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Abstract: This paper surveys several commonly used techniques for link prediction in networked/relational 

systems. This survey considers the body of literature from networks science, social networks analysis, and related 

research, and surveys several well-known analytical methods based on structural similarity of participating nodes. 

These methods that have been or could be used for solving the problem of link prediction in networked systems. 

The paper starts with a formalization of the link prediction problem previously given in the context of social 

networks. We discuss the notion of structural similarity among nodes in a network, and why and how these 

structure-derived node similarity measures also quantify the likelihood of the presence of future links in the 

network. The surveyed methods include proximity indices based on graph-theoretic distances between nodes, as 

well as, on local and global neighbourhoods. The authors identify and discuss a number of challenges which 

complicate link prediction due to certain conditions, or due to the necessity of consideration of exogenous factors to 

the network rather than just its endogenous structural properties. 

 

 
Keywords: complex networks; social networks; link prediction; similarity indices; network topology; network structure 

 
 

I. INTRODUCTION 

Many real-life systems generate “relational data”, i.e., data 
having properties (of interaction) in addition to the descriptive 
attributes of the entities involved in the system. Such systems 
are often best modelled as graphs or networks to capture the 
regular pattern of relations among the constituent entities—
that is, the structure of the system. Networks are composed of 
nodes and links to represent respectively the entities and 
relationships (among those entities) in some system. 

Prediction is an important problem in data mining. In the 
context of complex networks, it is and interesting to 
understand which links will appear and which links will 
disappear in the future. This is a natural consequence of the 
dynamic nature of complex networks—they change (grow or 
shrink) not only in their size but also in their structure—
forming new links or breaking existing links among the nodes 
of the network. 

A number of factors influence the dynamics of link 
formation in the network [1], [2]. One factor is the attributes 
associated with both node and link type entities in the 
network. On the one hand these can be compositional 
attributes (e.g., age, gender, role, bandwidth, distance, etc.), 
which describe the entity that the node or the link represents. 
These are exogenous to the network itself. On the other hand, 
the actual topology of the network gives rise to a number of 
structural properties of the nodes, links (e.g. node and link 
centralities, etc.), and of the network as a whole. These 
attributes are derived purely from the particular pattern of 

connections that the network may have at any given time, and 
are therefore, liable to change overtime as the network 
structure changes. Thus, the descriptive (or compositional) 
and structural attributes of nodes, in their own right as well as 
together, play a substantive role in determining the structure 
of the network at any time. 

In case of most social networks, it is the nodes' descriptive 
attributes (such as, age, gender, geography, race, shared 
associations, etc.) that determine the particular pattern of the 
instances of one or more social relationships in that network. 
Although such attributes may be responsible for the initial 
structure when the network is beginning to take shape, the 
formation of future links is also influenced by the endogenous 
attributes of the nodes such as their positions in the network 
[3]. This leads to the important realisation that the future 
structure of a network (i.e., the particular pattern of links) can 
be derived from the network's own structural properties which 
are latent in its topology at any given time. This reasoning 
underlies all the node-similarity techniques surveyed in this 
paper, and which form the basis for the respective link 
prediction technique. 

The rest of the paper is structured as follows: Section II 
gives a formal description of the Link Prediction Problem 
(LPP) in complex networks. It describes the documented 
generic experimental set-up for all the prediction approaches 
discussed in this report, and the method for evaluating their 
effectiveness. Section III elaborates upon the idea of node 
similarity in the structural context and describes why it is a 
valid notion upon which link prediction can be based. Section 
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IV discusses how link formation likelihood is a function of the 
graph-distance between nodes. Sections V and VI discuss 
individual node similarity indices based on local and global 
structural characteristics, respectively. Section VII identifies 
some challenges that complicate link prediction under certain 
conditions, or when it is important to consider other factors in 
addition to just network structure. Section VIII briefly 
mentions other network analysis problems that are similar or 
closely related to link prediction, and also mentions several 
practical applications of link prediction in other fields. Section 
IX concludes this paper by summarising key points and 
provides some pointers to other classes of link prediction 
approaches not discussed herein. 

II. THE LINK PREDICTION PROBLEM 

The problem of predicting links in social networks has 
been formalized by Liben-Nowell and Kleinberg [4] as the 
Link Prediction Problem (LPP). The formalisation can easily 
be extended to networks in general:  

Given a snapshot of a network at some time t, ... 
[the objective is] to accurately predict the edges 
that will be added to the network during the time 
interval from time t to a given future time t'. [4] 

A. Problem Description 

A network is usually represented as a graph G = (V, E), 
where V is the vertex set, and E is the edge set. If the entities 
represented by vertices u and v are directly connected under 

some relationship, then the edge (u, v)  E, otherwise (u, v)  
E. It is assumed that the network is evolving, so new edges are 
formed, and the network structure keeps changing with time. 

Each edge e  E has a timestamp t(e) on it to keep track of 
this evolution. G[t, t'] is the sub-graph G consisting of all 
edges between times t and t', i.e., G[t, t'] = (V',E'), V' = { x | x 

 {u, v}  (u, v)  V' }, E' = { e' | t ≤ t(e') ≤ t' } 
By choosing four different times t0 < t'0 < t1 < t'1, the 

original graph can be broken into two sub-graphs: G[t0, t'0] = 
(V, E0) and G[t1, t'1] = (V, E1), akin to having observed and 
unobserved sub-networks, respectively. The former provides 
the data for training and the later for testing. Each different 
approach to measuring node similarity can use the structural 
information from the observed sub-graph to predict edges in 
the unobserved sub-graph. For the sake of simplicity, it can be 
assumed that the vertices in both these sub-graphs are the 
same, i.e., no new vertices were added to or removed from the 
network between times t0 and t'1. So, any solution to the link 
prediction problem should output a list of edges not present in 
G[t0, t'0] but are likely to appear in G[t1, t'1]. Therefore, the set 
of new edges to be predicted is Enew = E1 - E0. Based on the 
particular node similarity approach, each prediction method 
assigns a likelihood score score(x, y) to each unobserved edge 

(x, y)  Enew. The likelihood values for score(x, y) are 
particular to the methods for measuring node similarity and 
scores from different approaches cannot be compared. 
However, the performance of different prediction approaches 
can be evaluated using a uniform heuristic based on the size 
of the sets of true positives (described in the next section). 

B. Evaluation Effectiveness of Prediction 

A list of all edges (x, y)  Enew is ranked by the likelihood 
score(x, y) and for some positive k, the top k edges are picked, 
as the set Enew

k. A measure of accuracy of the predictor is the 
size of intersection of the set Enew

k with the set of all the edges 
actually present in the given network, i.e., E1 (the set of all the 
edges that can ever be present, V × V can also be used.) 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑜𝑓𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = |𝐸𝑛𝑒𝑤
𝑘 ∩ 𝐸1|, or 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑜𝑓𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = |𝐸𝑛𝑒𝑤
𝑘 ∩ (𝑉 × 𝑉)| 

III. NODE PROXIMITY OR “SIMILARITY” 

The often-expressed adage “birds of a feather flock 
together” is more than just a cliche. In many real-life situations 
it is true that similarity breeds association, and this is more 
true as an observed phenomenon in social networks than 
anywhere else [5]. People tend to form connections with 
others based on shared attributes, such as, age, tastes, beliefs, 
interests, political leanings, class, organisational roles, etc. 
This tendency among individuals to associate or bond with 
others who are perceived to be similar is called homophily, 
literally meaning “love of the same”. 

In a network, node similarity is based on some attributes 
of the nodes. The extent to which two or more nodes are 
similar depends on the extent to which they have common 
attributes. These attributes of nodes can be either structural or 
compositional attributes. However, in this work we discuss 
indices of node “similarity” or “proximity” based purely on 
their structural or topological attributes, which are intrinsic to 
the network structure. Some approaches of measuring node 
similarity are based on nodes' specific compositional 
attributes (not all compositional attributes have the same 
importance to similarity), which are exogenous to the network 
structure, and can vary from one domain to another. All the 
so-called similarity-based indices depend on methods that 
assign a connection weight score(x, y) to pairs of nodes x and 
y, based on the input graph, and then produce a ranked list in 
decreasing order of score(x, y). This can be viewed as 
computing a measure of structural “proximity” or “similarity” 
between nodes x and y, which gives a prediction likelihood for 
any future link between the two nodes. Node similarity can 
either based on local position of nodes determined by their 
immediate neighbourhood, or by the overall global position 
determined by the overall structure of the network. Indices 
based on both these notions of node similarity are discussed 
under separate subheadings. 

IV. SHORTEST-PATH DISTANCE AS A PREDICTOR OF 

FUTURE LINKS 

Milgram [6] showed that real-world social networks are 
characterised by the small world phenomenon, where any two 
people in the world are connected through a short chain of 
acquaintances. Many other real-life network phenomena 
exhibit “small-world” properties [7]. Several studies have 
shown that social networks, the World Wide Web, gene 
networks, neural networks, power grids, road networks, all 
exhibit small-world network characteristics. Small-world 
networks are characterised by small average geodesics 
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(shortest path distances), and large clustering coefficients. The 
former characteristic means that most nodes of the network 
are separated by small chains of not more than a few links. In 
the context of social networks, it means that it is often possible 
to link total strangers through a mutual acquaintance—the so-
called small-world phenomenon. Studies on scientific 
collaboration networks have shown that such networks are 
small worlds, in which randomly chosen pairs of scientists are 
separated by a chain of a few intermediate acquaintances [8], 
[9]. It follows from this notion, that individuals connected by 
fewer intermediate links are more likely to form direct 
connections. In the above example, if two non-collaborating 
scientists have one or more common collaborators 
(represented by two nodes having a non-empty common 
neighbourhood), it would increase the future likelihood of 
collaborating themselves. Based on this reasoning, the 
shortest-path distance can be considered as a very crude 
measure of link-prediction. In this case, the prediction 
likelihood, score(x, y) of a future link between nodes x and y 
is the negative of the shortest path distance between them: 

 
𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦) =  −𝑑𝑖𝑠𝑡(𝑥, 𝑦)  (1) 

 

V. LOCAL SIMILARITY: METHODS BASED ON NODE 

NEIGHBOURHOODS 

Several methods of measuring structural similarity 
between two nodes are based on node neighbourhoods. The 
idea is that two random non-adjacent nodes are more likely to 
form a link in the future if there is a large enough overlap 
between their neighbourhoods, i.e., there are many other 
nodes as common neighbours. Several indices based on the 
idea of common node-neighbourhoods (originally developed 
to serve different purposes) can be adapted as predictors to 
give likelihood scores for future links. The intuition comes 
from a social (friendship or collaboration) network, where two 
individuals who share many of the same friends or 
collaborators are more likely to come into contact themselves 
and form a direct social link. Jin et al. [10] have proposed 
models of social network evolution based on the principle that 
the edge (x, y) is more likely to come into existence if for some 
z the edges (x, z) and (y, z) already exist. 

If x is a node in the network G(V, E), we denote the set of 

all nodes in the immediate neighbourhood of x by (x), such 
that: 

 
Γ(𝑥) = {𝑦: (𝑥, 𝑦) ∈ 𝐸}   (2) 

 

A. Common Neighbours 

The simplest approach in this category of prediction 
scorers is to simply take the size of the overlap between 
neighbourhoods of two nodes x and y as the likelihood score 
of a future link between the two nodes. In a social network 
context, it has been verified that there is a correlation between 
the size of neighbourhood overlap for two nodes x and y and 
the probability of them forming a direct social connection in 
the future [11]. Thus, we have: 

 

 𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦) = |Γ(x) ∩ Γ(y)|  (3) 
 

The above measure is not affected by the size of node 
neighbourhoods only by how much those neighbourhoods 
overlap, which can give rise to some problems of comparison. 

In order to normalise the above measure to ease 
comparison across different networks, we can divide the score 
by (n-1) as the maximum number of adjacencies any node in 

the network can have; we have, score(x, y) = | (x)   (y)| / 
(n-1). 

B. Jaccard's Index 

Jaccard's index or coefficient of similarity (also 
synonymously, Tanimoto Similarity [12]), originally 
proposed as a statistic for measuring similarity between two 
finite sample sets over some features that either or both sets 
could have. The measure of similarity is given as a ratio of the 
number of features common to both sets to the number of 
features either one or the other set has [13]. In the context of 
node neighbourhoods in a network, the “feature” we are 
interested in is common neighbours of nodes x and y. Jaccard's 
similarity coefficient, adapted as a measure of the likelihood 
of a future link between the two nodes, is given as: 

 

𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦) =
|Γ(x)∩Γ(y)|

|Γ(x)∪Γ(y)|
    (4) 

 

C. Adamic/Adar Similarity 

The study of individuals' homepage networks by Adamic 
and Adar [14], shows that certain structural features (in and 
out links between pages) and other exogenous features (such 
as, mailing list subscription, interests mentioned in text, etc.) 
are reflections of social interactions the users have in the real 
world. This study proposes a node similarity metric to predict 
existence of link between pair of nodes in a social network, 
based on counting the number of similar features both nodes 
have—giving more weight to shared features that are rarer, 
and less weight to features that are more common. This metric 
is expressed as: 
 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) = ∑
1

lo g[𝑓𝑟𝑒𝑞(𝑠ℎ𝑎𝑟𝑒𝑑𝑖𝑡𝑒𝑚)]𝑠ℎ𝑎𝑟𝑒𝑑𝑖𝑡𝑒𝑚𝑠   (5) 

 
The above equation can be adapted for link prediction 

based on common neighbourhoods. If z is a common 
neighbour of nodes x and y, then taking z as a shared feature, 
we have the following equation for our link prediction 
likelihood score: 
 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) = ∑
1

lo g[|Γ(𝑧)|]𝑧∈𝛤(𝑥)∩𝛤(𝑦)    (6) 

 
The inverse log frequency in the above quantity penalises 

common neighbours (z) that are themselves linked (choose / 
chosen by) a lot others, and rewards when they are more 
exclusive to the pair. 
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D. Preferntial Attachment and the Rich Club Effect 

Preferential attachment is a model of network growth 
proposed by Barabasi and Albert [15] based on the notion of 
rich-get-richer. The basic idea is that new nodes joining the 
network tend to attach themselves to nodes with high degrees, 
i.e., nodes which already popular and have many other direct 
connections. The resulting network is scale-free in that the 
degree distribution follows a power law. If x is a node in a 
network that grows according to preferential attachment, then 
the probability of x forming a new link within the network is 

proportional to the size of its neighbourhood, i.e., | (x)|. What 
should then be the probability of node x forming a link with 
some other node y? According to empirical evidence from 
studies on scientific collaboration networks [16], [17], the 
probability of link (x, y) forming is correlated with the product 
of the neighbourhood sizes of x and y. Same result is reported 
for scale-free networks without growth [18].  

Additionally, real-world networks (especially, those 
involving individuals and organisations) often exhibit the so-
called rich club effect  [19], [20] with respect to the number of 
incoming ties viewed as a resource for nodes in the network—
nodes with higher degrees (many neighbours) tend to be more 
inter-connected than nodes with lower degrees (few 
neighbours). 

This reasoning gives the corresponding similarity measure 
as follows: 
 

𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦) = |Γ(𝑥)|. |Γ(𝑦)|   (7) 
 

VI. GLOBAL SIMILARITY: METHODS BASED ON SET OF 

ALL PATHS 

In this section we discuss several methods that extend the 
idea of node similarity based on graph-distance by 
considering all the paths (not just the shortest path) between 
two nodes. Algorithms for global similarity indices are more 
expensive than those for local similarity indices, because 
much more information about the structure of the network is 
required.  

A. Katz’ Index 

Katz [21] proposed a method for measuring node status 
(centrality) that takes into account for a given node, not only 
how many choices are received but also who makes those 
choices. The resulting index measures node status by counting 
all the paths of length l between nodes x and y, dampened 
exponentially by length to give shorter paths more weight. For 
the nodes x and y we have: 
 

𝑠𝑜𝑐𝑟𝑒(𝑥, 𝑦) = ∑ 𝛽𝑙(𝐴𝑙)𝑥𝑦
∞
𝑙=1 = 𝛽𝐴𝑥𝑦 + 𝛽2(𝐴2)𝑥𝑦 +

𝛽3(𝐴3)𝑥𝑦 + ⋯  (8) 

 

where  is the damping factor whose value should be less than 
the greatest eigenvalue of the adjacency matrix A for the series 
to converge. The above measure gives the corresponding xy 
entry in the closed-form matrix of Katz' score for all nodes, 

i.e., (I -  A)-1 - I. 

B. Hitting Time and Commute Time 

Another indicator of distance (inversely, proximity) 
between two nodes is the expected time (as number of steps) 
it takes a random walker starting from one node to reach the 
other node, known as hitting time, Hx,y. In general hitting time 
is not symmetric, i.e., Hx,y ≠ Hy,x, and it is more natural to 
consider commute time, Cxy = Hx,y + Hy,x, which is the 
expected number of steps for a random walker to arrive from 
x to y and back. Both hitting time and commute time (negated) 
can serve as natural measures of node proximity, and hence, 
similarity. 
 

 𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦) = −𝐻𝑥,𝑦    (9) 

   𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦) = −(𝐻𝑥,𝑦 + 𝐻𝑦,𝑥)   (10) 

 
In general, if x and y are nodes in a connected networks, 

the hitting time Hx,y is given by: 
 

 𝐻𝑥,𝑦 = {
0, 𝑥 = 𝑦

1 +
1

Γ(𝑥)
∑ 𝐻𝑥,𝑦𝑧∈Γ(𝑥) , 𝑥 ≠ 𝑦

  (11) 

 

where z  (x) is a neighbour of x.  
A problem that negatively affects hitting time and its 

variants is their sensitivity to parts of the graph distant from 
the source and destination nodes (i.e., topological noise) even 
when the two nodes are connected by short paths. This 
difficulty can be overcome by adapting the rooted PageRank 
as a random walk with “restart”. 

C. PageRank and Random Walk with Restart 

PageRank is a very well-known algorithm for ranking 
webpages on the Web based on their “importance” and forms 
a basis for Google's Web search algorithms [22]. Under 
PageRank, the importance and relevance of a webpage is 
correlated to the number of links it receives from other 
webpages. In addition to the Web graph (with webpages and 
hyper-links as vertices and edges, respectively), it is also well 
defined for any graph in general.  

PageRank uses a positive real value,   [0,1), to control 
the “diffusion” of the random walk and allowing for 
periodically resetting of the random walker to restart from the 
source. To obtain a metric for node similarity score(x, y), the 
rooted PageRank can be adapted by considering a random 
walker starting from x, that iteratively moves to a random 

neighbour of x with a fixed probability   [0,1) and returns 

to x with probability 1 - . If qx,y is the probability that the 
random walker starting from x locates y, then qx,y is the yth 
element in the vector qx, given as [23]: 
 

𝑞𝑥⃗⃗⃗⃗ = (1 − α)(𝐼 − α𝑃𝑇)−1𝑒𝑥⃗⃗  ⃗,   (12) 
 
where P is the transition probability matrix with Pxy = 1/deg(x) 
if x and y are connected, otherwise 0; and ex is a vector whose 
xth element is 1 and others 0. 

The node similarity score score(x, y) based on random 
walk with restart is then defined as: 
 



University of Sindh Journal of Information and Communication Technology (USJICT) Vol.4(2), pg.: 90-95 

94 

 

𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦) = 𝑞𝑥𝑦 + 𝑞𝑦𝑥    (13) 

 

D. SimRank 

SimRank follows from the intuition that objects that are 
similar are related to other objects that are themselves similar. 
According to this recursive notion of similarity, two nodes are 
similar to the extent that they are connected to (other) similar 
nodes, with the base case that any node is completely similar 
to itself [24]. For example, nodes i and j are similar if they are 
connected to similar nodes m and n respectively. 
Mathematically, we have: 
 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑥𝑦 = {
1, 𝑥 = 𝑦

𝛾.
∑   𝑎∈Γ(𝑥) ∑   𝑏∈Γ(𝑦) 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑎𝑏

|Γ(𝑥)|.|Γ(𝑦)|
, 𝑥 ≠ 𝑦

   (14) 

 

where [0, 1] is the decay factor. 

VII. SOME CHALLENGES 

The approaches to link prediction discussed in this report 
all depend on only the intrinsic characteristics of the observed 
network, and do not consider a number of other important 
factors that complicate the task of link prediction.  

Although it is true that problems from many diverse 
domains can be mapped to networks, they don't always follow 
the same abstract model of network evolution, and the 
likelihood of link formation is as well a function of node and 
link attributes extrinsic to network, as it is of structural 
characteristics intrinsic to the network. The challenge is, 
therefore, to combine node and link attributes with topology 
so that the resulting network evolution models are more 
realistic and applicable. Interpretation of node similarity 
differs with domain context is there is no standard approach 
of prediction that combines information encoded in nodes and 
links with topological information.  

Another issue that complicates link prediction is network 
sparsity. Real life networks are often sparse, that is, the 
number of links actually present is a very small proportion of 
all the possible links that can be—in short, the network density 
is very small. This is often not because there are so few 
interactions, but because the number of nodes is too great. 
Consequently, achieving good link prediction accuracy for 
sparse networks is a big challenge, where in a network of size 
on the order of millions of nodes (with billions of “possible” 
connection) the chances for always getting false positives are 
impossibly high. Indeed, a predictor can be very accurate by 
predicting no links at all.  

Yet another challenge in link prediction comes from 
heterogeneity in networks. Many real-world systems, 
modelled as complex networks, have multiple interactions 
among entities of multiple types—i.e., heterogeneity in nodes 
as well as links. “Link prediction in such networks must model 
the influences between heterogeneous relationships and 
distinguish the formation mechanisms of each link type, a task 
which is beyond the simple topological features commonly 
used to score potential links.” [25] So far, little work has been 
done in link prediction in heterogeneous networks. Some 

recent related work in this area is done by Davis et al. [25], 
[26]. 

VIII. RELATED PROBLEMS AND APPLICATIONS 

The natural applicability of networks in a variety of fields 
means that any environment that maps to a network usually 
has a well-defined important question in that environment that 
maps back to the link prediction problem in networks. This 
section briefly mentions some typical applications on link 
prediction. 

A link may relate more than two entities—the equivalent 
graph-theoretic concept is of hyper-edges which can have 
more than two endpoints. A prediction related problem is link 
completion where the link is known or observable, but it is 
incomplete. Given one or more nodes that are known to have 
a link, the objective is to determine which other nodes are also 
endpoints of that link.  

Another problem in network analysis that can viewed as a 
generalisation of link prediction is the network completion 
problem, where the observed network is missing links as well 
as nodes, and the objective is to accurately predict all the 
missing elements of the network. This scenario is encountered 
in many real-life situations where it is either impossible to 
know which elements belong to the network, or the collected 
data is incomplete with respect to both the nodes and the links. 
Kim and Leskovec use a scalable approach based on an 
expectation maximisation model to complete a network where 
as many as half the nodes are missing [27]. 

Sometimes a network may have false links due to either 
unintentional errors in data collection or deliberate 
misreporting to mislead investigators and prevent discovery 
of the real network structure. Link prediction methods can be 
used to identify these spurious links in addition to predicting 
any missing links. However, when using link prediction 
methods to remove spurious link, it is important to consider 
that there might be some real but “unexpected” links. 

Recommender systems use link prediction to make 
recommendations, suggest relevant products or services, 
recommend friendships in online social sites like LinkedIn, 
Facebook, twitter, etc. Li and Chen study recommendation as 
a link prediction problem in bipartite graphs and use a 
machine learning approach based on a combination of nodes' 
descriptive features (demographics, etc.) and graph-based 
structural features [28].  

In a covert-network context, e.g., monitoring of a criminal 
or terrorist network, link prediction allows investigators to 
make conjectures about possible connection between 
individuals whose interactions have hitherto gone unobserved 
[29]. Moreover, in countering hostile networks, one of the 
objectives is to neutralise one or more critical nodes to 
destabilise the network. However, sometimes networks can be 
very resilient, and can recover from destabilisation attacks 
[30], by forming new links to restructure and regroup. It then 
becomes important to test several alternative hypotheses of 
node removal to determine the least costly post-removal 
scenario. 
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IX. CONCLUSION 

Link prediction in complex networks is a very important 
research issue, not only from a purely network analysis 
perspective, but also because it has equivalent practical 
applications in nearly all of the many systems which can 
naturally be modelled as networks. The formation of links 
between a pair of nodes is a function of many factors, 
including descriptive and structural attributes of the 
participating nodes. In this report, several typical methods of 
link prediction based on measures of topographical node 
similarity were discussed in detail. However, it is not an 
exhaustive review of all the link prediction methods. 
Approaches other than those based purely on node similarity 
algorithms include methods based on network evolution 
models, where prediction is based on testing against certain 
properties suggested by the model—e.g., random graph, 
Barabasi-Albert  [15], Watts-Strogatz  [7], etc. A number of 
challenges that complicate link prediction in networks were 
also highlighted. Some of these challenges offer directions for 
future research. For example, link prediction in directed and 
heterogeneous networks, can be important areas for future 
work in this regard, complimenting previous work with 
weighted [31] and heterogeneous [32] networks. 
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