

University of Sindh Journal of Information and Communication Technology
(USJICT)

Volume 5, Issue 4, December 2021

ISSN-E: 2523-1235, ISSN-P: 2521-5582 © Published by University of Sindh, Jamshoro
Website: http://sujo.usindh.edu.pk/index.php/USJICT/

 (c

Measuring the Programming Complexity of C and C++ using

Halstead Metrics

Muhammad Shumail Naveed

Department of Computer Science & Information Technology, University of Balochistan

mshumailn@gmail.com

Abstract: Computer algorithm is the core of computer science and important prerequisite of computer science

professionals. However, its hard and abstract nature makes it difficult to understand. Pedagogical issues in learning

of algorithms are generally resolved through elaborating the algorithms with their implementation in some

programming language. As there are many programming languages, the selection of appropriate programming

language for effective implementation of algorithms remains a challenging issue. In this article, common algorithms

of data structures are measured by analyzing their implementation in C and C++ through Halstead complexity

metrics. For statistical analysis Shapiro-Wilk and Kolmogorov-Smirnov were used to test whether the results are

well-modelled by a normal distribution. The results of study were analyzed with Mann-Whitney U test which

identified that as compare to C++ the less effort (3.99% difference), time (3.90%) and bugs (10%) are involved in C

for the implementation of algorithms, whereas C++ involves less difficulty (10.51%) during the implementation of

sampled algorithms. The work stated in this article provide a novel aspect to relate and evaluate other programming

languages.

Keywords: Halstead Metrics; Computer Algorithms; Programming languages; C, C++;

I. INTRODUCTION

The digital era has transformed the world and workplace,
making computing technologies essential part of life. The
need of computer science professionals has increased
expeditiously. Analogous to this increasing requirement for
computer science personnel is the constant change in the kind
of expertise that are brought about by inventions in cutting
edge technologies. Requirement of computationally
knowledgeable workers are increasing [1], and projected to
grow 12% from 2018 to 2028 [2].

In that connection, it becomes essential to have a clear
understanding of computer science. Virtually, computer
science is not a single discipline, but a combination of several
areas, including algorithms & data structures, programming,
computer architecture, networks and artificial intelligence.

The algorithm is a central part of computer science [3], and
a key pillar of software development [4]. Algorithms play a
vital role in computing education. Beginners naturally need to
be familiar with different algorithms and their corresponding
data structures. Similarly, the students are not only expected
to learn the functionality of algorithms, but also how a
problem should be resolved by particular algorithm. Similarly,
computer professionals are expected to have proficiency in the
design and optimization of algorithms [5].

Learning algorithms and gaining algorithmic thinking is
extremely arduous [6, 7], and challenging for both beginners
and instructors. Pedagogical issues of comprehending
algorithms are usually attempted through the didactic

strategies like the use of visualization that explains
algorithms for beginners by illustrating the complex process.

Algorithm visualization used graphics and animation [8],
dynamically demonstrate the process of algorithm by
providing a step-by-step illustration of operations. The use of
visualization increased the motivation of students and aid
them to concentrate on the actual process, but visualization
tools does not address technical aspect [9], so they are not
pedagogically productive in every case.

Conventionally, the performance of the algorithms is
measured either by calculating time or space complexity. This
kind of analysis is usually language independent. However,
the algorithms are generally designed to be implemented as
programs [10]. It is widely recommended [11], to use real
programming languages for the courses on algorithms.

A programming language provides a collection of
primitives, rules and operators. There are about thousands of
programming languages which are categorized in different
paradigms. Programming in general is a hard subject to
comprehend [12]. It entails several abstract notions and
beginners rarely receive adequate level of personal
instructions. Although thousands of programming languages
have been developed, but all of them never survive, only few
like C and C++ are alive due to potent attributes and salient
features.

C and C++ are the descendent of Classic C. Over the years,
these programming languages have grown in different
dimensions and paces. Resultantly, each language delivers the
support of Classic C programming in somewhat different
styles. The syntax of C and C++ are very similar yet both of

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.5(4), pg.: 158-165

159

them belongs to a different programming paradigm. C is
procedural whereas C++ is object-oriented.

C is a widely used programming language and a
foundational technology for contemporary computing [13]. It
is one of a favorite choice for introductory programming [14],
and suitable for engineering applications. Since its origin
thousands of programs have been written in it. Even after the
development of many other languages, the C language is still
popular.

It is widely recognized that object-oriented paradigm can
enhance code reusability and maintenance. Object-oriented
programming language, typically the C++ has been replacing
procedural languages in several domains. C++ is a general-
purpose programming language designed by Bjarne
Stroustrup. It is frequently used when performance and
resources are more important [15]. Handling of memory at
low-level is extensively supported by C++.

As the area of computer algorithms progressed, many
challenges are being presented in the selection of appropriate
programming language for the efficient implementation of
algorithms. The selection of appropriate language is
indispensable both from technical and educational aspects. In
this article a novel approach is presented that compared C and
C++ by evaluating the implementation of conventional
computer algorithms which are offered during the course on
data structures and algorithms. To the best of our study, no
analysis of such form has been reported for C and C++.

The article is organized as follows. Section 2 presents the
previous work on evaluation of C and C++. Research design
and results are described in section 3. Discussion is included
in section 4 and followed by a conclusion.

II. LITERATURE REVIEW

 Increasing the performance of computer programs has
remained an active area of research. Both compiler
optimization and hardware architecture related efforts have
been made to improve performance of programs. Calder et al.
[16] analyzed the behavior differences of C and C++ by
examining the optimization techniques. The study also
recognized the behavioral attributes of C++ programs that
suggested optimization that would be functional in those
programs. The results descried that C++ programs are
significantly different than C programs.

Weixing et al. [17], analyzed the corpus of C and C++ on
ARM7TDMI by comparing the usage of instruction set
through the dynamic behavioral measurement. The study was
conducted on embedded processors and result described that
the size of C corpus is smaller than C++ programs. The study
also observed that the function size of C programs is larger
than C++ programs. Similarly, more memory instructions and
control transfers are identified in C++ programs.

Studies on comparisons of programming paradigms are
not very new [18]. Among all paradigms, object-oriented and
procedural paradigms and their languages are much studied
[19]. In the same vein Myrtveit and Stensrud [20], analyzed C
and C++ by evaluating their software development
productivity. The study used the data from real software
projects. The studied found no experimental evidence that C
is less productive than C++.

Bhattacharya and Neamtiu [21], compared C and C++ by
analyzing the effect of programming language on software
quality and productivity. During study open software projects
are investigated. The study revealed that C++ code is less
complex and entails less effort to maintain the code. Similarly,
C++ is less prone to errors. The study also identified that code
bases are transitioning from C to C++.

Prechelt [22], analyzed the common programming
languages including C and C++. The study analyzed the
reliability and runtime performance. During the study,
collection of requirements implemented in the same programs
are compared. Results declared the C and C++ to be fast and
memory efficient, but less reliable than other languages in a
study.

Zhu et al. [23] conducted a statement frequency analysis
on the corpus of C, C++ and Java code. A large corpus of
source code is used during the study and more than fifty-four
million lines of code are analyzed. The results described that
statement use frequency in selected languages is similar.

IEEE Spectrum is a flagship magazine and website of
Institute of Electrical and Electronics Engineers. IEEE ranked
the contemporary programming languages according to their
popularity. In IEEE Spectrum 2019 [24], C is ranked on third
with the score of 94.4 whereas C++ is on fourth with a score
of 87.5. The ranking is defined by synthesizing different
software metrics from different sources, including Google
search, GitHub, IEEE Xplore Digital Library, Twitter, Stack
Overflow and Dice.com.

TIOBE Company measures the popularity of
programming languages by creating and maintaining the
programming index. Queries passed to different search
engines are used to calculate the index of programming
languages. TIOBE also provides a cumulative rank of
programming languages over different years (Fig. 1).

In latest TIOBE programming community index, C is top-

ranked, whereas C++ is on fourth position.

III. DESIGN & METHOD

The study aims to examine the complexity involved in the
implementation of conventional computer algorithms in C and
C++. In order to accomplish the desired objective of the
article, the following research methodology (Fig. 2) is
defined.

Figure 1. TIOBE Programming Community Index [25]

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.5(4), pg.: 158-165

160

As a part of the study, 225 algorithms are selected from
online sources and books. The algorithms which being are

offered in the courses of data structures and algorithms are
selected for the study. These algorithms are also covered in
elementary courses on computer programming. The detail of
selected algorithms and topic coverage is shown in Fig. 3.

.

For several algorithms the equivalent high-level codes of

C and C++ were already present. However, for remaining
algorithms the high-level code generator [26] was used that
constituted the source code of selected algorithms. After
elementary preprocessing of programming corpus, the
programs were analyzed with Halstead complexity metrics
which is an important technique to measure the complexity of
program code [27, 28].

Halstead complexity is a suite of software metrics which

is frequently used in automatic software complexity tool [29,
30]. There are many software quantification metrics, but
Halstead complexity was chosen for this study because it
provides several ways for analyzing program complexity in
terms of difficulty, effort, time, and bugs.

The Halstead complexity was checked with Metric tool
which is freely available on SourceForge. During the analysis
of programming corpus, primitive attributes of programs was
collected and results are shown in Table I.

Figure 2. Research Methodology

Figure 3. Detail of Selected Algorithms

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.5(4), pg.: 158-165

161

Table I. PRIMITIVE ATTRIBUTES OF PROGRAMS

Attribute Language Mean Median Variance Min Max Range Total Kurtosis

Operators
C 77.11 72.00 1028.49 26.00 225.00 199.00 17350 3.18

C++ 79.24 74.00 998.92 29.00 230.00 201.00 17828 3.68

Distinct

Operators

C 25.11 25.00 15.69 13.00 35.00 22.00 5649 -0.30

C++ 28.49 29.00 15.00 18.00 39.00 21.00 6411 0.06

Operands
C 40.79 36.00 475.85 9.00 159.00 150.00 9178 5.68

C++ 40.93 36.00 475.08 8.00 157.00 149.00 9210 5.77

Distinct

Operands

C 13.00 12.00 20.14 5.00 33.00 28.00 2926 1.92

C++ 13.17 12.00 23.11 1.00 42.00 41.00 2963 4.92

Program

Vocabulary

C 38.14 38.00 54.29 24.00 63.00 39.00 8582 0.00

C++ 41.66 42.00 56.39 24.00 80.00 56.00 9374 2.21

Program

Length

C 117.90 106.00 2847.52 35.00 374.00 339.00 26528 4.20

C++ 120.17 111.00 2814.65 37.00 374.00 337.00 27038 4.52

Estimated

Program

Length

C 166.38 163.34 1220.09 98.02 313.67 215.65 37445.60 0.65

C++ 188.07 185.26 1480.92 109.72 425.90 316.18 42384.50 5.56

Volume
C 627.72 567.90 97985.04 162.54 2142.91 1980.37 141236.51 3.79

C++ 653.81 593.15 100626.72 73.92 2209.18 2135.26 147107.32 4.22

The primitive attributes of programming corpus were
identified through lexical analysis that recognized the lexical
elements of source programs, categorized them as operators
or operands. The frequencies of these operators and operands
were used to calculate the program vocabulary, length,
estimated length and volume. The primitive attributes were

merely computed since these are used in determining the
difficulty, effort, time and bugs. After the computation of
primitive attributes, the main measures of programming
corpus were calculated and descriptive statistics are shown in
Table II.

Table II. CALCULATED MEASURES OF PROGRAMMING CORPUS

The difficulty of implementing conventional computer

algorithms in C is higher than the C++. However, C is better

in respect of time, effort and bugs. For better illustration, the
calculated measures are shown with bean plots (Fig. 4).

Measures Language Mean Median Total Min Max Range Skewness Kurtosis

Difficulty
C 22.74 20.50 5115.50 4.50 79.50 75.00 1.95 5.89

C++ 20.47 18.00 4605.00 4.00 78.50 74.50 1.90 5.77

Effort
C 16118.60 9845.87 3626684.97 731.41 156036.63 155305.22 3.93 21.47

C++ 16775.98 10485.36 3774594.92 695.67 159060.75 158365.08 3.90 20.34

Time
C 896.22 546.99 201649.19 40.63 8668.70 8628.07 3.94 21.49

C++ 931.85 582.52 209666.37 38.65 8836.71 8798.06 3.90 20.34

Bugs
C 0.19 0.15 43.14 0.03 0.97 0.94 2.56 9.90

C++ 0.21 0.17 44.40 0.03 0.98 0.95 2.32 7.43

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.5(4), pg.: 158-165

162

The interquartile range and median depicted in boxplots
descried that difficulty of implementing algorithms in C++ is
lower than C. However, C requires less effort than C++ to
implement the underlying algorithms. Likewise, C requires
less time and bugs than the C++. The statistical tests are
conducted with SPSS 25 and for all tests a common threshold
of 0.05 was selected. The results are initially evaluated for
normality with Shapiro–Wilk test and Kolmogorov–Smirnov

test. Kolmogorov–Smirnov is a test of the equality of
continuous, one-dimensional probability distributions that can
be used to compare a sample with a reference probability
distribution, or to compare two samples. The Shapiro-Wilk
test is a commonly used statistical technique for determining
if a continuous variable follows a normal distribution. The
results obtained with normality tests are given in Table III.

Table III. RESULT OF NORMALITY TESTS

Measures Language
Shapiro-Wilk Kolmogorov-Smirnov

Statistic df Sig. Statistic df Sig.

Difficulty
C 0.84 225.00 < 0.05 0.15 225.00 < 0.05

C++ 0.86 225.00 < 0.05 0.12 225.00 < 0.05

Effort
C 0.61 225.00 < 0.05 0.22 225.00 < 0.05

C++ 0.61 225.00 < 0.05 0.22 225.00 < 0.05

Time
C 0.61 225.00 < 0.05 0.22 225.00 < 0.05

C++ 0.61 225.00 < 0.05 0.22 225.00 < 0.05

Bugs
C 0.78 225.00 < 0.05 0.16 225.00 < 0.05

C++ 0.79 166.00 0.00 0.17 166.00 0.00

Figure 4. Bean Plots of Calculated Attributes

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.5(4), pg.: 158-165

163

Different sorts of algorithms are selected for study, so their
equivalent codes in C and C++ varies in size and structure.
Consequently, the lexical specification of programs in the
corpus are extremely diverse and resultantly the analyzed
attributes are not normally distributed. Non-normality was

observed in the calculated difficulty, effort, time and bugs. So,
the non-parametric test was applied to identify the statistical
differences between C and C++ and results are exhibited in
Table IV.

Table IV. RESULTS OF U-TEST

Parameter Language
Mean

Ranks
Mann-Whitney U Wilcoxon W Z

Asymp. Sig. (2-

tailed)

Difficulty
C 244.651

21003.500 46428.500 -3.125 0.002
C++ 206.349

Effort
C 221.607

24436.500 49861.500 -0.635 0.525
C++ 229.393

Time
C 221.767

24472.500 49897.500 -0.609 0.543
C++ 229.233

Bugs
C 189.740

17266.500 42691.500 -1.276 0.202
C++ 204.485

The Mann-Whitney U test delineated that difference
between C and C++ in respect of effort, time and bugs are
statistically significant. Though, in view of difficulty no
statistical difference was observed between the C and C++.

IV. DISCUSSION

The traditional ways of living and working have been
altered by information and communication technologies [31].
The backbone of information and communication technology
is programming. Programming has always been exclusive, as
it has been associated with computer professionals and IT
experts [32]. There are hundreds of programming language
but C and C++ are the most popular and widely studied
programming languages.

The work presented in this article examined the 225
conventional computer algorithms by analyzing their
implementation in C and C++. Halstead complexity metrics is
used to analyze the implementation of collected algorithms. In
C corpus, 17350 operators are identified, whereas 17828 in
C++. The slight difference of 2.72% narrates that C required
less operators than C++. Likewise, 5649 distinct operators are
identified in C corpus, whereas 6411 in C++ and this defines
a difference of 12.64% that evince the aptness of C.

In C corpus 9178 operands are found in which 2926
operands were unique. Correspondingly, in C++ corpus 9210
operands are recognized in which 2963 were unique. This
signifies that implementation of conventional algorithms in C
requires less operands than C++.

The average score of program length for C corpus (38.14)
is lower than the average score of C++ (41.66). Likewise, the
estimated program length of the C corpus (166.38) is lower
than the average score of C++ (188.07). So, from the
perspectives of program length and estimated program length,
C is much better than C++.

The volume in Halstead complexity metrics represents the
number of mental comparisons required to develop a program.
The mean score of volume for C corpus is 627.72 which is
lesser than the score of C++ (653.81). The difference between
the volume of C and C++ is about 4.1%, which explicate that
C requires fewer mental comparisons than C++ for the
implementation of the conventional computer algorithm.

The notion of difficulty in Halstead complexity represents
the hardness of a program to write or understand. The mean
score of difficulty for C corpus is 244.65 which is higher than
the mean score of C++ (206.35), that suggests that C++
involves lower difficulty in the implementation of the
algorithm. Withal the Mann-Whitney U test conducted on
difficulty of programming corpus identified a significant
difference between C and C++.

The effort in Halstead complexity metrics represents the
elementary mental discriminations required to generate a
program. The mean score of calculated effort for C corpus is
16118.60 while 16775.98 in C++ corpus which expound that
C is finer than C++. Howbeit, the Mann-Whitney U test
conducted on calculated effort described that difference
between C and C++ is not statistically significant.

The mean score of time of C corpus is 896.22 whereas
931.85 for C++. Similarly, the cumulative time of C corpus is
201649.19 while 209666.37 for C++. So, C is found more
effectual than C++ in the matter of time required to implement
the conventional algorithms. Though, the Mann-Whitney U
test conducted on calculated time described that difference
between C and C++ is not statistically significant.

The mean score of delivered bugs for C corpus is 43.14
and 44.39 for the corpus of C++. The cumulative delivered
bugs for C corpus are 43.14 whereas 44.39 for C++. The
Mann-Whitney U test conducted on delivered bugs described
that difference between C and C++ is not statistically
significant yet the implementation of algorithms in C++
involves more bugs than C.

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.5(4), pg.: 158-165

164

All in all, the results stated that for the implementation of
conventional algorithms, C involves less effort, time and bugs
whereas lower difficulty is observed in C++.

In statistical terms, the size of the corpus is relatively
small, similarly the size of analyzed program is quite compact.
So, on the basis of presented results a definite claim about the
volume, difficulty, effort and time about C and C++ cannot be
defined and the results are subjected to the considered
algorithms and their implementation.

V. CONCLUSION

The learning of algorithms is essential for computer
professionals because it is the core component of computer
science. Computer algorithms are implemented as computer
programs and thereby selection of appropriate language for an
efficient implementation of the algorithm is a challenging
task. In this article, C and C++ are compared by examining
the implementation of conventional algorithms of computer
science. The study suggests that despite of procedural
paradigm, C involves lower effort to implement the
conventional algorithms. Similarly, less time is required in C
than C++ to implement the algorithms. Likewise, C is better
than C++ in respect of delivered bugs. However, the C++
entails less difficulty while the implementation of
conventional algorithms. The study implicitly suggests that
despite of procedural paradigm, the C language is comparable
to C++ and even in several measure it is more effective for the
implementation of conventional algorithms. Topics for future
work include i) examining the same problem on large sample
of programs ii) use of data from real software projects iii)
incorporating other software metrics like Chidamber &
Kemerer metrics and cognitive complexity metrics for more
kinds of analyses iv) comparative analysis of the
implementation of bioinformatic algorithms in topical
programming languages.

ACKNOWLEDGMENT

The author owes a great debt to Muhammad Tahaam for
supporting the study by creating the programming corpus.
This study would not be possible without his help. Special
thanks to Muhammad Aayaan for valuable discussion,
motivation and encouragement.

REFERENCES

[1] S. B. Fee, A. M. Holland-Minkley, and T. E. Lombardi, “Re-

envisioning Computing Across Disciplines,”, Springer: New

Directions for Computing Education, pp. 1-11, 2017.

[2] https://www.bls.gov/ooh/computer-and-information-

technology/home.htm (Last Access: 8th May, 2020).

[3] V. Karavirta, and C. A. Shaffer, “Creating Engaging Online Learning

Material with the JSAV JavaScript Algorithm Visualization Library,”

IEEE Transactions on Learning Technologies, vol. 9, no. 2, pp. 171-

183, 2016.

[4] P. Moraes, and L. Teixeira, “Willow: A Tool for Interactive

Programming Visualization to Help in the Data Structures and

Algorithms Teaching-Learning Process,” Proc. XXXIII Brazilian

Symposium on Software Engineering, pp. 553-558, 2019.

[5] S. Combéfis, S. A. Barry, M. Crappe, M. David, G. D. Moffarts, H.

Hachez, and J. Kessels, “Learning and Teaching Algorithm Design

and Optimisation using Contests Tasks,” Olympiads in Informatics,

vol. 11, pp. 19–28, 2017.

[6] L. Végh, “JavaScript Library for Developing Interactive Micro-

Level Animations for Teaching and Learning Algorithms on One-

Dimensional Arrays,” Acta Didactica Napocensia, vol. 9, no. 2, pp.

23-32, 2016.

[7] T. M. Celinski, B. A. Dijkstra, L. G. Ribeiro, M. A. de Souza, and V.

G. Celinski, “Development of Learning Objects and their Application

in Teaching and Learning Data Structures and their Algorithms,”

Iberoamerican Journal of Applied Computing, vol. 7, no. 2, pp. 23-

32, 2017.

[8] A. T. Avancena, A. Nishihara, and C. Kondo, “Developing an

Algorithm Learning Tool for High School Introductory Computer

Science,” Education Research International, pp. 1-11, 2015.

[9] R. A. Nathasya, O. Karnalim, and M. Ayub, “Integrating Program and

Algorithm Visualisation for Learning Data Structure

Implementation”, Egyptian Informatics Journal, vol. 20, no. 3, pp.

193-204, 2019.

[10] L. Manelli, “Implementation of Algorithms in the C Programming

Language,” In: Introducing Algorithms in C. Apress, Berkeley, 2020.

[11] A. Laaksonen, “A Competitive Programming Approach to a

University Introductory Algorithms Course,” Olympiads in

Informatics, vol. 11, pp. 87-92, 2017.

[12] W. Debabi, and T. Bensebaa, Using Serious Game to enhance

algorithmic learning and teaching, “Journal of e-Learning and

Knowledge Society,” vol. 12, no. 2, pp. 127-140, 2016.

[13] A. Moss, R. Schluntz, and P. A. Buhr “C∀: Adding modern

programming language features to C,” Practice and Experience, vol.

48, pp. 2111–2146, 2018.

[14] M. S. Naveed, M. Sarim, and A. Nadeem, “C in CS1: Snags and

Viable Solution,” Mehran University Research Journal of

Engineering & Technology, vol. 37, no. 1, pp. 1-14, 2018.

[15] C. Sanderson, and R. Curtin, “Armadillo: a template-based C++

library for linear algebra,” Journal of Open Source Software, vol. 1,

no. 2:26, 2016.

[16] B. Calder, D. Grunwald, and B. Zorn, “Quantifying Behavioral

Differences Between C and C++ Programs,” Journal of Programming

languages, vol. 2, no. 4, pp. 313-351, 1994.

[17] J. Weixing, S. Feng, and Q. Baojun, “Execution Characteristics of

C++ and C Programs on Embedded Processor ARM7TDMI,” Proc.

5th WSEAS International Conference on Applied Computer Science,

Hangzhou, pp. 1033-1038, 2006.

[18] M. E. Hayder, C. S. Ierotheou, and D. E. Keyes, “Three Parallel

Programming Paradigms: Comparisons on an Archetypal PDE

computation,” Parallel and Distributed Computing Practices, vol. 2,

pp. 35-53, 2000.

[19] G. White, and M. Sivitanides, “Cognitive differences between

Procedural Programming and Object-oriented Programming”,

Information Technology and Management, vol. 6, no. 4, pp. 333-350,

2005.

[20] I. Myrtveit, and E. Stensrud, “An Empirical Study of Software

Development Productivity in C and C++,” Proc. of Norsk

Informatikkonferanse, 2008.

[21] P. Bhattacharya and I. Neamtiu, “Assessing Programming Language

Impact on Development and Maintenance: A Study on C and C++,”

Proc. 33rd International Conference on Software Engineering, pp.

171-180, 2011.

[22] L. Prechelt, “An Empirical Comparison of Seven Programming

Languages,” Computer, vol. 33, no. 10, pp. 23-29, 2000.

[23] X. Zhu, E. J. Whitehead, C. Sadowski, and Q. Song, “An Analysis of

Programming Language Statement Frequency in C, C++, and Java

Source code,” SOFTWARE: Practice and Experience, vol. 45, pp.

1479-1495, 2015.

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.5(4), pg.: 158-165

165

[24] https://spectrum.ieee.org/static/interactive-the-top-programming-

languages-2019 (Last Access: 27th August, 2021).

[25] https://www.tiobe.com/tiobe-index/ (Last Access: 1st October,

2021).

[26] M. S. Naveed, M. Sarim, and K. Ahsan, “Learners Programming

Language a Helping System for Introductory Programming Courses,”

Mehran University Research Journal of Engineering & Technology,

vol. 35, no. 3, pp. 347-358, 2016.

[27] M. S. Al-Batah, N. Alhindawi, R. Malkawi, and A. A. Zuraiqi,

“Hybrid Technique for Complexity Analysis for Java Code,”

International Journal of Software Innovation, vol. 7, no. 3, pp. 118-

133, 2019.

[28] Q. Liping, L, Jing, and S. Yaqing, “Research on the Complexity

Measurement Technology of Software Structure Based on AST,”

University Politehnica of Bucharest Scientific Bulletin Series C-

Electrical Engineering and Computer Science, vol. 80, no. 1, pp. 39-

50, 2018.

[29] B. A. Sanusi, S. O. Olabiyisi, A . O. Afolabi, and A. O. Olowoye,

“Development of an Enhanced Automated Software Complexity

Measurement System,” Journal of Advances in Computational

Intelligence Theory, vol. 1, no. 3, pp. 1-11, 2019.
[30] M. S. Naveed, “Comparison of C++ and Java in Implementing

Introductory Programming Algorithms,” Quest Research Journal,

vol. 19, no.1, pp. 95-103, 2021.
[31] S. Chandio, M. S. A. Seman, S. Samsuri, A. Kanwal, and A. Shah,

“Assessing ICT Implementation and Acceptance at Public Sector

Universities in Pakistan,” University of Sindh Journal of Information
and Communication Technology, vol. 2, no. 1, pp. 52-56, 2018.

[32] M. A. Rahman, R. S. U. Riaz, and T. Rana, “PFE: A Visual

Programming Frame Work for Teaching Programming to Dummies
or beginners,” University of Sindh Journal of Information and
Communication Technology, vol. 4, no. 3, pp. 194-198, 2020.

