INNOVATION IN VACCINES FOR INFECTIOUS DISEASES IN PETS AND LIVESTOCKS

ADIL SHAHZAD¹, AMMARA ZULQARNAIN², SAFDAR AMAN³, AMAN ULLAH⁴, MUHAMMAD JUNAID⁴, MUHAMMAD HUZAIFA KHALID⁵, ZAIGHUM ALI⁶, IRTAZA HUSSAIN⁶, MUHAMMAD AZWAR AZIZ CHISHTI⁴

¹Institute of Microbiology, University of Agriculture, Faisalabad-Pakistan
²Department of Veterinary Pathology, University of Agriculture Faisalabad
³Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore
⁴Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan
⁵Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad
⁶Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan

ARTICLE INFORMATION

Article History:
Received: 22nd December 2023
Accepted: 24th March 2024
Published online: 1st June 2024

Author's contribution
All authors contributed equally.

Key words:
Hemp, Historical Background, Livestock Feed, Nutritional Quality, Legal Constraints.

ABSTRACT

This article summarises the current state of veterinary vaccines for animals and pets, as well as their significance and recent developments. The use of veterinary vaccines is vital to the food industry and public health because they protect the well-being and productivity of animals. This article emphasises the value of vaccinations in preventing and controlling zoonotic illnesses and other infectious diseases in animals. Preventing the spread of viral illnesses at the animal-human interaction is emphasised, and the article goes on to talk about the monetary effects of disease control efforts. The article goes on to discuss the several kinds of veterinary vaccines, such as the traditional live and inactivated virus vaccines, DNA vaccines, genetically engineered virus vaccines, molecularly specified subunit vaccines, and live viral vector vaccines. Additionally, it addresses vaccines against helminths and ectoparasites, allergies, cancer, protozoa, and bacteria in animals.

1. INTRODUCTION

All four of these areas—animal health, animal welfare, food production, and public health—benefit greatly from veterinary vaccines. They are an affordable way to keep animals healthy, make food more efficiently, and lessen the likelihood that people will get zoonotic and food-borne illnesses. Modern civilization cannot function without immunisations that protect animals from harm. Lacking immunisations for avoiding epizootics in animals that provide food, it would be extremely difficult to meet the protein needs of the world's almost 7 billion people. Vaccines for companion animals, particularly those that prevent rabies, allow many people to enjoy the companionship of animals and the joys of having a pet in the home. Without efficient immunisations, zoonotic illnesses like leptospirosis and brucellosis would be far more common.

Cattle infectious illnesses reduce productivity, limit access to global export markets, and may even jeopardise public health. Although rinderpest was declared eradicated worldwide in 1996 and contagious bovine pleuropneumonia in 1956, the other two infectious diseases that were long-standing in China—bovine brucellosis and bovine tuberculosis (bTB)—remain endemic to this country (Wang et al., 2020). It is highly doubtful that a test and slaughter strategy can effectively control or eradicate these illnesses on its own, given the lax biosecurity practices observed on cattle ranches and the frequent movement of animals between farms, counties, and provinces (Li et al., 2020). More resources were devoted to the control of 16 priority epidemic illnesses of cattle in 2012, after the Chinese government had already identified them (Chen et al., 2021).
Additional economic implications, beyond direct disease costs, might arise from the installation of controls to limit the spread of infection. These include the cost of intervention implementation, income loss from trade bans, and compensation obligations to be fulfilled. Bovine tuberculosis (bTB) controls in the UK cost about £100 million per year. Disease monitoring and oversight are examples of such control systems, as is non-genetic control, which avoids the use of biological connection tracking. By examining the molecular makeup of the infectious agents found in infected harasses and dairy cattle, biological interaction tracking attempts to pinpoint the source of bovine tuberculosis epidemics. Another big economical illness for the UK livestock industry is foot-and-mouth disease (FMD), which spreads quickly and has a dramatic impact on production (Restiati, 1996). Nevertheless, according to this analysis of the 2001 UK FMD outbreak, the shipping and limitation on movement were the most financially significant factors (Qi et al., 2012).

From a veterinary standpoint, virally-induced infectious illnesses in animals are among the most important due to the large number of cases they cause. According to the OIE’s categorization for lowland and freshwater mandatory animal illnesses, viruses really cause over half of the most significant animal diseases. Fig. 1 shows that a large number of viral disorders are concentrated in four families: herpesvirus, rhabdovirus, poxvirus, and paramyxovirus. These four families encompass 22 different viral families. Public health and food security are both affected by the zoonotic illnesses that can be transmitted from diseased animals to humans. These diseases can be contracted by close contact with animals that have been infected, infected tissues and fluids, or vectors consisting of The “One Health” concept is based on the idea that stopping the spread of infectious illnesses at the point where people and animals come into contact is crucial to averting global epidemics and epizootics(Xin et al., 2012).

Importance of veterinary vaccines; Safe and efficient food production
Livestock and poultry rely on veterinary vaccines to keep them healthy and boost their productivity. To feed the expanding population, higher-quality protein must be more easily accessible and animal production must be more efficient. Worldwide, It is projected that the global population would increase from a little over six billion in 2010 to just more than 8 billion in 2025 and nearly nine billion in 2050, as reported by the UN Social and Economic Affairs Directorate

Control of zoonotic diseases:
The development of vaccines to prevent the spread of zoonotic diseases in domestic animals, wild animals, and animals used for food has significantly reduced the number of cases of these diseases in humans. Families are not likely to desire to keep cats and dogs as pets if rabies immunisations are not available. Oral vaccination programmes using transgenic vaccinia- vectored rabies vaccines as baits have also been effective in reducing rabies cases in wild animals. U.S. efforts to eradicate Brucella abortus relied heavily on brucellosis vaccines

Control of emerging and exotic diseases of animals and people
A rising number of exotic and emerging animal illnesses pose a risk to both human and animal health, as well as to food security (Figure 4). The chances of pathogen transmission within and between species are increased by the concomitant environmental degradation, increased international trade, and booming animal and human populations. These diseases are causing a lot of problems, both now and in the future.

Reduction of the need for antibiotics
Animals raised for food and pets no longer require antibiotics for treatment of infectious diseases thanks to veterinary vaccinations. Antibiotic resistance is becoming an ever-greater worry due to the widespread use of antibiotics in both human and veterinary medicine. When faced with a cost-benefit analysis, producers may elect to control certain diseases with antibiotics or vaccines. Good management methods, such as immunisation or medications, help reduce swine diarrhoea caused by Lawsonia intracellularis.

Veterinary viral vaccines
For decades, standard vaccination programmes for companion and commercial animals have included a wide variety of conventional live and inactivated virus vaccines manufactured by animal health businesses. This section will mostly focus on these "second-generation" viral vaccines 5, as there are an increasing number of rationally designed and subunit vaccines that are making it to market.

Conventional Live and Inactivated Viral Vaccines
Similar to the original smallpox vaccination for humans, the majority of live virus vaccines for animals cause minor infections using organisms taken from unintended sources or weakened by transit via several cell line preparations or chicken embryos. Another way to get a virus with less virulence is to induce mutations at random and then select for those with lower virulence. These vaccines typically do not
need an adjuvant to be effective because the live microorganism remains able to infect target cells, reproduce, and generate immune responses both cellular and humoral. The potential for simple administration—in water for drinking, which will intravenously, intraocularly, etc.—is another benefit of live goods. They may be a source of environmental damage, but they also carry a possibility of persistent sensitivity and reverting to hazardous wild forms.

Molecularly Defined Subunit Vaccines
Once the defensive antigens of viruses have been identified, they can be isolated or created using recombinant means. This opens the possibility of using them as safe, non-replicating vaccinations. Subunit vaccines are less competitive due to the need for repeated administration of powerful adjuvants and the low protective immunity that isolated antigens typically elicit. In spite of these caveats, there are subunit vaccinations that have proven to be efficacious. Post weanling multisystemic wasting syndrome is thought to be mostly caused by PCV2. (Allan et al., 2004). A pig vaccine containing a recombinant baculovirus that produces PCV2’s protective ORF2 protein (Allan et al., 2004) is now on the market.

Genetically Engineered Viral Vaccines
Making chimaera viruses, which incorporate features of two infectious viral genomes, is an intriguing step forward in the field of genetically modified viral vaccines. Chimaera PCV1-2 vaccines instill protective immunity in pigs against wild-type PCV2 challenge by cloning the immunogenic capsid gene of PCV2 onto the backbone that contains the nonpathogenic PCV1 virus (Fenaux et al., 2004). Poulovac FluFend, a newly created vaccine against avian influenza, is an example of this method in action. It combines the NA gene from an H2N3 virus with the hemagglutinin (HA) gene from an H5N1 virus, inactivates the HA gene by removing polybasic amino acid chains, and then inserts it onto an H1N1 "backbone" virus (Fig. 2). Protecting ducks and poultry against the extremely dangerous H5N1 strain is possible with a vaccination that uses the inactivated virus that expresses H5N3 in a water-in-oil emulsion.

Live Viral Vector Vaccines
Vaccine antigen delivery and human gene therapy have both made use of poxviruses such as vaccinia, fowlpox, and canarypox as vectors for foreign genes, an idea that was initially presented in 1982 (Fenaux et al., 2004). When poxviruses infect cells in mammals, they are able to express a great deal of encoded protein because the virus can handle a high number of foreign genes. One example is the modified vaccinia virus Ankara, which has been subjected to hundreds of passages in chicken cells to achieve a greatly attenuated strain. Ankara, the modified vaccinia virus, is unable to reproduce in mammalian cells and missing around 10% of the vaccinia viral genome.

DNA Vaccine
Vaccinating livestock with unmodified DNA that encodes protective antigens of viruses could be a solution to the safety difficulties surrounding live vaccines and vector immunity. This technique is perfect for viral vaccinations because it improves the activation of cytotoxic T cells after internal transcription of the proteins. Furthermore, due to their exceptionally high stability, DNA vaccines do not require a cold chain. Although DNA vaccination in large animals has not achieved the same level of success as in mice, several groups have found ways to improve immune responses. These include using in vivo electroplating of DNA (Scheerlinck et al., 2004), priming-boosting with promoting CpG oligodeoxynucleotides (Liang et al., 2006) and focusing on the vaccine antigen to tissue that contain its antigen. This strategy appears to be very effective in the context of DNA vaccines for fish viruses, which has prompted much study into the field. In contrast to naturally occurring IHN illness in wild salmon populations, deadly epidemics of the disease in farmed salmon with no history of exposure can occur. The DNA vaccine, which is injected intramuscularly, encodes a surface glycoprotein of the IHN virus.

Veterinary Bacterial Vaccines
As a preventative measure against bacterial illnesses, veterinary medicine has made use of several attenuated live or
inactivated (dead) bacterial vaccines for many years. Little is done to characterize the underlying genetics of attenuated bacterial strains because their proven track records make it difficult to determine the nature of the attenuation. Research is ongoing to improve and develop new vaccines or vaccination techniques against diseases including bovine tuberculosis, paratuberculosis, and brucellosis, when the old and well-known live strains are not very protective. Typically, inactivated vaccines are made up of bacterins from various species or serotypes of bacteria, which are complete bacterial cultures that have been destroyed by formalin, or more specific subunit antigens that are typically mixed with an adjuvant such as oil or aluminium hydroxide.

Vaccines against zoonotic Bacteria
For example, in pigs, poultry, and young cattle, host-restricted serotypes of Salmonella enterica (Salmonella enterica serovar Choleraesuis, Gallinarum, and Dublin, respectively) can cause clinical salmonellosis and potentially fatal systemic infections. Although they often cause a self-limiting gastrointestinal illness in humans and other animals, non-host-specific serotypes of Salmonella can infect the entire body. Vaccines against zoonotic infections should ideally protect against cross-contamination of meat products at the abattoir by preventing the bacteria from colonising the entire flock, in addition to inducing a local mucosal immunity that prevents colonisation of the gut of individual animals. This is an incredibly challenging undertaking, and the current vaccine options have shown mixed results.

Rickettsia Vaccines
Small obligatory intracellular pathogens that cause serious illnesses in animals include the rickettsiae Ehrlichia, Anaplasma, and Coxiella. Arthropod vectors (such as ticks, mites, lice, or fleas) transmit all of these diseases except Coxiella. In sub-Saharan Africa and the West Indies, Ehrlichia ruminantium causes heartwater, the most important tick-borne disease affecting both domestic and wild ruminants. Cryopreserved contaminated sheep blood is used to systematically infect animals, and when fever develops, tetracyclines are administered as an antibiotic. This is the sole commercially available method of immunisation. Through in vitro cultivation, a nonvirulent strain was recently produced and demonstrated to provide effective protection. Developing more efficient and less expensive methods of in vitro cultivation could pave the way for the creation of inactivated vaccines.

Protozoal Vaccines
The introduction of high-productivity breeds is hindered in impoverished, mostly tropical regions of the world due to protozoal diseases, which cause substantial output losses in animals. In addition to being important as infection reservoirs or models for human diseases, many of these organisms cause zoonotic diseases in humans or have tight ties with human parasites. Although there are currently no vaccinations available for human protozoa, there are a number of animal vaccines that have been either commercially accessible or manufactured for local usage by agriculture and veterinary departments for decades. Vaccinations based on killed subunits have been created and commercialised in recent years, however the majority of these vaccinations are based on living organisms.

Helminth and Ectoparasite Vaccines
Roundworms (nematodes), flatworms (trematodes), and tapeworms (cestodes) are the three main groups of helminths, or worms, which can infect mammals and humans alike.
Bovilis Lungworm, a vaccination against the cow lung nematode *Dictyocaulus viviparous*, is the only one available in Europe right now. It contains irradiation infectious L3 larvae, which are unable to mature into adults. Efficacy in generating immunity in young animals was the fundamental reason why vaccination with irradiation L3 larvae of economically significant gastrointestinal nematodes was unsuccessful. Developing vaccines for these essential veterinary infections has become even more critical due to the rising medication resistance of gastrointestinal nematodes.

Allergy Vaccines

Some animals, including cats, dogs, and horses, have a hereditary tendency to develop an allergic skin illness called atopic dermatitis in reaction to allergens found in the environment, similar to how it manifests in humans. Secondary yeast or bacterial infections that cause urticaria can make this worse. Injections of allergen extracts or results from allergen-specific serum immunoglobulin E tests are used to identify which animals will have an adverse reaction to the vaccine, and this is the main method for treating atopic dermatitis. Over the course of several months, patients undergoing this "allergen-specific immunotherapy" (ASIT) will be given ac-or alum-precipitated doses of the allergen extract, with further booster injections given once a year. Study design, parameters, vaccine source, and concurrent therapy for secondary infections are some of the many variables that affect the claimed success of this treatment, which in dogs can range from 20% to nearly 100%.

Cancer Vaccines

As domestic pets live longer and their owners place a larger value on them, there has been a surge in interest in treating spontaneous malignancies. The oral tumour that occurs most frequently in dogs is canine malignant melanoma (CMM). Most dogs with CMM die within a year of diagnosis, despite treatment. It's identical to some human malignant melanomas. Several organisations are now conducting phase III clinical trials with CMM anticancer vaccines, and in 2006, Merial introduced a CMM DNA vaccine with a restricted licence from the USDA. Dog tumour cell lines transfected with human granulocytemacrophage colony-stimulating factor or human gp100 or DNA injected with human tyrosinase are examples of these experimental vaccinations that are mostly derived from research on cancer vaccines for humans. The second and third injections of human melanocyte-specific proteins were developed after it was shown that cross-reactions between xenogeneic antigens and self-antigens might break immune tolerance. A total of about 17% of dogs in these trials showed some kind of improvement, with some even experiencing full remission and increased survival rates. Studies' experimental designs are constrained by factors such as small sample sizes, breed and clinical status variances, and comparisons to controls that were stage-matched in the past.

2. CONCLUSION

Safe and efficient food production, prevention of zoonotic illnesses, management of new and exotic diseases, and reduction of antibiotic use are all greatly aided by veterinary vaccines. The armoury against viral infections in animals has been enhanced with the introduction of second-generation viral vaccinations, which include DNA vaccines, genetically engineered viral vaccines, live viral vector vaccines, and molecularly defined subunit vaccines. Another example of the varied uses of vaccination in veterinary medicine is the development of more effective bacterial vaccines, which have shown promise in combating zoonotic bacteria, protozoa, helminths, ectoparasites, allergies, and even cancer. In order to protect both human and animal populations from infectious diseases, it is crucial to keep researching and developing vaccines to tackle new problems in animal health and to adhere to the principles of One Health.

3. CONFLICT OF INTEREST

All authors have declared that there is no conflict of interests regarding the publication of this article.

REFERENCES

