

 SINDH UNIVERSITY RESEARCH JOURNAL (SCIENCE SERIES)

Implementing Trust Computing Technique in Cloud Computing and Internet of Things (IoT)

M. NASEEM, S. A. KHAN, S. S. ZIA*, I. MALA**

Department of Computer Science, UBIT, Karachi University, Karachi- Pakistan

Received 08th November 2017 and Revised 24th June 2018

1. INTRODUCTION

IoT is a system for dealing with the network of

physical devices or sensor, while pervasive computing

focuses on the system that is dealing with HCI (Human-

Computer Interaction). But both the communities have

shared the same goals and technical interests that is the

convergence of everyday data to digital world in a

manner that could made the environment more at ease

(Ebling, 2016).

The world of wireless communications is changing
rapidly and radically entering a new unexploited area.

Mobile data traffic is growing faster than existing 4G

networks. Though, any of these computing systems

could be hacked by hackers, from a server hosted on

cloud infrastructure to the ubiquitous or IoT devices,

which can operate by micro-controller. Serious software

defenselessness has found in commercial and non-

commercial appliances (Proofpoint, 2014, Miller and

Valasek, 2015, Falliere, et al., 2011). Consequently the

system will be no more upto the mark of the designer’s

expectation. For modern household appliance attackers
send unwanted messages but researchers who have

discovered the vulnerability of the vehicle have taken

full control on it.

Academic and industrial research communities in

IoT and pervasive computing are surfacing the real-time

restraints from the hackers who could manipulate it

wrong and made these technologies off putting in

practice. The latest services that support user mobility,

the security, privacy of multimedia and collaboration

services are playing crucial part in everyday practices.

Variety of trusted computing architectures is developed

to provide manipulators assurances regarding the

software performance on their devices and make it user

trusted device(Martin and others, 2008). The devices

always behave in general even if an attacker can control

the system.

The differences between trusted computing and

other object related with the term trust should be

mention in (Gollmann, 2006). The core element of

trusted computing is set of rule, also called Roots of

Trust (RoTs), and the system’s security should depend
upon the usage of RoTs by the users, security failure

occurred, if found any breaches in RoTs, Beside that,

the unbreakable system security is achieved by

improving the process of Security Development

Lifecycle (SDL) (Lipner, 2004) and protect the OS and

application from the attacker. Verities of the software-

based and hardware-based trusted computing

architectures are proposed by the industry and academia

provides us interesting results in finite configuration.

Hardware-based architecture has a capability to

protect the applications from the malicious operating

system(OS), but software-based architecture cannot

have this capability, because any application installed

over the architecture could have been exploited by the

attacker. Therefore, attacker easily performed

amendment in the OS. Besides that, amendment in the

OS is much difficult in hardware-based architecture.

Sindh Univ. Res. Jour. (Sci. Ser.) Vol.50(003)) 355-362 (2018)

Abstract: Transition of all possible physical resources towards digital analysis has compliment the efficiency of resultant in more

persuasive manner for its users. The data resources to become functional for its users are connected to cloud through network for

further processing. Since the prevailing era is more focused in converging and forming smart environments that would enable us to

live better lives and makes an efficient way out for resolving hitches faced in analytical phases. Although sometime digital

expeditions could crop up with hazards as well in the form of privacy and security risks. Industry and academia are here with a list

of trusted computing architectures to protect by painful behavior to our digital world, but these solutions have some limitation. This

research provides the sketch of attestation and lightweight architectures from industry and academia, which are proposed to defeat

the security issue. We compare various architecture with their security features and implementation/ usage which is necessary for

the current hybrid system, also provide future direction of this study.

Keywords: Cloud Computing, Internet of Things (IoT), Hybrid System, Trust Computing, Attestation, Lightweight

http://doi.org/10.26692/sujo/2018.09.0060

++ Correspondence author: Muhammad Naseem, mnaseem105@gmail.com,

*Department of Computer Engineering, Sir Syed University of Engg. and Technology, Karachi- Pakistan.

**Department of Electrical Engineering, Usman Institute of Technology, Karachi- Pakistan.

Due to this positive feature lot of hardware-based

implementation are proposed, but this solution has

several limitations, like encryption key, Encryption

algorithm, additional module etc. to overcome this

problem some composite solution hasbeen proposed.
These composite solutions have been implemented in

term of hardware and software based architecture. The

core of the trusted computing module is implemented

over the hardware-based architecture and optional or

additional module implemented on the software-based

architecture.

IoT application developers should take into account

the confidentiality, integrity, and credibility of data to

help build trust with users and service providers. This

confidence requires security and identity of the endpoint

device, as well as low power, connectivity, and
expandable cloud computing. The IoT solution

accelerates the safety of SoC designers, equipment

manufacturers, and developers by building a platform-

specific security architecture that provides a powerful

tool for the components needed to build the next system.

In a past decade, trusted computing play an active

role in the research area, and a lot of practical and

theoretical solution has been proposed for the
infrastructure ranging from high-performance cloud

computing system to lightweight embedded system. All

of the research mainly provides the security solution

specific to the technology or architecture like a cloud,

IoT etc. No one provides the clear picture of security

requirement or solution of hybrid technology. This

research focuses on security mechanism which is

suitable for hybrid technology like the interaction of IoT

constrain device with the cloud.

This paper is organized as follows. Section 2

presents the requirements of hybrid system, while

Section 3 presents the different architecture of trusted

computing. In Section 4, we have discuss the

comparison of different security architectural properties.

Section 5 provides the conclusions and future directions

of the researchers in this dimension.

2. REQUIREMENT OF HYBRID SYSTEM
Now the industry provides the next generation of

IoT objects, and uniquely helps designers to build the

right SoC units regardless of the type of devices class
they build. Small devices which have limited power

source, small CPU, and memory called "constrained

devices" (typically used as actuators/sensors). These

devices make a network for transferring information

from sensor to destination, using the lossy channels with

unpredictable bandwidth.

2.1. Constrained Devices
Constrained devices may be responsible for

gathering information in different environments,

including factories, building, ecosystems,

manufacturing plants, and vehicles, and send to the

cloud. They can also process information by

implementing certain physical procedures, including the

presentation of information. Restricted devices may
operate under strict resource constraints such as battery

power and limited computing, insufficient memory,

insufficient wireless bandwidth and communication

capabilities; these restrictions tend to intensify each

other.

There are three types of constrained devices

mention in (Bormann, et al., 2014).

 Class 0

 Class 1 and

 Class 2

2.1.1. CLASS 0
Class 0 devices are very restricted like a sensor. It

is very limited as a memory and processing power, and

more likely that they do not have the capability to

connect to the Internet. Class 0 devices will share

Internet connections through large devices that act as

agents, portals, or servers. Devices of type 0 cannot

generally be protected or managed in a traditional way.

They are likely to be pre-configured (and rarely

remodeled, if any), which requires a very tiny data set.

Besides that, it’s have a feature send on/off, keepalive
or acknowledge signal to the control side, for

management purposes.

2.1.2. CLASS 1
Class 1 devices have very limited ROM, RAM and

processing power capabilities. In addition, it’salso have

a limited communication procedure to communicate

with other nodes. Its use a special design lightweight

communication protocol, such as CoAP over UDP, for

performing meaningful communications to other nodes

without using the gateway. It’s also has a basic security

module which fulfilled the requirements of the modern
network. Finally, they need to save status RAM, ROM,

and power consumption for protocols and applications

usage.

2.1.3. CLASS 2
Class 2 devices are more intelligent than class 1

devices. It’s have a capability to execute most of the

communication protocol, which is supported by the

desktop computer. On the other hand, it’s also have a

potential to consume minimum power and

communication bandwidth. Therefore, class 2 devices

are restricting the resource to improve interoperability
and reduce implementation cost.

2.2. SECURITY PROPERTIES
The main security properties that are used in trusted

computing are:

M. NASEEM et al., 356

 Lightweight

 Attestation

 System on Chip

2.2.1. LIGHTWEIGHT

Lightweight this could explain the structure as not

employing Memory Management Unit (MMU).

Lightweight rooted structures have a modest memory

hierarchy and hence do not need typical memory

management. In addition, it works only on a certain

number of applications that have shared memory space

in general and do not need default memory processing.

2.2.2. ATTESTATION

Attestation is the process of certifying the licensing

authority that a particular entity is in a particular case.

For the provision of strong security assurances, the

evidence-supporting structure must also ensure the

integrity of the case. Reliable computing can be

provided as local and distant certification. The local

authentication unit is in the same memory structure as

the operating system unit, while the remote

authentication unit is located outside the system.

2.2.3. SYSTEM ON CHIP

System on Chip (SoC) is an integrated circuit that

consists of CPU, memory, I/O ports, and storage on a

single substrate. Besides that, it also has some additional

hardware like Analog-to-Digital converters (ADC),

Digital to Analog Converters (DAC), Radio Frequency

System (RFS), Digital Signal Processor (DSP) etc. SoC

is playing a very important role in the mobile computing

market due to its low energy consumption.

3. ARCHITECTURES

In this section, which presents five isolation and

attestation design, those have been modified on their

target platform. Therefore, they do not include those

architectures that are fully implemented in software.

The selection of the design is covered, from the

lightweight design of IoT objects to a node and cloud

servers. The selected architectures do not only belong to

industry and also play an important role in the academic

research area.

3.1. TRUSTED PLATFORM MODULE (TPM).

In 2011, Trusted Computing Group (TCG) has

designated Trusted Platform Module (TPM) 1.2

(Achemlal, et al., 2011). It is a shared processor on the

motherboard that stores keys and performs

authentication. It is a passive device which means that

the program can intermingle with the TPM, but it must

be done explicitly. Bootloader, operating system, and

application must be monitor by the TPM and it provides

guarantee for authenticity to local or remote parties

.

Fig. 1:Trusted Platform Module version 1.2

All module of the software is considered reliable

after loading, any changes would be detected during

measurement. Therefore, it cannot allow loading any
new software components. This limitation is the biggest

drawback of TPM, but to overcome this problem, Intel

launch TXT (Trusted Execution Technology)

(Grawrock, 2009). It runs the software components over

the virtual environment with the TPM chip, easily

measured any negative impact. Some architecture

implement the functionality of TXT, like TrustVisor

(McCune et al., 2010), Flicker (McCune, et al., 2008)
and Fides (Strackx and Piessens, 2012).

3.2. TRUSTZONE

GlobalPlatform written Trusted Execution

Environment (TEE) as standards used in industry to

S
e
c
u

re
d

 I
n

p
u

t-
O

u
tp

u
t

Cryptographic Processor

Random Number Generator

RSA Key Generator

SHA-1 Hash Generator

Encryption Decryption Signature

Engine

Persistent Memory

 Endorsement Key (EK)

Storage Root Key (SRK)

Versatile Memory

 Platform Configuration Registers

(PCR)

Attestation Identity Keys (AIK)

Storage Keys

Implementing Trust Computing Technique… 357

pursue facilities of these security architecture

(GlobalPlatform Device Technology TEE Client API

Specification, 2010), (GlobalPlatform Device

Technology TEE Internal API Specification, 2011).

TEE has a secure zone for the processor and it’s provide
confidentiality, integrity and independent execution of

trusted application resources.

The operating system provides an Untrusted

Execution Platform (UEP) to access the resources. TEE

is easily accessible the resources from the UEP, on the

other hand, UEP does not access the resource in TEE,

unless special permission. Therefore, only TEE resource

accessed by another TEE resource. This is achieved

through two hardwired modules. First, the AXI bus

ensures that it is impossible to access secure global
resources from the world's normal resources. Second,

the kernel of possible processors from TrustZone uses

time slots to execute secure or normal code in the world.

This standard of TrustZone is an implemented in the

ARM. TrustZone is an ARM application for this

standard.

Fig. 2: TrustZone architecture proposed in(ARM, 2009)

Currently,a large number of Smartphone used a

hardware-based security architecture, which is

TrustZone (ARM, 2009). TEE is used to provide

protection for software and hardware resources. In the

first stage, TrustZone processor is initialized by trusted

boot loader located at ROM and then load the second

stage of the trusted bootloader, which is stored in flash

memory. The second stage of trusted bootloader has the

responsibility to initializes memory controller,

peripherals and integrity check with the first bootloader.
For more security, some trusted OS will perform

integrity check with the trusted applications before

initialized them. Its uses RSA-based signature schemes,

vendor signs the code using own key, this signature

verifies by firmware. In addition, different vendors are

implemented TrustZone on a chip, using limited

privileges.

3.3. BASTION

Bastion is a firmware architecture, which is a Trust-

based management program. It ensures confidentiality

and integrity check between the software and hardware

module. Its only provides memory protection other than

physical attacks.Unfortunately, the multi-core processor

has not supported this architecture.

Fig. 3: Bastion Architecture proposed in (Champagne and Lee, 2010)

Bastion Registers

Hypervisor hash

Storage owner hash

Secure storage hash

Secure storage key

Current module ID
L2 Cache

Controller

RNG

Routine Memory
hypervisor

secure launch

Mem. Encryption &
Hashing Engine

mem. encrypt. key reg

hash tree root reg

Unified

L2 Cache

Arrays

Execution Logic

L1 Code

Cache

Bastion Registers

Register File

new reg access

new instructions

Code

TLB

Data

TLB

L1 Data

Cache

Core

Memory

Interface

(to main

memory)

Bastion

Module

State Table

Page Table Logic

(Shadow or Nested)

Trap Handlers

TLB

Miss

Hypercall Handlers

(Services to App. or OS Modules)
secure launch

secure storage

call module

return module

Hypervisor

Microprocessor

Chip Boundary

= New Component = Existing Component

FIQ

Secure World

Stand alone

Application
Security Service Security Service

Monitor

Kernel

Scheduler Inter-World IPC

Manager

User
Privileged

Normal World

Security Client

Security Client

Generic

Application

User
Privileged

Kernel

TrustZone Driver Scheduler

IRQ IRQ FIQ

SMC

M. NASEEM et al., 358

Bastion protects the structure of the hypervisor first,

after that provides protection to software modules.For

this purpose, secure_launch procedure calls by

hypervisor, it's calculated hash value using data and

code of hypervisor, generate new key for cryptographic
functions and permanently stored in crypto engine’s

registerAfter loading the trusted hypervisor, again

secure_launch procedure is initialized by software

module to calculate hash of runtime memory including

virtual memory and permanently stored on the disk. In

order to invoke the security function, two more special

hypercall module,call_module, and return_module are

added to calculate the hash of access point of the target

module and the similarly, on returning of restoring all

state information.

3.4. SMART

Secure and Minimal Architecture for Root of Trust

(SMART) (Eldefrawy et al., 2012) specially design for

minimal hardware and its provide Dynamic Root of

Trust (DRoTs)in the remote firmware devices. It is the
oldest designs to use a software signature for firmware

to build a lightweight trust system. (Francillon, et al.,

2014) have enhanced its performance after a minor set

of changes. Demonstrate the feasibility of the prototype

based on open source versions of ATmega103 and

openMSP430. It is very difficult for attacker to

tempering this trusted system, because of the changes

perform in the firmware. When you implement

SMART, you must also disable any terminal device that

can access memory directly.

Fig. 4: SMART Computing Model proposed in (Eldefrawy et al., 2012)

SMART typically provides a memory scope for remote
authentication define by the checker. It’s have four

section, ROM for SMART, ROM for Key, SRAM for

MCU and Flash for memory erase and

reset.It’scalculated the hash of the specified memory

location using SHA-256 and stores it in the ROM for

verification. When the verification request called for

remote authentication then it verify by the stored hash

code. This process dynamically determines Root of

Trust.

3.5. AEGIS
AEGIS is the oldest reliable computing architecture

is designed by (Suh, et al., 2003) in 2003. It has an

ability to provide Tamper-Evident Environment (TE)

with programs, which is very helpful to identify the

physical and software tempering in the system memory.

The privacy and reliable tamper resistant (PTR)

environment provides stronger safeguards, besides that
it also provides the confidentiality of code and data.

Placement of external peripherals and memory outside

the TCB, which protect CPU from hardware and

software attack, the CPU itself should be trusted.

The attestation can be formed by calculating the

hash of program with data, and it signs by the private

key of the CPU. The operating system may be harmful,

but when Secure Kernel (SK) to implement the

hardwired AEGIS function, then operating systems

must be reliable or trusted. Due to this role, this
architecture is not completely implemented on-chip.

(Szefer and Lee, 2012) present a concept of

HyperWall, which allows a hypervisor to freely manage

the memory, processor, and other resources. It is created

with the help of AEGIS.

Address Bus

Data Bus

Original

Modified

Added

MSP 430 Core

Instruction

Fetch and

Decode

Execute

M
em

o
ry

 B
ac

k
b

o
n
e

U
n
if

ie
d
 L

in
ea

r

 A
d
d
re

ss
 S

p
ac

e

S
M

A
R

T

R
O

M

K
ey

R
O

M

..
..

..
.F

la
sh

S

R
A

M
.

/\/\/\/\/\

/\/\/\/\/\

/\/\/\/\/\

/\/\/\/\/\

Register I/O

Application Data

Memory

Stack Area

K: Protected Key

HMAC Result

Data Memory Address
Space

User’s Application Code

 a=x

 b

RC: SMART ROM Code

HC: Code to Attest

Program Memory
Address Space

1

2

3

4

2

User application starts SMART

Code attestation is performed using the protected key

HMAC result is written to global memory, at a predefined

location

C is executed (optional)

1

2

3

4

Data read/write

Control flow

Implementing Trust Computing Technique… 359

Fig. 5: AEGIS Computing Model proposed in (Suh et al., 2003)

4. COMPARISON
Comparison of different security architectural properties is deal in this research. Table 1, demonstrate the complete

photography of the security architecture mention in this research.

Table 1: Summarized detail of trusted computing architectures.

Architecture

A
tt

es
ta

ti
o
n

L
ig

h
tw

ei
g
h
t

S
o
C

C
lo

u
d
 S

u
p
p
o
rt

Types of Devices
(Bormann et al.,
2014)

H
ar

d
w

ar
e

F
ir

m
w

ar
e

C
la

ss
 2

C
la

ss
 1

C
la

ss
 0

AEGIS (Suh et al., 2003)
(Szefer and Lee, 2012)

 -

TPM (Achemlal et al., 2011) -

TXT (Grawrock, 2009) -

TrustZone (ARM, 2009) -

Bastion (Champagne and Lee,
2010)

 -

SMART (Eldefrawy et al., 2012) -

 =Yes, =Partial, =No,

The designing of all mechanisms are a focus on the

security property of attestation, except for TPM and

SMART. All security mechanisms are easily

implemented in the software but some of them have the

capability to implement in firmware like Bastion and

SMART.

For achieving the better performance, some of the

security mechanism is specially designed for hardware

implementation like AEGIS, TPM, TXT, and

TrustZone,SMART is an example of a lightweight

architecture, such designs have very simple memory

hierarchies, therefore a limited number of applications

can be executed. At the industry level, System-on-Chip

(SoC) is hardware-based security architecture.

TrustZone and AEGIS belong to the SoC.

Attestation protocol is implemented in software

firmware and hardware based on symmetric or

asymmetric key algorithms. Symmetric key attestation

Software

Attacks

Untrusted Part of OS

Security Kernel
Malicious

Software

 Processor....

Untrusted

Memory Registers
Encryption

SCM

Table

Cache

Integrity

Verification
Secure Context Manager

Private Key
Key

board

Display

Sound Card

Disk

Software

Physical

Attacks

Physical

Attacks

M. NASEEM et al., 360

is simple to implement in hardware but on the other

hand implementation of attestation using asymmetric

key `is complex. Another way to provide a sensible

attestation procedure, it is partially implemented in

software and partially in hardware another word it is
called firmware e.g. SMART.

Table 1 shows that most of the architectures have a

capability to implement over the class 2 devices and

some of them support to the cloud. We can conclude

that AEGIS is covered most of the features, therefore it

is suitable for the hybrid system. Beside that TPM and

TXT is the best architecture, but due to the limitation of

memory and processing power, it partially implemented

on class 1 devices.

5. CONCLUSION
New research challenges emerging from the

convergence of IoT and cloud computing environment.

No one can fulfill the complete requirement of the

current hybrid system, because in the IoT domain Class

2 devices have a support to secure hybrid system by

using trust architectures. But class 1 and class 0 have no

support for it. There is opening two main areas for

future research. The first line of research focuses on

devices registration policy to decide how to secure class

0 and class 1 devices (based on their nature of usage,

current environment, desires, etc), and how these policy
are imposed on the devices.

The second area focuses on assemblage and their

communications. These groupings are influenced by

networks conditions the infrastructure capabilities.

Therefore, we need to develop the supporting

framework for the functions and acting as an interface

between the cloud and IoT devices of class 0 and

class 1.

REFERENCES:

Achemlal, M., S., Gharout, and C. Gaber, (2011).
Trusted platform module as an enabler for security in

cloud computing. In Network and Information Systems

Security (SAR-SSI), 2011 Conference on 1–6.

ARM. (2009). ARM Security Technology. Building a

Secure System using TrustZone Technology ARM.

ARM White Paper, 108. Retrieved from

http://infocenter.arm.com/help/topic/com.arm.doc.prd29

-genc-009492c/PRD29-GENC-

009492C_trustzone_security_whitepaper.pdf

Bormann, C., M. Ersue, and A. Keranen, (2014).

Terminology for Constrained-Node Networks. Internet

Engineering Task Force (IETF).

https://doi.org/10.17487/rfc7228

Champagne, D., and R. B. Lee, (2010). Scalable

architectural support for trusted software. In HPCA - 16

2010 The Sixteenth International Symposium on High-

Performance Computer Architecture 1–12.

 https://doi.org/10.1109/HPCA.2010.5416657

Ebling, M. R. (2016). Pervasive Computing and the

Internet of Things. IEEE Pervasive Computing, 15(1),

2–4. https://doi.org/10.1109/MPRV.2016.7

Eldefrawy, K., A. A. Francillon, D. Perito, G. Tsudik,

K. Defrawy, A. A El, Francillon, G. Sudik, (2012).

SMART: Secure and Minimal Architecture for

(Establishing a Dynamic Root of Trust. Ndss, 12, 1–15.

Retrieved from

https://pdfs.semanticscholar.org/c265/ea208212d0f49ba

93ce32c38b282b6982e5c.pdf

Falliere, N., L. O. Murchu, and E. Chien, (2011). W32.

stuxnet dossier. White Paper, Symantec Corp., Security

Reponse, 5(6), 29Pp.

Francillon, A., Q. Nguyen, K. B. Rasmussen, and

G. Tsudik, (2014). A minimalist approach to Remote

Attestation. In Design, Automation and Test in Europe

Conference and Exhibition (DATE), 2014 1–6.

 https://doi.org/10.7873/DATE2014.257

GlobalPlatform Device Technology TEE Client API

Specification. (2010). Retrieved from

http://www.globalplatform.org/

Gollmann, D. (2006). Why trust is bad for security.

Electronic Notes in Theoretical Computer Science,

157(3), 3–9.

Grawrock, D. (2009). Dynamics of a Trusted Platform:

A building block approach. Portal.Acm.Org. Intel Press.

Retrieved from

http://portal.acm.org/citation.cfm?id=1610416%5Cnpap
ers2://publication/uuid/FA1AEF9F-3724-4055-94B7-

643B33F20A1F%5Cnhttp://dl.acm.org/citation.cfm?id=

1610416

GlobalPlatform Device Technology TEE Internal API

Specification. (2011). Retrieved from

http://www.globalplatform.org/

Lipner, S. (2004). The trustworthy computing security

development lifecycle. In Computer Security

Applications Conference, 2004. 20th Annual (pp. 2–13).

Martin, A., (2008). The ten page introduction to trusted

computing. Computing Laboratory, Oxford University

Oxford, 49.

Implementing Trust Computing Technique… 361

http://www.globalplatform.org/

McCune, J. M., Y. Li, N. Qu, Z. Zhou, A. Datta, V.

Gligor, and A. Perrig, (2010). TrustVisor: Efficient

TCB reduction and attestation. In Security and Privacy

(SP), 2010 IEEE Symposium on 143–158.

McCune, J. M., B. J. Parno, A. Perrig, M. K. Reiter, and

H. Isozaki, (2008). Flicker: An execution infrastructure

for TCB minimization. In ACM SIGOPS Operating

Systems Review Vol. 42, 315–328.

Miller, C., and C. Valasek, (2015). Remote exploitation

of an unaltered passenger vehicle. Black Hat USA, 91.

Proofpoint, I. (2014). Proofpoint uncovers internet of

things (iot) cyberattack.

Strackx, R., and F. Piessens, (2012). Fides: Selectively

hardening software application components against

kernel-level or process-level malware. In Proceedings

of the 2012 ACM conference on 2–13.

 https://doi.org/10.1145/2382196.2382200

Suh, G. E., D. Clarke, B. Gassend, , M. van Dijkand

S. Devadas, (2003). AEGIS: Architecture for Tamper-

evident and Tamper-resistant Processing. In

Proceedings of the 17th ACM Annual International

Conference on Supercomputing (ICS) 357–368.

Szefer, J., and R. B. Lee, (2012). Architectural support

for hypervisor-secure virtualization. In ACM SIGPLAN

Notices Vol. 47, 437–450.

M. NASEEM et al 362

