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Abstract: In this study, we propose a tridiagonal iterative method to solve linear systems based on dominant 

tridiagonal entries. For solving a tridiagonal system, we incorporated the proposed method with Thomas algorithm 

in each step of the method. Moreover, this paper presents a comprehensive theoretical analysis, wherein we choose 

two well-known methods for comparison i.e., the Gauss-Seidel and Jacobi. The numerical experiment shows that 

our proposed iterative method is a feasible and effective method than the studied methods. 
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I. INTRODUCTION AND PRELIMINARIES 

Consider the linear system 

Ax b ,             (1) 

where 
n nA R   is a non-singular matrix with dominant 

tridiagonal parts, i.e., the entries in the tridiagonal parts are 

very large compared with other entries. In some 

applications, such as numerical solution of differential 

equations [4, 6], we encounter such type of the problem in 

linear systems. The well-known iterative method, i.e., 

Gauss-Seidel and Jacobi iterative methods are not very 

effective for such type of systems due to special structure of 

the nonsingular matrix. In this study, we present an updated 

version of the iterative method for tridiagonal linear 

systems. Each step of this method is required for solving a 

tridiagonal system by Thomas algorithm. We provide some 

theoretical analysis for this new iterative method. The 

numerical experiment shows that our proposed iterative 

method is a feasible and effective method. The following 

are some notations and preliminaries. 

Definition 1.1. Let 
n nA R  . If | | | |ii ij

j i

a a


  for all 

1,2, ,i n , then A  is a strictly diagonally dominant 

matrix (SDD). If there is a positive diagonal matrix D  so 

AD  is a SDD matrix, then A  is a generalized strictly 

diagonally dominant matrix, denoted by GDDM. 

 

Lemma 1.1. (see [5, 14]) If A  is a GDDM, then A  is 

nonsingular and 0iia   for 1,2, ,i n . 

A group of numerical methods for solving linear system 

Ax b  is the splitting methods as follows [6, 8, 14]. Let 

A M N  , where M  is a non-singular matrix, then we 

have the iterative form, 

1k kMx Nx b   , 0,1,k   

or 

1 1

1k kx M Nx M b 

   , 0,1,k         (2) 

where 
0x  is a given initial vector. 

Different splitting of A  induce different iterative 

methods. The classical iterative methods include: 

a) Jacobi method: M D , N D A  , where D  is 

the diagonal part of A . 

b) Gauss-Seidel method: M D L  , N U  , here D 

is diagonal part of A, U is strictly upper part and L is 

strictly lower part of triangular matrix A respectively.  

c) SOR method: 
1

M D L


  , 
1

N D U





  , 

where   is a parameter and DLU  be as above. 

Other iterative methods include AOR, two-stage iterative 

methods, multisplitting iterative methods, HSS method, QR 

method, and etc. For more details we refer to [1, 7, 9, 11, 

15, 17]. 

 

We have the following results for the convergence of the 

iterative method (2). 

 

Lemma 1.2. (see [5, 6, 8, 14]) The iterative method (2) is 

converge for any initial vector 0x  if  
1( ) 1M N   . 

Consider the tridiagonal linear system Ax f , where 
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1 1

2 2

1n

n n

a c

b a
A

c

b a



 
 
 
 
 
 

 

and  1 2

T

nf f f f . The Thomas algorithm for 

solving such a system is as follows [12, Chapter 3.7] . Let 

the LU decomposition of A  be as: 

2

1

1

1n

L




 
 
 
 
 
 

, 

1 1

2

1n

n

c

U
c









 
 
 
 
 
 

. 

By using following relations, the coefficients 
i  and 

i  

can be computed easily. 

1 1a  , 

1

i
i

i

b


 

 , 
1i i i ia c    , 1,2, ,i n . 

Then the given tridiagonal system Ax f  can be reduced 

into two bi-diagonal systems Ly f  and Ux y . For 

Ly f  we have 

1 1y f , 
1i i i iy f y   , 2, ,i n , 

and for Ux y  we have 

n
n

n

y
x


 , 

1i i i
i

i

y c x
x




 , 1, ,1i n  . 

The algorithm involves only 8 7n  flops: 3( 1)n   flops 

for generate the LU decomposition and 5 4n flops for 

solving the two bi-diagonal systems. It is showed in [12, 13] 

that when A  is a DDM or SPD the algorithm is very stable. 

We organize the rest of the paper as follows. Section 2 gives 

updated version of iterative method and then some 

convergence analysis. In section 3 we use some numerical 

experiments to show the efficiency of the new iterative 

method. The conclusion is drawn in section 4. 

 

II. UPDATED VERSION OF ITERATIVE METHOD 

For the linear system (1), we give the new iterative 

method as follows. Let A M N  , where M  is the 

tridiagonal part of A  and N M A  , then we have the 

new iterative method 

1k kMx Nx b   , 0,1,k              (3) 

where 
0x  is a given initial vector. 

Tridiagonal iterative method (TDI): 

1. Set 
0x , and 0k  . 

2. If kb Ax   , break; else 

3. Solve the linear system (3) by Thomas algorithm. 

4. Set 1k k  . Go to Step 2. 

 

In each iteration of the TDI method, it needs only to 

solve a tridiagonal system by Thomas algorithm, since 

coefficient matrix is fixed in the iteration, only one 

decomposition is needed. The operation counts in each 

iteration of the new method with that of Jacobi method and 

Gauss-Seidel method are summarized in the Table 1. We 

can see that the operation counts in each iteration of the 

three methods are nearly the same.  

 

Table 1:. Operation counts in each iteration of the three methods 

Methods 

Form 

ky Nx b   

Solve 

1kMx y   

Total 

counts 

Jacobi 22 2n n  n  22n n  

Gauss-

Seidel 

2 1

2
n n  2n  

2 1
2

2
n n  

TDI 22 6n n  5 4n  
22n n  

 

We give convergence analysis of the new iterative 

method as follows. 

 

Theorem 2.1. Let
n nA R   be a GDDM. Then the new 

method (3) is converge for any initial vector 0x . 

 

Proof. Suppose, on the contrary, that the new method (3) is 

not converge. Then by Lemma 1.2 we have 
1( ) 1M N   . Thus there is a 

1( )M N    such that 

1| | ( ) 1M N    . For this   we have 

1det( ) 0I M N    or equivalently 

1 1
det( )det( ) 0n M M N



   . 
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Since A M N   is a GDDM, it is easy to verify that 

1
M N


  is also a GDDM. Thus 

1
det( ) 0M N


  . 

This contradicts with Lemma 1.1. Hence 
1( ) 1M N   . 

By Lemma 

1.2, the new method (3) is converge for any initial vector 

0x . 

For other class of matrices, the TDI method (3) may not 

converge. For example, when A  is symmetric positive 

definite, as the following matrices, 

10 8 7

8 10 9

7 9 10

 
 
 
 
 

, 

16 1 1

1 1/ 8 1

1 1 1/16

 
 
 
 
 

, 

it is easy to verify that 
1( ) 1M N   , thus the new 

method does not converge. The tridiagonal part of the 

second example is even singular. 

 

Compared with Jacobi and Gauss-Seidel methods, there are 

situations where Gauss-Seidel and Jacobi methods converge 

but the updated version of iterative method(TDI) does not, 

and on the contrary the updated version of iterative method 

converge while Gauss-Seidel and Jacobi methods do not. 

The following examples and results summarized in Table 2 

show this: 

3 0 4

7 4 2

1 1 2

P

 
 

  
  

, 

7 6 9

4 5 4

7 3 8

Q

 
 

  
   

, 

 

Table 2:  Convergence of the three methods 

Matrix Jacobi Gauss-

Seidel 

TDI 

P diverge diverge converge 

Q converge converge diverge 

 

III. NUMERICAL EXPERIMENTS 

In this section, we test several experiments to show the 

effectiveness of the TDI method. We present computational 

results in terms of the numbers of iterations (IT) and CPU 

time in seconds of the updated version of iterative method 

with Gauss-Seidel and Jacobi methods. The iteration is 

stopped when the current iterate satisfies 
6

2
10kb Ax   . 

 

Experiment 1. Consider the linear system (1) with 

3 1 1/ 2

1

3 1

1 3

1

1/ 2 1 3

A

 
 
 

 
  

 
 
   

, 

and  1 1 1
T

b  . This linear system is from [13]. 

For n = 256, we have the following results summarized in 

Table 3. 

 

Table 3: Computational results of Experiment 1 

Methods IT CPU 

Jacobi 61 0.018209 

Gauss-

Seidel 

43 0.009300 

TDI 25 0.005761 

 

From the computational results we can see that the TDI 

method is better than the Jacobi and Gauss-Seidel method. 

Experiment 2. Consider the linear system (1) with 

D I

I D
A

I

I D

 
 

 
 
 

 

, 

4 1

1 4

1

1 4

D

 
 

 
 
 

 

, 

where A  is of p p  blocks, D  is q q  and I  is the 

identity matrix. We take  1 1 1
T

b  . This linear 

system is from discretization of the Poisson equation by 

finite difference method with five-point method [6]. For 

different ,p q , we have the following results summarized in 

Table 4. 
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Table 4: Computational results of Experiment 2 

p q Methods IT CPU 

16 16 

Jacobi 957 0.129756 

Gauss-Seidel 480 0.062407 

TDI 483 0.050313 

16 32 

Jacobi 1548 1.607307 

Gauss-Seidel 775 0.917683 

TDI 773 0.380566 

16 64 

Jacobi 1872 4.587778 

Gauss-Seidel 938 2.871152 

TDI 933 1.508252 

16 128 

Jacobi 2006 15.600536 

Gauss-Seidel 1006 8.334551 

TDI 999 4.128771 

 

From the computational results we can see that the TDI 

method is better than the Jacobi and Gauss-Seidel methods. 

Experiment 3. Consider the linear system (1) with 

3 1

1 3 1
rand( )

1

1 3

A n
n

 
 
  
 
 
 

, 

where rand(n) is a random matrix of size n  and 

 1 1 1
T

b  . For n = 256, we have the following 

results summarized in Table 5. 

Table 5: Computational results of Experiment 3 

Methods IT CPU 

Jacobi 90 0.985928 

Gauss-

Seidel 

16 0.025497 

TDI 8 0.014457 

From the computational results we can see that the TDI 

method is better than the Jacobi and Gauss-Seidel method. 

 

IV. CONCLUDING REMARKS 

We have proposed a tridiagonal iterative method for linear 

systems. This method is more efficient when the system has 

a dominant tridiagonal part. We give some theoretical 

analysis for this updated version (TDI) method. Numerical 

experiments also show that this method is feasible and 

effective in some cases. 
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