and challenges. Personal Communications,

IEEE, 8(4), 10–17.

Context-aware Heterogeneous Service Composition… 353

https://doi.org/10.1007/978-0-387-93808-0

Tavares, A. L. C., and M. T. Valente, (2008). A Gentle

Introduction to OSGi. SIGSOFT Softw. Eng. Notes,

33(5), 8:1--8:5.

https://doi.org/10.1145/1402521.1402526

Thöne, S., R. Depke, and G. Engels, (2002). Process-

oriented, flexible composition of web services with

UML. In ER (Workshops) (pp. 390–401).

UPnP. (2018). UPnP Fourm. In About the UPnP Plug

adn Play Forum," in http://www. upnp. org" last

accessed 20,8,2015.

Waldo, J. (2000). The Jini Specifications. (Arnold, Ed.)

(2nd ed.). Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc.

Weiser, M. (1991). The Computer for the 21st Century.

Scientific American.
 https://doi.org/10.1038/scientificamerican0991-94

Yang, H.-I., R. Babbitt, J. Wong, and C. K. Chang,

(2012). A framework for service morphing and

heterogeneous service discovery in smart environments.

In Impact Analysis of Solutions for Chronic Disease

Prevention and Management 9–17. Springer.

M. ALJAWARNEH et al., 354

https://doi.org/10.1038/scientificamerican0991-94

	Context-aware Heterogeneous Service Composition Framework for Pervasive Computing Environments
	M. ALJAWARNEH++, L. D. DHOMEJA*, Y. A. MALKANI**
	Institute of Information and Communication Technology, University of Sindh, Jamshoro, Pakistan

