
PFE: A Visual Programming Frame Work for Teaching

Programming to Dummies or beginners
Mufti Anees-Ur-Rahman, Rai Sabir, Umer Riaz, Tauseef Rana

Department of Computer Software Engineering, Military College of Signals, NUST
Rawalpindi, Pakistan

Email: muftianees7@gmail.com, raisabir81@gmail.com, umer.riaz@live.com, tauseefrana@mcs.edu.pk

Abstract—Modern human lifestyle has revolutionized and there is a paradigm shift in ways, how humans and machines interact.

Everybody is connected and concerned with machines through software and computer applications and SMART is the ongoing style

everywhere. With this increased human-machine interaction and the presence of smart machines in their lifestyles, user curiosity and

involvement in software logic and its underlying processes has increased the importance and consideration of user understanding of

programming manifold. However, programming and developing computer programs have remained a problem specific to software

engineers, professional developers, computer geeks and IT professionals, and it has excluded the general public’s understandability and

involvement. Henceforth this research paper is an endeavor to bring basic programming and its underlying logics to novice learners and

non-programmers through a visual programming framework that will enable people with basic computer handling knowledge, to create

simple logics and computer programs. Programming for Everyone (PFE) is a visual programming framework that defines basic

construction parameters to build visual programming software that enables non-programmer users from outside IT industry to gradually

learn and build programming logic and computer applications.

Index Terms—Visual Programming Language, Visual Coding

I. INTRODUCTION

Evolution of IT and software has dramatized the way humans and

machines interact. From the simplest one function button machines to

complex automated industrial units, software evolution has taken a

high tide. In the current wave of technological evolution, a near-

future is foreseen where technology is omnipresent, machines predict

and anticipate human needs, robotic systems are an integral part of

everyday life, and humans’ abilities are technologically supported

[1]. This increased presence of machines in human life entails that

they know each other well, specifically it is and will be perilous for

humans if they know less. Computer programming and application

development have remained a problem associated with software

engineers, professional developers, computer geeks and enthusiasts.

Very less of this World of logic and Programming is known to

software applications end-user human actors. The increased presence

of machines and systems in human life has almost made it a necessity

to know IT and this coupled with human curiosity to explore the

unknown, have increased their want of knowing logic and

programming running behind the systems. However, the knowledge,

notations and languages used in software development industry

are too complex, technical, syntax and semantic oriented that

its understanding for people outside IT domain is a complex

and a not to do the task.

Visual Programming techniques and environments have tried

to reduce the void of understanding by providing a visual and

noncoding mechanism for creating logic and programs but that too

by and large had been addressing the requirements of users from

within IT domain. From UML to Flow chart diagrams, Xman to

extended Xman and so on most of the endeavors are intended to

facilitate people from within software industry. This research paper

aims at the identification of this void, its importance from HCI point

of view and building up of a framework that enables novice users to

learn basic logic and programming skills with no coding technique or

language to know. Basic research questions that these papers have

tried to answer are as follows:

RQ1: Is learning programming and logic important for

everyone?

RQ2: Which programming learning approach is better; Text

Based Languages (TBLs) or Visual Programming

Languages (VPLs)?

RQ3: Does existing VPLs and applications included or

considered users from outside IT domain to learn

programming and to what extent?

RQ4: What could be a possible framework that can be used

to build Visual Programming Applications that could help

users from outside IT domain to learn basic programming

logics and program construction without having to write

any codes?

The framework, Programming for Everyone (PFE), proposed in this

paper tries to define the basic parameters to build a visual

programming environment or application and logic learning software

that can enable users to understand basic programming logics and

build simple programs through visual and graphic elements without

having any code to write or understand. PFE defines a software

program as Buddy that is a virtual companion of our user, created to

perform desired functions based on logics and knowledge the user

learns and provides. The Knowledge (K) in our framework represents

the inclusion of previously build libraries, components, functional

modules and services, with a singular package called Knowledge

Unit (Ku). Assigning a Ku to our buddy implies that the buddy now

knows how to act upon knowledge assigned through a knowledge

unit Ku. Technically, all Ku related functioning code and libraries are

now available to be used through their respective functions calls or

interfaces that shall be provided to the user through visual or graphic

interface.

University of Sindh Journal of Information and Communication Technology

(USJICT)

Volume 4, Issue 3, October 2020

ISSN-E: 2523-1235, ISSN-P: 2521-5582 © Published by University of Sindh, Jamshoro

Website: http://sujo.usindh.edu.pk/index.php/USJICT/

mailto:muftianees7@gmail.com
mailto:tauseefrana@mcs.edu.pk

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.4(3), pg.: 194- 198

195

Buddy B, a developed computer program by the user shall be a

mirrored representation of the programming knowledge of the user

itself. The frame might also consider defining some social

networking aspects for users to share their buddy characteristics with

other learners and to benefit from each other’s learning experiences.

II. LITERATURE REVIEW

A group of 32 experts from HCI domain carried out empirical

research to identify grand challenges being faced by the Human-

Computer Interaction domain. This effort was supported by HCII

Conference series that concluded at HCII conference at Las Vegas,

USA in 2018. Later the research was published by the International

Journal of Human-Computer Interaction, Taylor and Francis in Jul

2019. The research identified 7 grand HCI challenges as Human-

Technology Symbiosis, Human-Environment Interaction, Ethics

Privacy and security, Well Being Health and Eudemonia,

Accessibility and Universal Access, Learning and Creativity and

Social Organization and Democracy [1].

Further exploring the individual challenges, the research explains

the challenge of learning and creativity as “As technologies continue

to mature, new opportunities for fostering individual growth through

multi-modal stimulation of how humans learn and apply creativity

will emerge. People with diverse backgrounds, skills, and interests

will be able to collaborate to solve challenging problems, by

cooperatively learning and creating knowledge together. In this new

era, technology will support and promote new learning styles, multi-

modal learning affordances, as well as lifelong learning”

[1]. Therefore, to embrace the exponential technology growth

together and to accrue maximum collective benefits, it is imperative

to create programming learning environments for everyone.

Recognizing this importance, some futuristic leaps have been taken

recently to even teach computer programming to people right from

the young age. As a result of these studies and analysis, many

countries have introduced programing language as integral part of

curriculum for children right from early ages. For an example in

Japan, a new course of study shall be followed from 2020 onwards

and computer programming has been added as a mandatory subject.

Children attending primary schools shall be required to study

programming in different disciplines throughout their curriculum.

The UK government realizing the importance of knowing

programming and logic has also included computer science education

right from the beginning. In their new computing curriculum, the

children aged between 11 and 14 are required to use two or more

programming languages [3].

Apropos, we can conclude that learning programming and

computer sciences is an imperative requirement now and it has

been realized and efforts are in hand everywhere to foster the

upcoming generations with this knowledge right from the start.

Those already out of schools and learning process are likely to be

left out, if they don’t somehow get into learning computer

programs and logics through easily understandable, non-coding

and ways best suited to them.

III. TEXT BASED LANGUAGES (TBLS) VS

VISUAL PROGRAMMING LANGUAGES

(VPLS)

The history of formally recognized programming languages dates

back to early fifties where computer scientists started to build set of

characters and rules for combining them so as machine code

knowledge becomes unnecessary and programmers could talk to

computers in a language near to real languages. The first major

meeting held solely to discuss higher-level languages or automatic

coding as the subject was referred to then was at the Franklin

institute in 1956 [4].

Programming Languages alongside technology evolution have

also been revolutionized and comprehensive rules and mechanisms

have been built both as textual programming languages (TBLs) and

Visual Programming Languages (VPLs). VPLs though smaller in age

than TPLs are considered more appropriate especially for teaching

programming to new and novice programmers. A VPL or

environments are built so as to allow users to develop programs and

applications without writing the program codes textually. Rather they

allow users to manipulate various program codes and blocks

graphically through an interactive mechanism involving drag drop or

click functions. [5].

In a research in Japan, textual programming languages and

visual programming languages were compared from the aspect of

learning motivation. It was carried out by selecting two classes of

primary students to work on VPLs and the other one with TPLs.

After the experiment, results concluded that from Motivation of

Users point of view, the class that worked on VPLs showed better

scores as the course progressed while those with TPLs didn’t

show any significance increase in their motivational score. Hence

it can be deduced that VPLs are a better choice than TPLs

keeping in view the learning motivational scores, for teaching

programing to school children and novices. [6].

Visual Programming Languages and environments are built to

enable users to be able to create computer programs without having

to write any lines of code or programming language. They use

graphical menus and interactions instead and programming

commands and options are displayed in the form of blocks with a

pre-defined color scheme associated with each type and category of

block. These blocks are joined together through visual options and

resultantly required codes are generated for the program. Therefore,

we conclude that since VPLs have lesser requirements from user in

terms of language syntax and semantics, hence the chances of user

errors are much lesser as compared to TPLs. Apropos, VPLs are a

more suitable choice than TPLs for learning programming and

teaching programing for educational purpose. [7]. Therefore, we

conclude that VPLs are a better choice while developing program

learning environments for the novice, young and new programming

learners. Researchers have considered VPLs to be closer to the needs

of new learners. Since technology, its evolution and presence in

human lives is a reality and an inevitable fact, this omnipresence of

technology brings a major challenge that is to find structured and

comprehensive mechanisms to pass on the knowledge, through

learning and training, to diverse nature of the audience. Therefore,

there is a need to understand the influences of human factors to

design digital learning environments that best suit every learner [8].

IV. EXISTING FRAMEWORKS

In [9] a few programmers were also given a task which they

needed to code using 2 programming languages. One of the

languages was known to them the other was unknown. This was

done to get their opinions on the differences, which shows us that it

is not difficult for even the older veteran programmers to adopt a new

language. Another experiment was carried out in [10] which included

60 students who all knew a procedural programming language and

were divided into 3 groups. They had to use a Visual Programming

language called VEDILS to control a robot using a Bluetooth

connection with an android device. After the series of experiments,

the results suggested that the visual programming language made

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.4(3), pg.: 194- 198

196

understanding of the problems easier for the student. They had a

better idea of the system and they also enjoyed their work using the

Visual language rather than the textual interface. they mainly used

Block Languages for this. Similarly, another study was also carried

out in [11]. This time using Blockly.

Blockly is a Block language Developed by Google. PBL-VP

(Problem Based Learning-Visual Programming) was used in this

scenario. the PBL was used to guide students to analyze problems,

provide solutions and establish scientific logic thinking. In the end,

the effectiveness of this PBL was tested and it came out more than

the normal teaching methods that are used by us which is textual

Programming.

One slightly different approach to this matter was made when the use

of "recognition over recall" method was used in [12]. the aim of this

was rather than focusing on the syntax of the programming language

students should focus on programming logic. This was done while

using a Visual programming language called "Block-C". This not

only provided the evidence that this was better for beginners but also

had an advantage of eliminating Syntax errors while using the

graphical coding method. Similarly, there is another Visual

Programming Language named "Milo". It uses Graphical blocks to

represent Machine learning and Data science concepts. its code is of

the same "level" as JavaScript. Again, this proved to be very

successful for novices and beginners and had a positive effect [13].

one other interesting implementation of this is carried out by using a

"Flow Model" to code using visual programming. In this

experiment, no existing visual programming language was

used for this pilot program. A benefit to this was that there

was no programming enforced rule sin this methodology [14].

Figure 1. Flowchart of PBL-VP teaching Process

V. PROGRAMMING FOR EVERYONE (PFE)

Programming for Everyone is a concept and framework that

endeavors to bring computer programming and logic

understanding to novice dumb programmers. The acquired logic

and knowledge shall gradually be built through a systematic and

progressive mechanism. Users shall be able to explore computer

logics and programming as per their own interests and needs.

A. Fundamental concepts of PFE Buddy

PFE considers user learning process and experience as the

foremost factor and we have named the user developed computer

program or application as Buddy (Bdy) representing user knowledge

and expertise about computer programming and logic. This buddy

shall constantly remain as an interface between user and computer

logic and programming knowledge base available locally or through

cloud resources.

Users shall interact with the system using the user interface

of Buddy and programming logic resources shall interface

with Buddy using appl interface as shown in fig1. A buddy

shall be created for each user at the beginning of user

programming learning experience and shall continue

throughout hi learning life cycle. Buddy can be represented

with a graphical representation like a pic, icon, or any other

representation user wishes to select suiting his cognitive and

imaginative behavior.

B. The Knowledge K

The learned programming and computer logic by a user shall be

represented by Knowledge K that shall provide an insight into

functionalities and capabilities acquired by Buddy during the

learning process. Knowledge shall consist of smaller programming

packages called Knowledge Unit (Ku) which can consist of user

developed program or an already developed component available in

the form of coding libraries and packages. User shall keep increasing

the knowledge of his program by adding knowledge units to the

system. Adding knowledge unit in the form of external libraries or

packages shall require a graphical visual interaction of the user with

a list of available knowledge units depending upon the underlying

programming language and packages or libraries offered. User shall

be able to add ku to his buddy knowledge by just dragging and

dropping knowledge unit from the list. Each knowledge unit on

addition by user, shall automatically provide a list of functionalities it

offers to user in a graphical menu on user action like mouse click or

mouse over function through Buddy user interface as shown in fig 3.

For example if a user wants to work in C++ language and learn

mathematical functions, he will just drag drop maths library from

C++ language package being provided in the buddy menu, the

math.h library shall be included in knowledge, providing list of

math functions the library can handle, through buddy interface Fk

where Fk is the consolidated functions list of all functionalities

included in knowledge through respective Knowledge units.

At any point of time the list of functions fK of knowledge K is

the sum or consolidation of all functions being provided by

individual knowledge units Ku. Mathematically, list of

knowledge functions fk at any time t is

(fK)t= (SfKu)n

This list shall be updated upon the addition of each new

knowledge unit by the user as shown in figure 2. For every

new addition, the fK is updated as:

fK =fK +fKU (new list)

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.4(3), pg.: 194- 198

197

With this mechanism, a user can always have a track of the

available list of functions and capabilities with the buddy or in

retrospect user himself.

Figure 2. An overview of the Language Buddy

C. Buddy Classification

The buddy of a user at any point of time shall depict his learned

programming capability through a classification mechanism of user

buddy. For a buddy or user to be qualified in a knowledge unit with a

list of functions fKu, he must have used at least 75% of the functions

in his own created program. Based upon consolidated qualification

credentials an overall expertise classification of buddy can be done.

The Buddy can be classified into following 6 categories: -

1) Beginner

2) Basic Programmer

3) Programmer

4) Good Programmer

5) Expert Programmer

6) Legendary Progammer

This no of classifications can be increased or decreased as

found appropriate during implementation or development process

of the concept. Moreover, the classification criterion and

algorithm shall also be worked in more detail in subsequent

phases of the research.

Figure 3. Interface interaction

D. User learning procedure

According to PFE framework, the system shall provide user

creation module where the user shall be prompted to give a name to

his Buddy, select its graphical representation and some other basic

profile details (optional) like age, email, contact no, qualification etc.

This shall provide him with a personalized experience while learning

programming and also shall help him in displaying his credentials for

online forums for knowledge and experience sharing. This unique

buddy for each user shall keep on updating itself based on user

learning and programming process. User shall be required to use

functionalities of knowledge units graphically. For example, if a user

has added maths library to knowledge, a maths Tab shall appear on

buddy menu, having list of all maths functions the user can use.

When a user selects a particular function its required inputs and

outputs shall automatically drop down into programming screen of

the user i.e upon selection of add or sum function the containers for

input nos and result shall automatically appear on screen for user to

configure how many input nos he wants to use and how he wants

them to be provided to user (manual prompted input from user or

from a list or data base of numbers) and finally what to with the

calculated result. The system shall also keep a track or record of

functions of a particular library or component being used by the user

in his program and this info shall be used in classification of user as

qualified or not, in a particular component and further will add to

overall classification of a user buddy.

E. System Upgradation Process

The PFE framework also explains a mechanism for upgrading

the system by the addition of new language supported and their

libraries. This procedure will involve a few step configurations of

the system by developers and release of new version with added

support of new language. This language inclusion package shall

include:

1) Name of Language i.e java, C++

2) List of libraries or packages being offered as knowledge

units Ku.

3) List of functions fKu for each Ku.

4) Integration mechanism for language compiler.

5) Interoperability requirements for interaction with other

language packages or functionalities.

Details of this mechanism shall be explained or explored in

future research

F. User interaction through online form

The program learning experience through PFE shall also

provide users with an online forum or application to interact

with other learners and share learning experiences. User

buddy profile can be used as a basic identification tool for this

online interactive mechanism. This interconnected learning

shall increase learning motivation of users, provide a

centralized problem sharing platform, provide users with an

opportunity to interactively learn and share experiences and

build an inclusive community of learners. This community

may also be used for finding or hiring programmers with a

required set of expertise employers are looking for.

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.4(3), pg.: 194- 198

198

VI. FUTURE WORK

The following shall be carried out in further research of the

project: -

1) Defining user interface design and working prototype

model.

2) Defining language integration process.

3) Defining buddy classification algorithm.

4) Defining mechanisms for online interactive forum or

networking system.

VII. CONCLUSION

Programming has been exclusive in nature as it has remained more

related to computer experts and IT field people. However, the

expansion of IT in day-to-day human lives have increased the want

and requirement of learning logic and programming by everyone.

PFE hence provides a basic idea of how learning of programming

and logic can be brought to an inclusive set of users without getting

them into language syntax and semantics. The gradual visual learning

environment shall motivate users and enable them to learn logic and

programming as per their personalized interests and requirements

hence shall decrease the chances of people quitting learning

programming. Moreover, it will also provide an online platform to

converge the vast community of learners for sharing their

experiences and enable the professional IT industry to hunt for good

programmers for professional use.

REFERENCES

[1] C. C. Stephanidis and G. Salvendy, "Seven HCI Grand Challenges",

International Journal of Human-Computer Interaction, vol. 35, Number
14, 2019 pp. 1229-1269.

[2] H. Tsukamoto, Y. Oomori, H. Nagumo, Y. Takemura, A. Monden and

K. Matsumoto, "Evaluating algorithmic thinking ability of primary

schoolchildren who learn computer programming," 2017 IEEE Frontiers

in Education Conference (FIE), Indianapolis, IN, 2017, pp. 1-8.
[3] “Statutory guidance National curriculum in Eng-land: computing

programmes of study,” [Available]
https://www.gov.uk/government/publications/national-curriculum-in-
england-computing-programmes-of-study/n.

[4] J. E. Sammet, "Programming Languages: History and Future" , Com-

munications of the ACM, vol. 15, Number 7, 1972, pp. 601-610.
[5] N. Bak, B. Chang and K. Choi, "Smart Block: A Visual Programming

Environment for SmartThings," 2018 IEEE 42nd Annual Computer
Software and Applications Conference (COMPSAC), Tokyo, 2018, pp.
32-37.

[6] H. Tsukamoto et al., "Textual vs. visual programming languages in pro-

gramming education for primary schoolchildren," 2016 IEEE Frontiers

in Education Conference (FIE), Erie, PA, USA, 2016, pp. 1-7.

[7] T. Karvounidis, I. Argyriou, A. Ladias and C. Douligeris, "A design and
evaluation framework for visual programming codes," 2017 IEEE
Global Engineering Education Conference (EDUCON), Athens, 2017,
pp. 999-1007.

[8] Chen and Wang "VIPLE: Visual IoT/Robotics Programming Language
Environment for Computer Science Education",2019.

[9] B. Frey, Moving from the Known to the Unknown to Measure the Initial

Learnability of Programming Languages,IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC) 2017.
[10] J. María Rodríguez Corral, "A Study on the Suitability of Visual

Languages for Non-Expert Robot Programmers”, Received November

25, 2018, accepted January 23, 2019, date of publication January 29,

2019, date of current version February 14, 2019.

[11] P. Gao, "A New Teaching Pattern Based on PBL and Visual Pro-

gramming in Computational Thinking Course", The 14th International

Conference on Computer Science and Education (ICCSE 2019) August

19-21, 2019. Toronto, Canada,2019

[12] C. Kyfonidis, "Block C: A block based programming teaching tool to
facilitate introductory C programming courses", 2017 IEEE Global
Engineering Education Conference (EDUCON).

[13] A. Rao, "Milo: A visual programming environment for Data Science
Education", 2018 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC).

[14] B.J. Smith, Harry S. Delugach, "Work In Progress - Using a Vi-sual
Programming Language to Bridge the Cognitive Gap Between a
Novice’s Mental Model and Program Code", 2010, Washington, DC 40
the ASEE/IEEE Frontiers in Education Conference

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.4(3), pg.: 194- 198

199

