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Abstract: These days many companies has marketed the big data streams in numerous applications including industry, Internet 

of Things and telecommunication. The stream of data produced by these applications may contain the values which are not 

normal. These values are called as anomalies.  A lot of work has been done in anomaly detection to the batch data but 

detecting anomalies from streaming data nevertheless remains a largely available issue. In streaming data, the tasks related to 

find out the anomalies has become challenging with the passage of time because of the dynamic changes in data, which are 

produced by different methods applied in data streaming infrastructures. In the process of anomaly detection, first of all, it is 

required to know the way of finding the normal behavior of data and then it is easy to know the dynamic behavior or change 

in the data. In this context, clustering is a very prominent technique. The application of clustering method is very common to 

analyze the static data but in the field of data mining, it is key a problem especially on the streaming data. In this paper, we 

are applying streaming version of KMeans clustering algorithm for anomaly detection. The algorithm is analyzed both on 

single and distributed environments. Furthermore, we are investigating the stream of data to know various factors such as 

accuracy, anomaly detection time, true positive rate, and false positive rate. The data stream used in our analysis is generated 

from Kddcup99 dataset which is largely used in the field of intrusion detection. 
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I. INTRODUCTION  

The data stream belong to any application anyway it 

includes numerous inquiries to be tended to, for example, 

What kind of data is?, Is it critical or not?, Does it contain 

any value which isn't normal. In this paper, later is the 

primary focal point of our exploration. 

Before we proceed to analyze the data, first we need to 

understand the data stream. It is a stream of data which is 

organized as succession of objects. When data is accessed 

from the data stream, these objects are read in a sequence. 

The reading of objects can be done one time or multiple 

times. In the effect, it is difficult to maintain all the objects 

in memory at a time. Therefore, every object must be 

investigated once while analyzing the data stream. 

Furthermore, utilization of memory should be limited as the 

new objects of data are constantly produced. Hence, the new 

objects should be processed on time immediately after the 

generation. Due to these requirements, the errors always 

generated while analyzing the data streams. Moreover, it is 

more challenging to analyze the values that are deviating 

from the original data because they are required to be 

processed soon after the generation. 

Let us discuss what the anomalies are before the process of 

anomaly detection. The anomalies are the deviations from 

the normal pattern. They are usually alerts in the form of 

malicious activities, network attacks, faults and 

inaccuracies. Anomalies are given different names like 

outliers, intrusions or malwares etc. 

If we talk about the online systems. They are producing the 

data continuously. The amount of data generated by them is 

so large that traditional methods are unable to monitor them. 

Furthermore, complexity of data makes them even more 

challenging for monitoring. The data monitoring systems 

must be equipped with a feature of anomaly detection. 

Anomaly detection is very necessary specially for the 

critical infrastructures. 

In this paper, we propose an anomaly detection method 

based on KMeans Stream Clustering which is also called as 

online KMeans clustering. The KMeans comes with two 

flavors offline and online. The offline KMeans is trained 

once by the existing dataset, whereas in proper anomaly 

detection, we need to retrain the model after arrival of new 

data, in order to reduce the false positive rate. The retraining 

of the model is the main feature of online KMeans. One of 

the version of online KMeans is to use the mini-batches [1]. 

In this type of training, the model is trained with multiple 

subsets of the dataset instead of training it with multiple 

iterations. Moreover, in this type of KMeans, the cluster 

centers are recomputed after every mini-batch. This type of 

technique can be applied in the streaming model. In 

Streaming KMeans of apache spark MLlib, the cluster 

centers are updated by arrival of new time window of the 

data. For making it an adaptive model, a new parameter is 
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specified called as half life. On the basis of half life 

parameter, the points are decided weak or strong from the 

incoming batch of data.  The half life controls, after how 

many data points or time windows the previous impacts 

center computation only to the half, providing you the 

control to tune the “forgetfulness” of your model [2]. We 

further discuss the streaming frameworks used in the project 

which are as in the following: 

A. Apache Spark 

It is an open source tool. Conventionally, Hadoop and 

MapReduce engines are built on acyclic data flow which is 

not suitable for real-time applications. In acyclic data flow, 

the data is read from disk or storage and then stored back 

after the processing. This way of reading and writing is time-

consuming and also expensive in computation. 

 

Sparks RDD’s (Resilient Distributed Datasets) handles this 

issue effectively. RDD’s are saved in memory, which takes 

less time as compared to read and write from the disk. They 

also able to remake themselves from DAG (Dynamic 

Acyclic Graph) in the situation of failure. 

B. Spark Streaming 

The idea of Spark Streaming [3] is depicted in the figure 

no.1. The Spark streams are divided into the batches at the 

user-specified intermissions. These batches are then 

considered as RDD’s, and then they are dispatched to the 

spark cluster. 

Figure 1.  Spark Streaming 

 

The data stream in spark is represented as DStream. In 

DStream, every RDD is contained in the specific interval of 

time as shown in the figure no.2. 

 

Figure 2.  Spark Dstream 

 
 

C. Apache Kafka 

Apache kafka is a distributed messaging system. It is 

capable of streaming the data in real-time. It is working on 

the model called as Publish-Subscribe model. The kafka can 

scale out easily because of its distributed nature [6]. 

Kafka contains many components, which take part in 

streaming, and they are Kafka producer, Kafka consumer, 

Kafka topic, Kafka broker, and Zookeeper. 

Kafka topics: They are the group of messages. It is actually 

a stream of publishing the messages. 

Kafka producer: A process publishes the messages on the 

topics. The messages are first dispatched to the kafka 

broker, then they are send to topics for publishing. 

Kafka consumer: It is a process, which is responsible to 

subscribe the messages to topics. Consumer gets the 

messages from the topics when it has to consume the 

message. 

Kafka Broker: It keeps the messages to a particular amount 

of time, which are send to him by the producer, and then 

kafka consumer reads the messages from the broker which 

are in the form of topics. 

Zookeeper: It is used to coordinate between the brokers. 

Zookeeper is also responsible to send the information to 

producer and consumers that the brokers is not working.  

 

II. RELATED WORK 

In literature, we see some examples of anomaly detection or 

intrusion detection based on signature  rule based 

techniques. The authors in [7] present the anomaly detection 

based on the signatures and then it discuss the evolution of 

rule-based technique from the signature-based technique. 

Moreover, in the reference [8] the anomaly detection is 

performed using fuzzy means in addition with the signature 

rules. The signature based or rule-based techniques work 

best with only known anomalies but for both known and 

unknown anomalies, we need another technique, which is 

called Machine learning. There are two kinds of machine 

learning; supervised and unsupervised. The anomaly 

detection based on the supervised algorithms is presented in 

the reference [9]. The anomaly detection using both 

supervised and unsupervised algorithms is applied in the 

reference [10]. Furthermore, the authors in the reference 

[11] proposes the anomaly detection model based on rule 

based and unsupervised learning algorithms. In this paper, 

we are mainly focusing on the unsupervised algorithm 

KMeans clustering because of its wide usage in the 

problems of anomaly detection.     

The authors in reference [12] propose a cluster-based 

anomaly detection working on the distributed environment 

of Hadoop and MapReduce. The authors in reference [13] 

use context based clustering with KMeans to detect the 

anomalies and it is also implemented on the Hadoop 
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1. Setting up the Spark Cluster 

2. Reading the input Stream from Kafka Cluster 

3. Normalize the input stream by standard deviation 

and mean. 

     (a) Mean is broadcaste 

     (b) Standard deviation is broadcasted 

4. Apply the KMeans model on normalized 

streaming data 

      (a) Streaming Kmeans model is broadcasted 

5. DistancetoCentroid is calculated 

6. The distance exceeds the threshold, It is assumed 

to be an anomaly. 

 

framework. The clustering using KMeans or Streaming 

KMeans is also a part of a tool called as Apache Mahout 

[14] but it performs in batch mode, which is a time 

consuming, and it does not fit to the process of the real-time 

clustering. 

All the techniques described above are based on Hadoop 

and MapReduce frameworks. Hadoop is primarily designed 

for batch data where the data exists before the processing. It 

fails at processing of data, which comes incessantly real 

time. In Hadoop, for new incoming data it requires to 

rebuild the model with all existing data, which is the 

wasteful technique. Hence, Hadoop is not appropriate for 

real-time processing. Similarly HBase [15] and BashReduce 

[16] undergoes with the same problem. Moreover, there are 

other streaming processing tools like apache storm [17] and 

apache S4 [18] but apache spark outperforms with respect to 

speed [19]. Hence, it was the main reason to use apache 

spark as our tool of the experiment. Furthermore, it is fault-

tolerant and scalable. 

We have performed our experiments on VMware 

environment, which is performed on single machine in [20], 

but we are implementing it with more than one machine 

which gives the flavor of distributed work. We have also 

compared the time taken by single machine with the 

distributed environment. Furthermore, we are analyzing 

other parameters like accuracy, anomaly detection time, 

false positive rate and true positive rate while [20] only 

calculates the accuracy. 

III. PROPOSED MODEL 

In the proposed model as in figure no.3, first of all, the 
stream of data is generated using the Kafka producer from 
the dataset Kddcup99. The data reaches at the spark engine 
in the form of Kafka queues or partitions. Each newly 
arrived data instance is tested by anomaly detection model to 
check its possibility of being an anomalous instance. After 
checking the data status, the model can be retrained with 
either of two methods. In first method, the model is retrained 
with only newly arrived instance, which saves time, and in 
second method the model is retrained with the existing data 
and newly arriving data instance which takes time and 
suitable for real-time applications. The first method is used 
by apache spark Streaming KMeans as in our work while 
mini-batch algorithms use the second method. After 
checking the anomalies, the accuracy rate of the algorithm is 
calculated along with other parameters like false positive 
rate, true positive rate, and anomaly detection time. All the 
parameters are computed both on the single and distributed 
mode. 
 
 
 
 

Figure 3.  Streaming data anomaly detection model 

IV. ALGORITHM FOR ANOMALY DETECTION 

 

The cluster is premediated in Figure No.3 utilizing the 

apache spark. The stream produced on KddCup99 dataset is 

getting through the Kafka Queues. The information stream 

is isolated in little units called as the DStream. To prepare 

the information and foresee the anomalies from the 

streaming data, we set numerous changes and activities. At 

each progression of the change and activity, a piece of the 

information is put away in memory and the outcomes are 

moved to the following Dstream unit for additional 

preparation. In additional preparation process, the surge of 

information is gotten by the model and after that it proceeds 

to the anomaly detection process. 

During the process of anomaly detection, the spark DStream 

model gets the stream from the cluster of Kafka. The 

DStream contains four key groups of attacks in the dataset 

like U2R, R2L, DoS and Probe. The principle calculation of 
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0,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,511,0.00,0.00,0.00,0.00,1.
00,0.00,0.00,255,255,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,smurf. 

0,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,511,0.00,0.00,0.00,0.00,1.

00,0.00,0.00,255,255,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,smurf. 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,237,18,0.00,0.00,1.00,1.00,0.08,0.

07,0.00,255,18,0.07,0.07,0.00,0.00,0.00,0.00,1.00,1.00,neptune. 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,215,7,1.00,1.00,0.00,0.00,0.03,0.0
6,0.00,255,7,0.03,0.07,0.00,0.00,1.00,1.00,0.00,0.00,neptune. 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,135,11,1.00,1.00,0.00,0.00,0.08,0.

07,0.00,255,11,0.04,0.06,0.00,0.00,1.00,1.00,0.00,0.00,neptune. 
0,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,511,0.00,0.00,0.00,0.00,1.

00,0.00,0.00,255,255,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,smurf. 
19,209,450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,6,0.00,0.00,0.00,0.00,1.00,

0.00,0.50,215,218,1.00,0.00,0.00,0.01,0.00,0.00,0.00,0.00,normal. 

0,959,331,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,2,0.00,0.00,0.00,0.00,1.00,0
.00,1.00,87,48,0.55,0.05,0.01,0.00,0.00,0.00,0.00,0.00,normal. 

0,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,511,0.00,0.00,0.00,0.00,1.

00,0.00,0.00,255,255,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,smurf. 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,246,17,1.00,1.00,0.00,0.00,0.07,0.

06,0.00,255,16,0.06,0.07,0.00,0.00,1.00,1.00,0.00,0.00,neptune. 

Processed a total of 46297 messages 
 

the DStream begins to process mean with mapped and 

reduced transformations. From mean, the square of the 

distinction is figured and from the distinction, the difference 

is figured. Similarly from distinction, the standard deviation 

is computed. After every one of these computations, the 

values are then standardized using standard deviation and 

mean. Subsequent to playing out the normalization 

procedure, the KMeans streaming model is made and 

introduced. The model is then connected to information 

which was normalized in the previous step. After at that 

point, it is the way toward figuring the DistancetoCentroid 

for each element. At that point the code defines the 

threshold. On the off chance that the DistancetoCentroid of 

the component surpasses the threshold, at that point it is 

reflected as an anomaly. 

Besides, in the proposed work, the procedure of anomaly 

detection begins by utilizing feature engineering which 

helps to remove the four attack labels rather than 21 present 

in the dataset. In the process of Stream clustering, the 

clusters are updated when new data arrives in the Kafka 

queues. 

 

V. STREAM OF DATA GENERATED FROM KDDCUP99 

 

 There 42 different labels of the KDDCup99 dataset. The 

attributes from 1 to 9 are the fields defining the the tcp 

connection [21]. The attributes from 32 to 42 are used to 

evaluate the attacks in the dataset. Among these attributes, 

the attribute 41 is used to identify the type of the attack. 

There are 4 different categories of the attacks in the dataset 

as specified in table no.1. 

 
 
 

 

VI. TYPES OF ANOMALIES 

In the table no.1, we are calculating the anomaly type from 

the stream of data. The analysis result show that most of the 

anomalous data instances are DoS (Denial of Service) 

instances. 

 

Table I. Types of Anomalies 

Index DoS Probe U2R R2L Normal 

1 15 0 0 0 8 

2 79 0 0 0 20 

3 9 0 0 0 1 

4 4 0 0 0 0 

5 2 0 0 0 1 

6 1 0 0 0 1 

7 2 0 0 0 1 

8 3 0 0 0 0 

9 5 0 0 0 2 

10 6 0 0 0 2 
 

VII. RESULTS 

The results of the experiments performed in our work are 

described in table no.2 and table no.3. The table no.2 

contains the results of single mode which consists of 1 

Master and 1 Worker. The table no.3 exhibits the results of 

the distributed mode which includes 1 Master and 2 

Workers. In the table no.2, if we calculate the average 

accuracy of the model, it is 76%. Interestingly, some of 

results showing the 100% accuracy which is because of the 

no false positives at the indexes of 4 and 8. Furthermore, the 

table no.2 shows the minimum anomaly detection or 

processing time of 49seconds, which is shown in the index 

no.1. On contrast, in the table no.3, which is the case of 

distributed mode, where minimum processing time is 

33seconds and the average accuracy, is 68%. In this mode, 

we also observed the 100% accuracy at the index no. 7 and 

9. Although, there is a slight difference of accuracy rate 

both in single and distributed mode but the distributed mode 

showing a good amount of the reduction in the processing 

time.   

If we further say the reason behind the 100% accuracy rate, 

it may be due to the detected anomalies and real anomalies, 

which are same at number to the particular instance of data. 
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Table III. 1 Master 2 Workers (Distributed Mode) 

Ind
ex 

Accu
racy 

Anomaly 
detection 

time 
(Seconds) 

Det
ect
ed 
An
om
alie

s 

Real 
Anom
alies 

True 
posit
ive 

1 .84 33.276976865 25 21 21 

2 .78 43.750534611 65 51 51 

3 .5 51.004885917 4 2 2 

4 .6 57.031494693 5 3 3 

5 .5 62.526298527 2 1 1 

6 .9 67.899759682 10 9 9 

7 1.0 72.342786019 3 3 3 

8 .2 76.306710162 5 1 1 

9 1.0 80.787546223 8 8 8 

10 .5 84.916666357 2 1 1 

Ind
ex 

False 
posit
ive 

Positives Ne
gat
ive
s 

True 
Positi

ve 
Rate 

False 
Posit
ive 

Rate 

1 4 25 26 .84 .15 

2 14 65 71 .78 .19 

3 2 4 10 .5 .2 

4 2 5 9 .6 .22 

5 1 2 6 .5 .16 

6 1 10 12 .9 .08 

7 0 3 9 1.0 0.0 

8 4 5 15 .2 .26 

9 0 8 9 1.0 0.0 

10 1 2 7 .5 .14 

Table II. 1 Master and 1 Worker (Single Mode) 

Ind
ex 

Accu
racy 

Anomaly 
detection 

time 
(Seconds) 

De
tec
ted 
An
om
ali
es 

Real 
Anom
alies 

True 
posi
tive 

1 .65 49.01934301
1 

23 15 15 

2 .79 57.92875465 99 79 79 

3 0.9 64.31645418
1 

10 9 9 

4 1.0 70.17001933
9 

4 4 4 

5 .66 74.25929513
9 

3 2 2 

6 .5 77.41612176 2 1 1 

7 .66 80.24955300
8 

3 2 2 

8 1.0 83.80429537
9 

3 3 3 

9 .71 86.80345738
4 

7 5 5 

10 .75 89.54261118
8 

8 6 6 

Ind
ex 

Fals
e 

posi
tive 

Positives Ne
gat
ive
s 

True 
Positi

ve 
Rate 

Fals
e 

Posi
tive 
Rate 

1 8 23 24 0.65 0.33 

2 20 99 10
0 

.79 .2 

3 1 10 11 0.9 .09 

4 0 4 5 1.0 0.0 

5 1 3 4 .66 .25 

6 1 2 3 .5 .33 

7 1 3 4 .66 .25 

8 0 3 4 .66 .25 

9 2 7 8 .71 .25 

10 2 8 9 .75 .22 
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VIII. CONCLUSION 

In this paper, we have implemented the anomaly detection 

of streaming data using Streaming KMeans. The 

experiments were performed using the apache kafka and 

apache spark. We produced the stream of dataset from 

Kddcup99 using the API’s of apache kafka producer. To 

detect the anomalies, we designed a kafka consumer based 

on the apache spark for processing both on the single and 

distributed mode. In the experiment, we firstly computed the 

rate of accuracy of the Streaming KMeans model then we 

calculated the anomaly detection time both on the single and 

distributed mode. The model is showing 76% and 68% 

accuracy rates respectively on single and standard mode. At 

some instances, it has also exhibited the 100% accuracy rate 

because of same amount of detected anomalies and real 

anomalies or having no false positive rate at some instances 

of data. Furthermore, in the case of anomaly detection we 

saw a considerable reduction in the processing time when 

the process is distributed to the multiple machines. In our 

case, it is up to 33seconds when we are using 1 master and 2 

worker which is 49seconds when it is 1 master and 1 

worker. 
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