Amazon Rainforest Wildfires: Causes and Impact on Mammalian and Avian Diversity
Abstract
Amazon rainforest is having huge role in the regulation of the environment as it provides massive amount of oxygen to the Earth and is one of the most important carbon sinks. World’s most important plants and animal species are present in the Amazon rainforests. The Amazon rainforest wildfires especially wildfires of 2019 are one of the major global issues. There can be natural and human activities which can cause wildfires in Amazon Forest. The impacts due to wildfires in Amazon rainforest includes conversion of Amazon Forest into white savannas, threats to human security, negative effects on health, decrease in rainfall, effects on biodiversity, biomass burning aerosols, effects on ecosystem, increase in carbon emission, greenhouse effect, global warming and impact on environment and climatic feedback. In the end, some suggestions and strategies are given for the control of wildfires in the Amazon rainforest.
References
Alencar, A. A., Solórzano, L. A., & Nepstad, D. C. (2004). Modeling forest understory fires in an eastern Amazonian landscape. Ecological Applications, 14(sp4), 139-149. DOI: https://doi.org/10.1890/01-6029
Aragão, L. E., & Shimabukuro, Y. E. (2010). The incidence of fire in Amazonian forests with implications for REDD. Science, 328(5983), 1275-1278. DOI: 10.1126/science.1186925
Aragão, L. E., Anderson, L. O., Fonseca, M. G., Rosan, T. M., Vedovato, L. B., Wagner, F. H., ... & Saatchi, S. (2018). 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature communications, 9(1), 1-12. DOI: 10.1038/s41467-017-02771-y
Balch, J. K., Nepstad, D. C., & Curran, L. M. (2009). Pattern and process: fire-initiated grass invasion at Amazon transitional forest edges. In Tropical fire ecology (pp. 481-502). Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-540-77381-8_17
Balch, J. K., Nepstad, D. C., Curran, L. M., Brando, P. M., Portela, O., Guilherme, P., ... & de Carvalho Jr, O. (2011). Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. Forest Ecology and Management, 261(1), 68-77. DOI: https://doi.org/10.1016/j.foreco.2010.09.029
Barkhordarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C., & Mechoso, C. R. (2019). A recent systematic increase in vapor pressure deficit over tropical South America. Scientific reports, 9(1), 1-12. DOI: https://doi.org/10.1038/s41598-019-51857-8
Barlow, J., & Peres, C. A. (2008). Fire-mediated dieback and compositional cascade in an Amazonianforest. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1498), 1787-1794. DOI: https://doi.org/10.1098/rstb.2007.0013
Barreto, P., Souza Jr, C., Noguerón, R., Anderson, A., & Salomão, R. (2006). Human pressure on the Brazilian Amazon forests. World Resources Institute, Washington, DC.
https://imazon.org.br/PDFimazon/Portugues/livros/human-pressure-on-the-brazilian-amazon-forests.pdf
Berenguer, E., Carvalho, N., Anderson, L. O., Aragao, L. E., França, F., & Barlow, J. (2021). Improving the spatial‐temporal analysis of Amazonian fires. Global Change Biology, 27(3), 469-471. DOI: https://doi.org/10.1111/gcb.15425
Berenguer, E., Malhi, Y., Brando, P., Cardoso Nunes Cordeiro, A., Ferreira, J., França, F., ... & Barlow, J. (2018). Tree growth and stem carbon accumulation in human-modified Amazonian forests following drought and fire. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1760), 20170308. DOI: https://doi.org/10.1098/rstb.2017.0308
Betts, R. A., Cox, P. M., Collins, M., Harris, P. P., Huntingford, C., & Jones, C. D. (2004). The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and applied climatology, 78(1), 157-175. DOI:10.1007/s00704-004-0050-y
Brando, P., Macedo, M., Silvério, D., Rattis, L., Paolucci, L., Alencar, A., ... & Amorim, C. (2020). Amazon wildfires: Scenes from a foreseeable disaster. Flora, 268, 151609. DOI: https://doi.org/10.1016/j.flora.2020.151609
Brando, P. M., Balch, J. K., Nepstad D. C., Morton, D. C., Putz, F. E., Coe, M. T., … & Soares-Filho, B. S. (2014). Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proceedings of the National Academy of Sciences, 111(17), 6347-6352. https://www.pnas.org/doi/pdf/10.1073/pnas1305499111
Brock, P. M., Fornace, K. M., Grigg, M. J., Anstey, N. M., William, T., Cox, J., ... & Kao, R. R. (2019). Predictive analysis across spatial scales links zoonotic malaria to deforestation. Proceedings of the Royal Society B, 286(1894), 20182351. DOI: https://doi.org/10.1098/rspb.2018.2351
Bullock, E. L., Woodcock, C. E., Souza Jr, C., & Olofsson, P. (2020). Satellite‐based estimates reveal widespread forest degradation in the Amazon. Global Change Biology, 26(5), 2956-2969. DOI: https://doi.org/10.1111/gcb.15029
Cardil, A., De-Miguel, S., Silva, C. A., Reich, P. B., Calkin, D., Brancalion, P. H., ... & Liang, J. (2020). Recent deforestation drove the spike in Amazonian fires. Environmental Research Letters, 15(12), 121003. DOI: https://doi.org/10.1088/1748-9326/abcac7
Cascio, A., Bosilkovski, M., Rodriguez-Morales, A. J., & Pappas, G. (2011). The socio-ecology of zoonotic infections. Clinical microbiology and infection, 17(3), 336-
papers are accepted on the understanding that the work has been submitted exclusively to the journal and has not been previously published. Authors will be supplied with copyright form, which must be completed and returned to the publisher. Papers will not be published until the signed copyright disclaimer has been received.
Kindly download the copyright for below and attach as a supplimentry file during article submission