

University of Sindh Journal of Information and Communication Technology
(USJICT)

Volume 5, Issue 3, September 2021

ISSN-E: 2523-1235, ISSN-P: 2521-5582 © Published by University of Sindh, Jamshoro
Website: http://sujo.usindh.edu.pk/index.php/USJICT/

 (c

An Efficient Malware Detection Approach for Malicious Android

Application

Madiha Amjad Hussain1, Shariq Mahmood Khan2, Shahzad Memon3 And Syed Raza Hussain4
1&2Department of Computer Science and Information Technology, NED University of Engineering and Technology, Karachi, Pakistan

3A.H.S. Bukhari Institute of Information & Communication Technology, Faculty of Engineering & Technology, University of Sindh, Jamshoro
4Department of Electronics Engineering, University of Sindh,Jamshoro, Pakistan

E-mail: madhohussain@gmail.com1; shariq@neduet.edu.pk2; shahzad.memon@usindh.edu.pk3 ; raza.shah@usindh.edu.pk4

Abstract: Artificial intelligence is changing the game for cybersecurity, analyzing enormous amount of risky data, increasing

response times and enlarging the abilities of under-resourced security tasks. While security as IT percentage grows at a fast pace,

the cost of security beaches grows at a more rapid pace. The malware targeting Android is growing. Android systems holds more

than 70 percent of the market share.[1-3] This paper presents a simple APK analysis approach with the help of neural networks to
identify malicious and benign application. The selected methodology is efficient in detecting malwares with an accuracy of

98.42% and false positive rate of 0.0121. malwares, Android, neural network, APK, security

Keywords: Malwares, Android, neural network, APK, security

I. INTRODUCTION

Androids due to its open specification not only

facilitates application development and their release in the

market share, but also gives rise to the threats and malwares

on the Android platform.[4] The open specification of

Android platform makes it quite impossible to administer

Android operating systems and applications in a centralized

way.[1, 5]

II. APK ANALYSIS APPROACH FOR DATASET

PREPARATION

Malwares in android are distributed through their

terminals as APKs. Thus, analyzing APKs can be helpful in

identifying android malwares. APK (android Application

Package) provide preceding information important to identify

malwares.[6, 7] Examining the permission requests and API

calls in androidManifest.xml file is one method to recognize

the android malware.[4, 8, 9] Another way is to use

application cluster and description as the source[10,12,13].

Comprehensive study of different malware detection schemes

are present in [14-18].

We have used analyzing APKs method to identify

malware.In order to generate datasets for the analysis of

Android applications APKs are required. These APKs can be

obtained from various sources such as online APK providers,

Google Play Store. There are a few alternatives which can be

used for downloading the particular files, and there are certain

techniques and Application Programming Interfaces

1 https://play.google.com/store/apps

exceptionally intended for this reason significantly

considering.

Our main focus is on the AndroidManifest.xml and

classes.dex files, as these two are the most suitable for the

features required for the preparation of dataset.

AndroidManifest.xml is used to extract permission request that

are requested by application in order to run whereas classes.dex

provides the data of API calls made in the application.[11]

However, more data about the expected application can be

gathered from AndroidManifest.xml.

For data to be reliable for the malware detection, the source

from where APK is downloaded must be genuine and reliable.

We have categorized our dataset into two classes:

benign(genuine) and malware classes. For both (benign and

malware) classes data is gathered from different sources. In

order to collect benign APKs, one of the most reliable source is

Google Playstore1. Apart from google play there are many other

online sites that guarantee malicious free APKs – sites like

APKMirror2.

For the features, instead of taking descriptions of the

APKs provided beneath the APK download option, we have

used permission requests identified in the

AndroidManifest.xml file and Application Performance

Interface calls coded in the classes.dex file. In order to review

the list of permissions required by the application we have

opted to use Google official Integrated Environment of

Google, Android Studio.

For the bytecode of API calls present in the classes.dex,

we have used APKTool to convert bytecode into human-

readable code, i.e., smali code. While the raw classes.dex

2 https://www.apkmirror.com/

mailto:madhohussain@gmail.com
mailto:shariq@neduet.edu.pk2
mailto:shariq@neduet.edu.pk2
mailto:shahzad.memon@usindh.edu.pk3
mailto:raza.shah@usindh.edu.pk
https://play.google.com/store/apps

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.5(3), pg.: 120-124

121

code itself can without much of a thought be considered as a

series of Hex Numbers as is indicated in the documents of

Android, this can not be considered as an optimal situation

for training & classification.

Table 1 show the total attributes selected for the training

of the model.

Label Count

Permission Requests 136

API Calls 78

Total 214

Table 1– Total Number and Type of Features Selected

We have collected 214 features in order to develop dataset

for our malware detection. Some of the most used API calls

and Permission requests are shown in Table 2.

Feature Percentage

READ_PHONE_STATE 95%

sendMultiPartTextMessage 80%

READ_EXTERNAL_STORAG

E

98%

TelephonyManaer.getCallState 75%

INJECT_EVENTS 30%

CAMERA 97%

DELETE_PACKAGES 63%

WRITE_PROFILE 68%

Ljavax.crypto.spec.SecretKeyS

pec

51%

ACCESS_WIFI_STATE 89%

Table 2– Most Used API calls and Permission Requests in

APKs in Gathered Data

III. DESIGN OF THE NEURAL NETWORK SCHEME

This section explicitly demonstrate how neural networks

are better in classification of Android application with the

help of the vector representation. We compared the result of

this approach to other AI algorithms using the very same

dataset and evaluate the effectiveness of this approach with

superior performance and flexibility.

A. Design

The model we have developed consist of 3 hidden layers

with 500 nodes on each layer, an input layer and an output

layer.

A binary neural network is defined as follows: From the

training set samples

𝐷 = {𝑥𝑛 , 𝑦𝑛|𝑥𝑛 ∈ 𝑅𝐷 , 𝑦𝑛 ∈ {0,1}, 𝑛 = 1 … . . 𝑙}, a binary

neural network learns a norm linear function

𝑓 (𝑥) = 〈𝑤, 𝑥〉 + 𝑏 (1)

determined by the threshold ‘b’ and weight vector ‘w’ by

passing through the 3 hidden layers and activated by the

activation function ReLU (Rectified Linear Unit), defined as:

𝑓(𝑥) = max(0, 𝑥) (2)

While for the final output layer the activation function is

described as:

𝑓(𝑥) =
1

1+ 𝑒−𝐾 (3)

for feed-forward.

The resultant of the output layer is compared with the

expected output by the cost function

 𝐶𝐸 = − ∑ 𝑡2 log 𝑥𝑖
𝑐=2
𝑖=1 (4)

and is optimized to adjust weights and biases for minimizing

the obtained square mean error for the resultant of the final

layer for back propagation.

 𝑤𝑙 = 𝛽1𝑤𝑙−1 + (1 − 𝛽1)𝑥𝑙 (5)

 𝑏𝑙 = 𝛽2𝑏𝑙−1 + (1 − 𝛽2)𝑥𝑙 (6)

This feed-forward and back propagation constitutes one cycle

(epoch) of neural network. The neural network consists of

100 cycles, each times a cycle is repeated, cost value is

minimized.

After training phase, the neural network predicts the class

(benign or malicious) of the testing sample (x) based on the

decision function described below.

𝑓(𝑥) = ∑ 𝛼𝑛
∗ 𝑦𝑛𝐾(𝑥, 𝑥𝑛) + 𝑏𝑙

𝑛=1 (7)

If 𝑓(𝑥) > 0.5 , x is allocated to benign class, else it is

allocated to malicious class.

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.5(3), pg.: 120-124

122

Figure 1: Architecural Design of the Proposed Model

B. Evaluation

To apprise the performance of the defined classifier, the

data set used is haphazardly split into two sub sets: train set

and test set and the examination is directed on it. In our

examination 80% of the data is utilized for training while the

staying 20% is utilized for testing reason, i.e., out of 3799

APKs dataset, the training set consist of 3039 APKs whereas

the remaining 760 APKs are used for testing the classifier.

In the model defined Design, application data is passed

through the input layer in the batches (500 input in each batch)

for training. When the model is trained, test data is utilized to

check the performance of the model

Four parameters are used to describe the effectiveness

of the above described approach; True Positive (TP), False

Positive (FP), True Negative (TN) and False Negative (FN).

TP is the aggregate of correct benign APKs prediction, TN is

the number of correct malicious APKs prediction, FP defines

the aggregate of benign APKs forecasted as malicious and

False Negative represents how many malicious APKs are

incorrectly classified.

In Table 3, confusion matrix is utilized to portray the

exhibition of the classifier utilized on test data to decide the

true values for determining the performance of the schema.

 Actual Class

0

0 1

Predicted

Class

487 5

1 6 262

Table 3 – Confusion matrix

 In Table 4, the overall generalization performance is

shown. Thereby, describing the detailed accuracy by class

 FP Rate f1-score Precision Recall Accuracy

 0.0121 0.9831 0.9886 0.9776 98.42%

Table 4– Performance of Neural Network based Schema

IV. PERFORMANCE EVALUATION

This section verifies the accuracy and reliability of the

proposed scheme through simulation and comparison of the

performance with several well-known schemes. It also

evaluates the performance of neural network with the help of

different matrices and compares it with other known

classification algorithms. It also address the possible issue

which can affect the performance of the proposed model.

A. Model Comparison

In order for the baseline of the proposed model, the

effectiveness of neural networks is compared with several

classification standard algorithms. We have used Random

Forest and Naïve Bayes classifiers as the comparative

evaluator of the proposed model. Same dataset has been used

in the above two mentioned models. The parameters used for

evaluation; precision, recall and accuracy matrices are

calculated for the comparison with the proposed model. Table

5 depicts the result of evaluation matrices of each model

using the same dataset.

Model Name Accuracy Precision Recall

Neural Networks 98.42% 98.86% 97.76%

Random Forest 92.24% 91.20% 90.38%

Naïve Bayes 69.21% 53.45% 98.13%

Table 5 - Performance Analysis of Proposed Model

According to the comparison with the other models, the

proposed model effectiveness is much better because of its

adaptive nature of learning. However, there are certain issues

which must be addressed.

B. Precision Recall Analysis

Precision-Recall (PR) is a helpful measure for

calculating successful prediction since the classes are

imbalanced, i.e., we have greater amount of benign APKs

data as compared to the malicious APKs data. As shown in

Fig. 2, The high region under the curve determine both high

precision and high recall, where high precision pinpoints low

False Positive Rate (FPR), and high recall pinpoints a low

False Negative Rate (FNR) determining that the proposed

classifier evaluated has low chances of making wrong

prediction concerning the security of Android through APKs.

APK

Permission

Request
API Calls

Feature Extraction

.apk

Feature Labelling and Encoding

Data Pre-processing

Android

Malware

Detection Features Learning Algorithm

Preprocessed Dataset

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.5(3), pg.: 120-124

123

Figure 2 Precision-Recall (PR) Curve

C. Measure of Separability of Data

For the evaluation of performance measurement of the

proposed classifier at various thresholds we have used True
Positive Rate (TPR) & False Positive Rate (FPR) . Fig 3 shows
the degree of the separability of the proposed classifier. It
indicates the capability of classifier to distinguish between
benign and malicious APKs.

Figure 3 Degree of Separability

D. Issues and Limitations

Securing Android application through APKs analysis is

an effective approach to promote security however there

are certain limitations or issues of using machine learning

approach. Following limitations and issues must be

considered while using these approaches.

• False Positive (FP) and False Negative (FN) – False
positive (FP) and false negative (FN) are inevitable in
any machine learning approach despite of their
excellent accuracy and precision. This can create a
major risk for real world application. In order to
reduce the risk, some additional measures are
required.

• Dataset – Android application analysis requires quite
large and quality dataset which is reliable and not
manipulated.

• Labelling of Data – Using artificial intelligence,
labelling is a must required. In this research,
applications are labelled as benign or malware based
on the permission requests and API calls of the
application. Correct labelling is also essential for the
effectiveness of the classifier.

V. CONCLUSION

In this paper, an efficient neural network scheme was

presented for the identification of android malwares. The

applicability of artificial intelligence for this purpose is

described with the focus on neural network technique. As

evident in the test performed on the proposed model, it is

verified that the proposed model is able to learn features

which are required to detect malwares with 98.42% accuracy

having 98.86% precision, 97.76% recall and a very low false

positive rate of 0.0121. Besides, it also outperforms other

performed techniques to detect malwares in android

applications. This study focuses on neural networks but other

methods can also be evaluated for the identification of

Android malwares.

REFERENCES

[1] T. Takahashi and T. Ban, "Android Application Analysis Using

Machine Learning Techniques," in AI in Cybersecurity. vol. 151,

ed: Springer, pp. 181-205.
[2] S. Y. Yerima and S. Khan, "Longitudinal Performance Analysis

of Machine Learning based Android Malware Detectors "

presented at the International Conference on Cyber Security and
Protection of Digital Services Oxford, United Kingdom, 2019.

[3] S. Alam, S. Yildirim, M. Hassan, and I. Sogukpinar, "Mininng

Dominance Tree of API Calls for Detecting Android Malware,"
presented at the 2018 2nd International Symposium on

Multidisciplinary Studies and Innovative Technologies

(ISMSIT), 2018.
[4] C. Chen, Y. Liu, B. Shen, and J.-J. Cheng, "Android Malware

Detection Based on Static Behavior Feature Analysis," Journal

of Computers, vol. 29, pp. 243-253, 2018.
[5] S. C. a. H. Yang, J. Jiang, Z. Ming, Z. Liang, and Z. Shan,

"Research on Dynamic Safe Loading Techniques in Android

Application Protection System," presented at the International
Conference on Smart Computing and Communication, 2017.

[6] A. Ignatov, R. Timofte, W. Chou, K. Wang, M. Wu, Tim, et al.,

"AI Benchmark: Running Deep Neural Networks on Android
Smartphones," ECV, 2018.

[7] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah,

"Android Malware Detection based on System Call Sequences
and LSTM," Multimedia Tools and Applications, vol. 78, pp.

3979–3999, 2019.
[8] J. Jung, K. Lim, B. Kim, S.-j. Cho, S. Han, and K. Suh, "Detecting

Malicious Android Apps using the Popularity and Relations of

APIs," IEEE Second International Conference, 3-5 June 2019
2019.

[9] A. Pektaş and T. Acarman, "Deep learning for effective Android

malware detection using API call graph embeddings," Soft
Computing, pp. 1-17, 2019.

[10] R. A. Nix, "Applying Deep Learning Techniques to the Analysis

of Android APKs," Master of Computer Science, The
Department of Computer Science, Louisiana State University and

Agricultural and Mechanical College, 2016.

[11] Huaxiaorong. (2019). Android Application Package. Available:
https://en.wikipedia.org/wiki/Android_application_package

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.5(3), pg.: 120-124

124

[12 Xue, D.; Li, J.; Wu, W.; Tian, Q.; Wang, J. Homology analysis

of malware based on ensemble learning and multifeatures. PLoS

ONE, 2019, 14, e0211373.

[13] Onwuzurike, L.; Mariconti, E.; Andriotis, P.; Cristofaro, E.D.;

Ross, G.; Stringhini, G. Mamadroid: Detecting android malware

by building markov chains of behavioral models (extended
version). ACM Trans. Inf. Syst. Secur. 2019, 22, 1–34

[14] Z. Wang, Q. Liu, and Y. Chi, “Review of android malware
detection based on deep learning,” IEEE Access, vol. 8, pp.

181102–181126, 2020

[15] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A review

of android malware detection approaches based on machine

learning,” IEEE Access, vol. 8, pp. 124579–124607, 2020

[16] E. C. Bayazit, O. K. Sahingoz, and B. Dogan, “Malware detection

in Android systems with traditional machine learning models: a

survey,” in Proceedings of the 2020 International Congress on

Human-Computer Interaction, Optimization and Robotic

Applications (HORA), IEEE, Ankara, Turkey, June 2020.

[17] Chen, H.; Li, Z.; Jiang, Q.; Rasool, A.; Chen, L. A Hierarchical

Approach for Android Malware Detection Using Authorization-
Sensitive Features. Electronics 2021, 10, 432.

[18] Qing Wu, Xueling Zhu, Bo Liu, "A Survey of Android Malware

Static Detection Technology Based on Machine

Learning", Mobile Information Systems, vol. 2021, Article
ID 8896013, 18 pages, 2021.

