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Abstract: Artificial intelligence is changing the game for cybersecurity, analyzing enormous amount of risky data, increasing 

response times and enlarging the abilities of under-resourced security tasks. While security as IT percentage grows at a fast pace, 

the cost of security beaches grows at a more rapid pace. The malware targeting Android is growing. Android systems holds more  

than 70 percent of the market share.[1-3] This paper presents a simple APK analysis approach with the help of neural networks to 
identify malicious and benign application. The selected methodology is efficient in detecting malwares with an accuracy of 

98.42% and false positive rate of 0.0121.     malwares, Android, neural network, APK, security 
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I. INTRODUCTION  

Androids due to its open specification not only 

facilitates application development and their release in the 

market share, but also gives rise to the threats and malwares 

on the Android platform.[4] The open specification of 

Android platform makes it quite impossible to administer 

Android operating systems and applications in a centralized 

way.[1, 5] 

II. APK ANALYSIS APPROACH FOR DATASET 

PREPARATION  

Malwares in android are distributed through their 

terminals as APKs. Thus, analyzing APKs can be helpful in 

identifying android malwares. APK (android Application 

Package) provide preceding information important to identify 

malwares.[6, 7] Examining the permission requests and API 

calls in androidManifest.xml file is one method to recognize 

the android malware.[4, 8, 9] Another way is to use 

application cluster and description as the source[10,12,13]. 

Comprehensive study of different malware detection schemes 

are present in [14-18]. 

 

We have used analyzing APKs method to identify 

malware.In order to generate datasets for the analysis of 

Android applications APKs are required. These APKs can be 

obtained from various sources such as online APK providers, 

Google Play Store. There are a few alternatives which can be 

used for downloading the particular files, and there are certain 

techniques and Application Programming Interfaces 

 
1 https://play.google.com/store/apps 

exceptionally intended for this reason significantly 

considering. 

Our main focus is on the AndroidManifest.xml and 

classes.dex files, as these two are the most suitable for the 

features required for the preparation of dataset. 

AndroidManifest.xml is used to extract permission request that 

are requested by application in order to run whereas classes.dex 

provides the data of API calls made in the application.[11] 

However, more data about the expected application can be 

gathered from AndroidManifest.xml. 

For data to be reliable for the malware detection, the source 

from where APK is downloaded must be genuine and reliable.  

We have categorized our dataset into two classes: 

benign(genuine) and malware classes. For both (benign and 

malware) classes data is gathered from different sources. In 

order to collect benign APKs, one of the most reliable source is 

Google Playstore1. Apart from google play there are many other 

online sites that guarantee malicious free APKs – sites like 

APKMirror2. 

For the features, instead of taking descriptions of the 

APKs provided beneath the APK download option, we have 

used permission requests identified in the 

AndroidManifest.xml file and Application Performance 

Interface calls coded in the classes.dex file. In order to review 

the list of permissions required by the application we have 

opted to use Google official Integrated Environment of 

Google, Android Studio.  

For the bytecode of API calls present in the classes.dex, 

we have used APKTool to convert bytecode into human-

readable code, i.e., smali code. While the raw classes.dex 

2 https://www.apkmirror.com/ 
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code itself can without much of a thought be considered as a 

series of Hex Numbers  as is indicated in the documents of 

Android, this can not be considered as an optimal situation 

for training & classification. 

 

Table 1 show the total attributes selected for the training 

of the model. 

Label Count 

Permission Requests 136 

API Calls 78 

Total 214 

Table 1– Total Number and Type of Features Selected 

We have collected 214 features in order to develop dataset 

for our malware detection. Some of the most used API calls 

and Permission requests are shown in Table 2. 

Feature Percentage 

READ_PHONE_STATE 95% 

sendMultiPartTextMessage 80% 

READ_EXTERNAL_STORAG

E 

98% 

TelephonyManaer.getCallState 75% 

INJECT_EVENTS 30% 

CAMERA 97% 

DELETE_PACKAGES 63% 

WRITE_PROFILE 68% 

Ljavax.crypto.spec.SecretKeyS

pec 

51% 

ACCESS_WIFI_STATE 89% 

Table 2– Most Used API calls and Permission Requests in 

APKs in Gathered Data 

III. DESIGN OF THE NEURAL NETWORK SCHEME 

 

This section explicitly demonstrate how neural networks 

are better in classification of Android application with the 

help of the vector representation. We compared the result of 

this approach to other AI algorithms using the very same 

dataset and evaluate the effectiveness of this approach with 

superior performance and flexibility. 

A. Design 

The model we have developed consist of 3 hidden layers 

with 500 nodes on each layer, an input layer and an output 

layer. 

A binary neural network is defined as follows: From the 

training set samples  

 

𝐷 = {𝑥𝑛 , 𝑦𝑛|𝑥𝑛 ∈ 𝑅𝐷 , 𝑦𝑛 ∈ {0,1}, 𝑛 = 1 … . . 𝑙}, a binary 

neural network learns a norm linear function 

𝑓 (𝑥) =  〈𝑤, 𝑥〉 + 𝑏 ( 1 ) 

determined by the threshold ‘b’ and weight vector ‘w’ by 

passing through the 3 hidden layers and activated by the 

activation function ReLU (Rectified Linear Unit), defined as: 

𝑓(𝑥) = max(0, 𝑥) (2) 

While for the final output layer the activation function is 

described as: 

 

𝑓(𝑥) =  
1

1+ 𝑒−𝐾   (3) 

for feed-forward. 

The resultant of the output layer is compared with the 

expected output by the cost function  

      

  𝐶𝐸 =  − ∑ 𝑡2 log 𝑥𝑖
𝑐=2
𝑖=1                  (4) 

and is optimized to adjust weights and biases for minimizing 

the obtained square mean error for the resultant of the final 

layer for back propagation. 

      

 𝑤𝑙 =  𝛽1𝑤𝑙−1 + (1 − 𝛽1)𝑥𝑙  (5) 

      

 𝑏𝑙 =  𝛽2𝑏𝑙−1 + (1 − 𝛽2)𝑥𝑙    (6) 

  

This feed-forward and back propagation constitutes one cycle 

(epoch) of neural network. The neural network consists of 

100 cycles, each times a cycle is repeated, cost value is 

minimized. 

After training phase, the neural network predicts the class 

(benign or malicious) of the testing sample (x) based on the 

decision function described below.  

𝑓(𝑥) =  ∑ 𝛼𝑛
∗  𝑦𝑛𝐾(𝑥, 𝑥𝑛) + 𝑏𝑙

𝑛=1  ( 7 ) 

If 𝑓(𝑥) > 0.5 , x is allocated to benign class, else it is 

allocated to malicious class. 
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Figure 1: Architecural Design of the Proposed Model 

 

B. Evaluation   

To apprise the performance of the defined classifier, the 

data set used is haphazardly split into two sub sets: train set 

and test set and the examination is directed on it. In our 

examination 80% of the data is utilized for training while the 

staying 20% is utilized for testing reason, i.e., out of 3799 

APKs dataset, the training set consist of 3039 APKs whereas 

the remaining 760 APKs are used for testing the classifier. 

In the model defined Design, application data is passed 

through the input layer in the batches (500 input in each batch) 

for training. When the model is trained, test data is utilized to 

check the performance of the model 

Four parameters are used to describe the effectiveness 

of the above described approach; True Positive (TP), False 

Positive (FP), True Negative (TN) and False Negative (FN). 

TP is the aggregate of correct benign APKs prediction, TN is 

the number of correct malicious APKs prediction, FP defines 

the aggregate of benign APKs forecasted as malicious and 

False Negative represents how many malicious APKs are 

incorrectly classified. 

In Table 3, confusion matrix is utilized to portray the 

exhibition of the classifier utilized on test data to decide the 

true values for determining the performance of the schema. 

 

  Actual Class 

  

0 

0 1 

Predicted 

Class 

487 5 

1 6 262 

  

Table 3 – Confusion matrix 

 In Table 4, the overall generalization performance is 

shown. Thereby, describing the detailed accuracy by class 

   

 FP Rate f1-score Precision Recall Accuracy 

 0.0121 0.9831 0.9886 0.9776 98.42% 

Table 4– Performance of Neural Network based Schema 

IV. PERFORMANCE EVALUATION   

This section verifies the accuracy and reliability of the 

proposed scheme through simulation and comparison of the 

performance with several well-known schemes. It also 

evaluates the performance of neural network with the help of 

different matrices and compares it with other known 

classification algorithms. It also address the possible issue 

which can affect the performance of the proposed model. 

A. Model Comparison 

In order for the baseline of the proposed model, the 

effectiveness of neural networks is compared with several 

classification standard algorithms. We have used Random 

Forest and Naïve Bayes classifiers as the comparative 

evaluator of the proposed model. Same dataset has been used 

in the above two mentioned models. The parameters used for 

evaluation; precision, recall and accuracy matrices are 

calculated for the comparison with the proposed model. Table 

5 depicts the result of evaluation matrices of each model 

using the same dataset. 

 

 

Model Name Accuracy Precision Recall 

Neural Networks 98.42% 98.86% 97.76% 

Random Forest 92.24% 91.20% 90.38% 

Naïve Bayes 69.21% 53.45% 98.13% 

Table 5 - Performance Analysis of Proposed Model 

According to the comparison with the other models, the 

proposed model effectiveness is much better because of its 

adaptive nature of learning. However, there are certain issues 

which must be addressed. 

B. Precision Recall Analysis 

Precision-Recall (PR) is a helpful measure for 

calculating successful prediction since the classes are 

imbalanced, i.e., we have greater amount of benign APKs 

data as compared to the malicious APKs data. As shown in 

Fig. 2, The high region under the curve determine both high 

precision and high recall, where high precision pinpoints low 

False Positive Rate (FPR), and high recall pinpoints a low 

False Negative Rate (FNR) determining that the proposed 

classifier evaluated has low chances of making wrong 

prediction concerning the security of Android through APKs. 
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Figure 2 Precision-Recall (PR) Curve 

C. Measure of Separability of Data 

 
For the evaluation of performance measurement of the 

proposed classifier at various thresholds we have used True 
Positive Rate (TPR) & False Positive Rate (FPR) . Fig 3 shows 
the degree of the separability of the proposed classifier. It 
indicates the capability of classifier to distinguish between 
benign and malicious APKs.  

 

 
Figure 3 Degree of Separability 

D. Issues and Limitations 

Securing Android application through APKs analysis is 

an effective approach to promote security however there 

are certain limitations or issues of using machine learning 

approach. Following limitations and issues must be 

considered while using these approaches. 

• False Positive (FP) and False Negative (FN) – False 
positive (FP) and false negative (FN) are inevitable in 
any machine learning approach despite of their 
excellent accuracy and precision. This can create a 
major risk for real world application. In order to 
reduce the risk, some additional measures are 
required. 

• Dataset – Android application analysis requires quite 
large and quality dataset which is reliable and not 
manipulated. 

• Labelling of Data – Using artificial intelligence, 
labelling is a must required. In this research, 
applications are labelled as benign or malware based 
on the permission requests and API calls of the 
application. Correct labelling is also essential for the 
effectiveness of the classifier. 

 

V. CONCLUSION 

In this paper, an efficient neural network scheme was 

presented for the identification of android malwares. The 

applicability of artificial intelligence for this purpose is 

described with the focus on neural network technique. As 

evident in the test performed on the proposed model, it is 

verified that the proposed model is able to learn features 

which are required to detect malwares with 98.42% accuracy 

having 98.86% precision, 97.76% recall and a very low false 

positive rate of 0.0121. Besides, it also outperforms other 

performed techniques to detect malwares in android 

applications. This study focuses on neural networks but other 

methods can also be evaluated for the identification of 

Android malwares. 
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