Amazon Rainforest Wildfires: Causes and Impact on Mammalian and Avian Diversity

  • WAJEEHA TANVEER Department of Zoology, Government College Women University Sialkot, Pakistan
  • SAJIDA MUSHTAQ Department of Zoology, Government College Women University Sialkot, Pakistan
  • NIMRA IJAZ Department of Zoology, Government College Women University Sialkot, Pakistan
  • MOAZAMA BATOOL Department of Zoology, Government College Women University Sialkot, Pakistan
  • SADIA MAALIK Department of Zoology, Government College Women University Sialkot, Pakistan
Keywords: Amazon rainforest, wildfire, Brazil, cause, impact, threat


Amazon rainforest is having huge role in the regulation of the environment as it provides massive amount of oxygen to the Earth and is one of the most important carbon sinks. World’s most important plants and animal species are present in the Amazon rainforests. The Amazon rainforest wildfires especially wildfires of 2019 are one of the major global issues. There can be natural and human activities which can cause wildfires in Amazon Forest. The impacts due to wildfires in Amazon rainforest includes conversion of Amazon Forest into white savannas, threats to human security, negative effects on health, decrease in rainfall, effects on biodiversity, biomass burning aerosols, effects on ecosystem, increase in carbon emission, greenhouse effect, global warming and impact on environment and climatic feedback. In the end, some suggestions and strategies are given for the control of wildfires in the Amazon rainforest.


Alencar, A. A., Solórzano, L. A., & Nepstad, D. C. (2004). Modeling forest understory fires in an eastern Amazonian landscape. Ecological Applications, 14(sp4), 139-149. DOI:

Aragão, L. E., & Shimabukuro, Y. E. (2010). The incidence of fire in Amazonian forests with implications for REDD. Science, 328(5983), 1275-1278. DOI: 10.1126/science.1186925

Aragão, L. E., Anderson, L. O., Fonseca, M. G., Rosan, T. M., Vedovato, L. B., Wagner, F. H., ... & Saatchi, S. (2018). 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature communications, 9(1), 1-12. DOI: 10.1038/s41467-017-02771-y

Balch, J. K., Nepstad, D. C., & Curran, L. M. (2009). Pattern and process: fire-initiated grass invasion at Amazon transitional forest edges. In Tropical fire ecology (pp. 481-502). Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-540-77381-8_17

Balch, J. K., Nepstad, D. C., Curran, L. M., Brando, P. M., Portela, O., Guilherme, P., ... & de Carvalho Jr, O. (2011). Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. Forest Ecology and Management, 261(1), 68-77. DOI:

Barkhordarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C., & Mechoso, C. R. (2019). A recent systematic increase in vapor pressure deficit over tropical South America. Scientific reports, 9(1), 1-12. DOI:

Barlow, J., & Peres, C. A. (2008). Fire-mediated dieback and compositional cascade in an Amazonianforest. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1498), 1787-1794. DOI:

Barreto, P., Souza Jr, C., Noguerón, R., Anderson, A., & Salomão, R. (2006). Human pressure on the Brazilian Amazon forests. World Resources Institute, Washington, DC.

Berenguer, E., Carvalho, N., Anderson, L. O., Aragao, L. E., França, F., & Barlow, J. (2021). Improving the spatial‐temporal analysis of Amazonian fires. Global Change Biology, 27(3), 469-471. DOI:

Berenguer, E., Malhi, Y., Brando, P., Cardoso Nunes Cordeiro, A., Ferreira, J., França, F., ... & Barlow, J. (2018). Tree growth and stem carbon accumulation in human-modified Amazonian forests following drought and fire. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1760), 20170308. DOI:

Betts, R. A., Cox, P. M., Collins, M., Harris, P. P., Huntingford, C., & Jones, C. D. (2004). The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and applied climatology, 78(1), 157-175. DOI:10.1007/s00704-004-0050-y

Brando, P., Macedo, M., Silvério, D., Rattis, L., Paolucci, L., Alencar, A., ... & Amorim, C. (2020). Amazon wildfires: Scenes from a foreseeable disaster. Flora, 268, 151609. DOI:

Brando, P. M., Balch, J. K., Nepstad D. C., Morton, D. C., Putz, F. E., Coe, M. T., … & Soares-Filho, B. S. (2014). Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proceedings of the National Academy of Sciences, 111(17), 6347-6352.

Brock, P. M., Fornace, K. M., Grigg, M. J., Anstey, N. M., William, T., Cox, J., ... & Kao, R. R. (2019). Predictive analysis across spatial scales links zoonotic malaria to deforestation. Proceedings of the Royal Society B, 286(1894), 20182351. DOI:

Bullock, E. L., Woodcock, C. E., Souza Jr, C., & Olofsson, P. (2020). Satellite‐based estimates reveal widespread forest degradation in the Amazon. Global Change Biology, 26(5), 2956-2969. DOI:

Cardil, A., De-Miguel, S., Silva, C. A., Reich, P. B., Calkin, D., Brancalion, P. H., ... & Liang, J. (2020). Recent deforestation drove the spike in Amazonian fires. Environmental Research Letters, 15(12), 121003. DOI:

Cascio, A., Bosilkovski, M., Rodriguez-Morales, A. J., & Pappas, G. (2011). The socio-ecology of zoonotic infections. Clinical microbiology and infection, 17(3), 336-