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Abstract: Energy-based devices made this possible to recognize the need for batteryless wearables. The batteryless 

wearable notion created an opportunity for continuous and ubiquitous human identification. Traditionally, securing 

device passwords, PINs, and fingerprints based on the accelerometer to sample the acceleration traces for 

identification, but the accelerometer's energy consumption has been a critical issue for the existing ubiquitous self-

enabled devices. In this paper, a novel method harvesting kinetic energy for identification improves energy 

efficiency and reduces energy demand to provide the identification. The idea of utilizing harvested power for 

personal identification is actuated by the phenomena that people walk distinctly and generate different kinetic 

energy levels leaving their signs with a harvested power signal. The statistical evaluation of experimental results 

proves that power traces contain sufficient information for person identification. The experimental analysis is 

conducted on 85 persons walking data for kinetic power signal-based person identification. We select five different 

classifiers that provide exemplary performance for identifying an individual for their generated power traces, 

namely NaiveBayes, OneR, and Meta Bagging. The experimental outcomes demonstrate the classifier's accuracy of 

90%, 97%, and 98%, respectively. The Dataset used is publicly available for the gait acceleration series. 
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I. INTRODUCTION  

Recent technological advancement has given rise to 
prominent techniques for addressing pervasive computing 
constraints [1, 2]. According to the previous research, 
mobile computing has significant growth realization of self-
sustainable wireless devices many resources to obtain 
energy to power the mobile devices [3, 4] including internet 
of things [5, 32-34], solar power [6], radio frequency signals 
[7], wireless sensor nodes [8], vibrational excitation [9], 
human motion to control remote devices [10], and 
personalized patient monitoring system [11, 12]. These self-
sustainable devices are building a block of wearable 
computing and smart buildings. Mobile phones are 
advancing in terms of processing power memory in 
functionality. These mobile phone characteristics permit 
them to utilize as a communication device and make them 
capable of storing sensitive information, which has given 
rise to security issues [13].  The existing methods are energy 
inefficient does not respect the unique need of mobile 
device [14]. However, all of these techniques require active 
user participation initially and require more sample data to 
provide high accuracy to access the device. The previously 
mentioned identification methods consume a lot of power 
high compared to practically harvested power from human 

activity. We demonstrate that harvested kinetic energy is an 
energy-efficient method that produces energy instead of 
consuming. The previous study [15, 16] shows that various 
power harvesting wireless devices serve as fundamental 
building blocks for modern computing and enable modern 
computing applications. However, a more energy-efficient 
approach is still a critical issue that is currently under 
development. We emphasize illustrating the kinetic energy 
generated by the human body can be harvested by a mobile 
device with an IoT form factor. The research has 
demonstrated that according to height, weight, gender 
heavily affects each individual's kinetic energy. So, the 
amount of energy generated by various human activities 
varies on these human attributes [17]. 

Furthermore, the harvested power from human activities 
uses for activity recognition [18-21, 31]. Based on this 
observation, we proposed using harvested power produced 
by the human motion for identification. There are various 
ways to harvest the motion energy, although the inertial 
harvesting motion best fits the IoT applications. The 
contributions of this research are summarized below: 
• We suggest a new approach for a source of mobile 

device identification by converting the human body 
generated kinetic energy to power traces. 
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• Using experimental data, we suggest the human 
identification removes the requirement of 
accelerometer sampling to make person identification 
practical for self-powered devices. 

• We suggest the power traces as specific measures to 
get device access control. 

The rest of the paper is structured as follows. Section II 
contains a literature review, Section III describes Data 
Collection, in Section IV Model description and 
measurement setup of the experiments, and the test 
results presented in section IV. 

II. RELATED WORK 

As an emerging technology of pervasive computing, 
self-powered devices have gained much attention to harness 
energy from ambient sources such as solar power, 
electronegative energy to monitor our industries, support 
our decisions and control our lives [7-9, 22]. Much of the 
research was conducted to available ambient resources to 
obtain energy for mobile power devices [3, 12, 23]. 
Including self-winding electronic watch harnesses the 
energy through the wearer's natural motion's wrist [24].  In 
addition to that, many commercial devices using person 
encouraged vibration have been developed [25]. Thein et al. 
in [26] develop efficient energy harvesting wireless body 
area network (WBAN) architecture for patient monitoring 
systems to extend the battery life WBN node. 

Mobile phones are already one of the essential factors 
for the push towards digitization globally; there has been an 
ever-growing range of applications handling financial 
transactions, health [11], contact information, etc. These 
applications generate a sufficient quantity of sensitive 
information that significantly impacts the user’s privacy 
[27]. Furthermore, it is worth noting that implementing 
security for authentication has become the primary concern 
of users today [28].  Consequently, the current approaches 
protecting the device from attacks, from typical early 
password to pattern lock, face, gait, and fingerprint to even 
fusion of different biometric [29, 30], but these methods 
have their weaknesses and limitations. While energy 
powered devices have introduced the human as a new 
source of producing energy to power self-sustainable 
devices, these portable devices scavenge the energy 
consumed throughout the user’s ordinary activities to 
produce power for his computer [29]. Moreover, harvesting 
sensor architecture proposed eliminating the need for wires 
and batteries' replacement to recognize human activity from 
human motion [16]. 

Furthermore, the research demonstrates that energy is an 
excellent source to recharge the portable self-powered 
devices and approximate the kinetic energy produced by 
human motion [13]. The amount of produced energy by an 
individual depends upon their weight. However, the human 
can generate power of more than 7.4W depending on his 
weight [30]. Power consumption is essential in powered-
enabled devices, where it has been motivated by many 
scientists to find new ways to make energy-efficient 
devices. The proposed approach related to energy-efficient 
person identification is energy efficient for the 

identification process in a self-powered device, and it also 
eliminates the need for an accelerometer. 

III. DATASET 

The human Activity Sensing Consortium (Consortium, 

2011) HASC organization provides the public data sets and 

releases worldwide. This organization's motive by making 

data sets widely available is to motivate the researchers and 

developers to do their experiments and algorithms. In 

HASC Challenge 2011, various sensors were used to collect 

data equipped with smartphones, such as a gyroscope, 

magnetic field sensor, and GPS.  The Dataset contains all 

body motion information by placing terminals in different 

places, while the terminal state is either free or fixed. The 

Dataset contains 6 different activity data such as stay 

(standing), walk, jog, skip, stair-up, and stair-down sampled 

at 10 ~ 100 Hz frequency. The Dataset we examine in our 

study is human walking activity traces over 80 participants. 

The Dataset was collected by the accelerometer sample rate 

of a 10~100 Hz. The measurement time for each activity is 

20 seconds. The selected Dataset contains 4~4 sets of 20 

seconds of each individual, having different terminal 

positions. The terminal state is fixed and attached to the 

individual bag, strap, and waist and rear position of the 

human body. 

IV. SYSTEM ARCHITECTURE  

Since the human-generated energy traces are used for 

person identification, it is essential to build an evaluation 

system, whether kinetic energy produced by human motion 

can perform person identification. Thus, this research study 

suggests the kinetic energy identification evaluation 

system. The recommended system architecture consists of 

five steps: a data selection step, a preprocessing step, a 

feature selection step, a model learning step, and a model 

training step. Fig. 1 represents the kinetic energy 

harvesting identification model. 

 

 

 

 

 

 

 

 

   
Figure 1. Kinetic energy harvesting identification model 

 

A. Accelerometer Data 

The built-in mobile phone accelerometer sensor is 
considered to collect the data for individual identification. 
The data positioned on the waist, strap, and rear position, 
making it possible to capture the accelerations along three-
time series x-, y- and z-axis. The single person traces 
walking manner, where data contains timestamp, x-, y-, z-
axis acceleration traces. The timestamp is in the second time 
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scale with a floating-point. Acceleration is in the 
gravitational acceleration unit (1G=9.8m/s2). 

B. Data preprocessing 

In the preprocessing phase, the raw signals data has been 
cleaned first by removing the missing values that the user 
may start walking a few seconds late in the specified period. 
The processed data presented in Figure 2, where the energy 
harvesting method can compute the power traces from each 
axis of an individual's motion.  It implies three different 
power signals for each axis used to train the HAR classifier 
based on a 3-axial accelerometer. We choose to examine 
each axis magnitude to characterize power generated by 
each x- y- z-axis and the total acceleration magnitude as   

a(t)x=√(accx (t)2, a (t)y=√(accy (t)2 , a (t)z =√(accz (t)2 ,  

a(t)xyz=√(accx (t)2 +accy (t)2 + accz (t)2) , the measured 

motion traces compromises a constant component of 
gravity 9.8 m/sec. The acceleration signals were filtered out 
using the 3rd order Butterworth high pass filter, considering 
a 0.1 cutoff frequency [17]. 
 

 
Figure 2. Preprocessing of data 

C. Calculating estimated Harvestable Kinetic Energy 

With the shortage of publicly available kinetic power 
harvesting devices, the inertial harvester model utilized to 
compute the kinetic power's energy traces. We follow the 
previously developed mathematical model to determine the 
power traces generated by a human. In (Khalifa et al., 
2017), the volume of power generated from an actual 
kinetic energy harvesting device is equal to appropriately 
estimate the amount of harvestable kinetic power from 
accelerometer traces. The adapted inertial harvester has 
been modeled as a typical mass-spring damping system 
with a harvester proof mass m, proof mass displacement 
limit ZL = 0.01 m, spring constant k 0.17 kg. s2, and spring 
damping factor b = 0.00055 kg.s2. Figure (3) demonstrates 
such a harvester model. 
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Figure 3. Inertial harvester model 

 
Then, the power computed produced by an inertial 

harvester model, P(s)xyz, P(s)x, P(s)y, and P(s)z subjected 
to acceleration a(s)xyz, a (s)x, a(s)y, and a(s)z. We used the 
same procedure to estimate the power traces as aa approach 
proposed in [13]. Firstly, the filtered acceleration and then 
converted them to proof mass displacement, z(t). The 
function Laplace domain transfer utilized for conversion of 
data displayed in equation (1). 

 

𝑧(𝑠) = 𝐿−1 {𝑍(𝑠)} =
𝑎(𝑠)

𝑠2+ 
𝑏 

𝑚 
 𝑠+

𝑘

𝑚

                        () 

 
Next, the harvester's estimated power has mentioned as 

P(s)=(dz/ds)2. The result is the traces of power samples 
estimated from acceleration traces, which we use for 
further analysis. 

D.  Feature Selection: 

Feature selection strategies are used to identify the 
optimum subset of features to train the classifier. 
Information gain (IG) is one of the many feature selection 
techniques that evaluate each given feature's importance. 
The optimized set of features is selected based on the 
discriminating among the classes to be trained. We use the 
estimated kinetic power of P(s)xyz, P(s)x, P(s)y, and P(s)z 
power produce by human walk as features. Each feature 
power is estimated individually using the Laplace domain 
transfer function eq (1). In IG, if any feature has zero value, 
that is not useful information for activity classification 
where the IG calculated for each feature for the kinetic 
power. The result of the IG of each feature as shown in Fig. 
4.  The figure demonstrates that all the features have an 
importance score. At the same time, it shows that all the 
power features are rich in information and can have the 
potential to characterize among the labels to identify the 
person. The selected features are presented in Fig [5, 6, 7 8, 
9]. An interesting observation is that the magnitude of 
overall power (xyz-axis) generated by a person while 
walking provides the most information. This is exciting 
because, as the research shows in (Gorlatova et al., 2015), 
the kinetic power varies to an individual's various activities, 
which implies that the average kinetic power would be more 
critical in classification. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Different Power features with information gain values 
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E. Model Learning 

 The Weka machine learning software has been 
used in this study to solve the classification problem. We 
have used various algorithms, including Naïve Bayes, 
OneR, and Meta Bagging, for this purpose. The classifiers 
use the power traces as their pattern to learn the physical 
behavior of each individual. Simultaneously, the Naïve 
Bayes model performed better than OneR and Meta 
Bagging for this classification problem. 

 
 
 
 

 
 
 
 
 
 
 
 
Figure 5. x-axis acceleration (m/s) traces converted to power traces 

(µW) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. y-axis acceleration (m/s) traces converted to power traces 

(µW) 
 

 

 
 

 

 
 

 

 
 

 

 

 
  Figure 7 z-axis acceleration (m/s) traces converted to power traces 

(µW) 
 

 

 
 

 

 
 

 

 
 

 

Figure 8. Acceleration sampled at 10 ~ 100 Hz 
 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
Figure 9. The magnitude of overall acceleration (m/s) traces converted to 

power (µW) 

F. Model Testing 

In the testing phase, we test the model by using a 10-

fold cross-validation technique. The subsequent Dataset 

contains 5 features to learn a model, split into 10 folds 

where each subset is used as a training set, and the 

remaining subsets are used to test the model performance. 

Finally, we compare the accuracies obtained by three 

different classifiers.   

V . EVALUATION METHODOLOGY 

Three evaluation metrics used to evaluate the harvested 

kinetic identification energy model's performance are 

precision, f-measure, and Roc curve. Precision is the 

percentage of information extracted by a correct system, 

and F-measure is a harmonic means of precision and recall 

measures of a test.  In a Receiver Operating Characteristic 

(ROC), each point on the curve presents a sensitivity pair 

appropriate to a particular decision threshold. A test with 

ideal discrimination (without overlap in two distributions) 

incorporates a ROC curve that passes through the higher 

left corner (100% TP rate, 100% FP rate). Consequently, 

the nearer the ROC curve is to the higher left corner, the 

higher the overall accuracy is achieved. The result of all the 

performance measures shown in Fig [10, 11, 12]. 

 

VI. EXPERIMENTAL CLASSIFICATION RESULTS AND 

ANALYSIS 

Our experiments require gathering the labeled raw 

accelerometer data and transforming the data into power 

traces described in section 4. The three classifiers are 

selected to measure the identification accuracy of the 

harvested kinetic energy model. As previously mentioned, 

the 10-fold cross-validation technique has been utilized to 

obtain the accuracies of the harvested kinetic energy 

model. 

 The average results summary of classifiers used 

to identify individuals from power traces presented in 

Table 1. 
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A standard Meta bagging and OneR classifier can 

identify a person with higher accuracy using simply 

estimated kinetic power traces, without using 

accelerometer data. Figure 10-12 represents the detailed 

 
TABLE 1. COMPARISON OF DIFFERENT CLASSIFIERS 

PERFORMANCE 

Classifier Precision F-Measure ROC Curve 

Naïve Bayes 
90 88.9 99.8 

OneR 97 97 98.5 

Meta Bagging 98.8 98.8 1 

 

experimental results obtained from the HASC project 

dataset. From these results, we can see that the 

Metabagging classifier yields better performance among 

all the classifiers, Naïvebayes delivers the poor 

performance, while OneR achieves better results than 

Naive Bayes. 

 

 

 

 

 

 

 

 

 

 
Figure10.  The precision results of different classifiers 

 

 

 

 

 

 

 

 

 

 
 

 Figure 11. F-measure results of different classifiers 

 

 

 

 

 

 

 

 

 

 
Figure 12. Roc curve for all the person overall classifiers. 

    

 

 

VII. CONCLUSION  

 

Usually, the accelerometer viewed as low power 

sensor, but this research study has exposed that the 

accelerometer is creating the energy bottleneck in realizing 

self-powered HAR. Furthermore, it has demonstrated that 

the power traces contain the human signature that is to be 

classified. Our analysis demonstrates that the human 

body's power can be used for the physical pattern for 

person identification. However, the suggested approach 

applied the inertial harvester model to identify the 

individual's gait activity accurately with a typical 

accelerometer. A mathematical model has been tested to 

compute the leverage kinetic power from accelerometer 

data in the absence of portable kinetic energy harvesting 

devices.  In the future, it is possible to investigate the 

multidimensional activities of kinetic power from the 

ambient resources from the environment. We are planning 

to take account of more human activities and with the 

larger Dataset. It is expanding the research for using 

Kinetic energy for person identification as it opens the 

research area. It is motivated by current wearable devices 

focusing on specific activities (e.g., running, jogging, 

sitting, escalator up and down). 
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