
156

University of Sindh Journal of Information and Communication Technology

(USJICT)

Volume 2, Issue 3, July 2018

ISSN-E: 2523-1235, ISSN-P: 2521-5582 © Published by University of Sindh, Jamshoro
Website: http://sujo.usindh.edu.pk/index.php/USJICT/

 (c

The Efficient Way of Detecting Anomalies in Large Scale

Streaming Data

Sheeraz Niaz Lighari, Dil Muhammad Akbar Hussain

Department of Energy Technology, Aalborg University

snl@et.aau.dk, akh@et.aau.dk
__

Abstract: These days many companies has marketed the big data streams in numerous applications including industry, Internet

of Things and telecommunication. The stream of data produced by these applications may contain the values which are not

normal. These values are called as anomalies. A lot of work has been done in anomaly detection to the batch data but

detecting anomalies from streaming data nevertheless remains a largely available issue. In streaming data, the tasks related to

find out the anomalies has become challenging with the passage of time because of the dynamic changes in data, which are

produced by different methods applied in data streaming infrastructures. In the process of anomaly detection, first of all, it is

required to know the way of finding the normal behavior of data and then it is easy to know the dynamic behavior or change

in the data. In this context, clustering is a very prominent technique. The application of clustering method is very common to

analyze the static data but in the field of data mining, it is key a problem especially on the streaming data. In this paper, we

are applying streaming version of KMeans clustering algorithm for anomaly detection. The algorithm is analyzed both on

single and distributed environments. Furthermore, we are investigating the stream of data to know various factors such as

accuracy, anomaly detection time, true positive rate, and false positive rate. The data stream used in our analysis is generated

from Kddcup99 dataset which is largely used in the field of intrusion detection.

Keywords: Batch data, Streaming data, Clustering, KMeans, and Anomaly detection

I. INTRODUCTION

The data stream belong to any application anyway it

includes numerous inquiries to be tended to, for example,

What kind of data is?, Is it critical or not?, Does it contain

any value which isn't normal. In this paper, later is the

primary focal point of our exploration.

Before we proceed to analyze the data, first we need to

understand the data stream. It is a stream of data which is

organized as succession of objects. When data is accessed

from the data stream, these objects are read in a sequence.

The reading of objects can be done one time or multiple

times. In the effect, it is difficult to maintain all the objects

in memory at a time. Therefore, every object must be

investigated once while analyzing the data stream.

Furthermore, utilization of memory should be limited as the

new objects of data are constantly produced. Hence, the new

objects should be processed on time immediately after the

generation. Due to these requirements, the errors always

generated while analyzing the data streams. Moreover, it is

more challenging to analyze the values that are deviating

from the original data because they are required to be

processed soon after the generation.

Let us discuss what the anomalies are before the process of

anomaly detection. The anomalies are the deviations from

the normal pattern. They are usually alerts in the form of

malicious activities, network attacks, faults and

inaccuracies. Anomalies are given different names like

outliers, intrusions or malwares etc.

If we talk about the online systems. They are producing the

data continuously. The amount of data generated by them is

so large that traditional methods are unable to monitor them.

Furthermore, complexity of data makes them even more

challenging for monitoring. The data monitoring systems

must be equipped with a feature of anomaly detection.

Anomaly detection is very necessary specially for the

critical infrastructures.

In this paper, we propose an anomaly detection method

based on KMeans Stream Clustering which is also called as

online KMeans clustering. The KMeans comes with two

flavors offline and online. The offline KMeans is trained

once by the existing dataset, whereas in proper anomaly

detection, we need to retrain the model after arrival of new

data, in order to reduce the false positive rate. The retraining

of the model is the main feature of online KMeans. One of

the version of online KMeans is to use the mini-batches [1].

In this type of training, the model is trained with multiple

subsets of the dataset instead of training it with multiple

iterations. Moreover, in this type of KMeans, the cluster

centers are recomputed after every mini-batch. This type of

technique can be applied in the streaming model. In

Streaming KMeans of apache spark MLlib, the cluster

centers are updated by arrival of new time window of the

data. For making it an adaptive model, a new parameter is

mailto:snl@et.aau.dk

University of Sindh Journal of Information and Communication Technology (USJICT) , Vol.2(3), pg.: 156-161

157

specified called as half life. On the basis of half life

parameter, the points are decided weak or strong from the

incoming batch of data. The half life controls, after how

many data points or time windows the previous impacts

center computation only to the half, providing you the

control to tune the “forgetfulness” of your model [2]. We

further discuss the streaming frameworks used in the project

which are as in the following:

A. Apache Spark

It is an open source tool. Conventionally, Hadoop and

MapReduce engines are built on acyclic data flow which is

not suitable for real-time applications. In acyclic data flow,

the data is read from disk or storage and then stored back

after the processing. This way of reading and writing is time-

consuming and also expensive in computation.

Sparks RDD’s (Resilient Distributed Datasets) handles this

issue effectively. RDD’s are saved in memory, which takes

less time as compared to read and write from the disk. They

also able to remake themselves from DAG (Dynamic

Acyclic Graph) in the situation of failure.

B. Spark Streaming

The idea of Spark Streaming [3] is depicted in the figure

no.1. The Spark streams are divided into the batches at the

user-specified intermissions. These batches are then

considered as RDD’s, and then they are dispatched to the

spark cluster.

Figure 1. Spark Streaming

The data stream in spark is represented as DStream. In

DStream, every RDD is contained in the specific interval of

time as shown in the figure no.2.

Figure 2. Spark Dstream

C. Apache Kafka

Apache kafka is a distributed messaging system. It is

capable of streaming the data in real-time. It is working on

the model called as Publish-Subscribe model. The kafka can

scale out easily because of its distributed nature [6].

Kafka contains many components, which take part in

streaming, and they are Kafka producer, Kafka consumer,

Kafka topic, Kafka broker, and Zookeeper.

Kafka topics: They are the group of messages. It is actually

a stream of publishing the messages.

Kafka producer: A process publishes the messages on the

topics. The messages are first dispatched to the kafka

broker, then they are send to topics for publishing.

Kafka consumer: It is a process, which is responsible to

subscribe the messages to topics. Consumer gets the

messages from the topics when it has to consume the

message.

Kafka Broker: It keeps the messages to a particular amount

of time, which are send to him by the producer, and then

kafka consumer reads the messages from the broker which

are in the form of topics.

Zookeeper: It is used to coordinate between the brokers.

Zookeeper is also responsible to send the information to

producer and consumers that the brokers is not working.

II. RELATED WORK

In literature, we see some examples of anomaly detection or

intrusion detection based on signature rule based

techniques. The authors in [7] present the anomaly detection

based on the signatures and then it discuss the evolution of

rule-based technique from the signature-based technique.

Moreover, in the reference [8] the anomaly detection is

performed using fuzzy means in addition with the signature

rules. The signature based or rule-based techniques work

best with only known anomalies but for both known and

unknown anomalies, we need another technique, which is

called Machine learning. There are two kinds of machine

learning; supervised and unsupervised. The anomaly

detection based on the supervised algorithms is presented in

the reference [9]. The anomaly detection using both

supervised and unsupervised algorithms is applied in the

reference [10]. Furthermore, the authors in the reference

[11] proposes the anomaly detection model based on rule

based and unsupervised learning algorithms. In this paper,

we are mainly focusing on the unsupervised algorithm

KMeans clustering because of its wide usage in the

problems of anomaly detection.

The authors in reference [12] propose a cluster-based

anomaly detection working on the distributed environment

of Hadoop and MapReduce. The authors in reference [13]

use context based clustering with KMeans to detect the

anomalies and it is also implemented on the Hadoop

University of Sindh Journal of Information and Communication Technology (USJICT) , Vol.2(3), pg.: 156-161

158

Spark Stream

processing

Anomaly detection Model

Model

Save

Load

Kafka Partitions/
Queues

Processing Time

Accuracy

Stream generator/
Producer (Dataset

KddCup99)

Streaming KMeans

Standalone
Mode

Distributed
Mode

1. Setting up the Spark Cluster

2. Reading the input Stream from Kafka Cluster

3. Normalize the input stream by standard deviation

and mean.

 (a) Mean is broadcaste

 (b) Standard deviation is broadcasted

4. Apply the KMeans model on normalized

streaming data

 (a) Streaming Kmeans model is broadcasted

5. DistancetoCentroid is calculated

6. The distance exceeds the threshold, It is assumed

to be an anomaly.

framework. The clustering using KMeans or Streaming

KMeans is also a part of a tool called as Apache Mahout

[14] but it performs in batch mode, which is a time

consuming, and it does not fit to the process of the real-time

clustering.

All the techniques described above are based on Hadoop

and MapReduce frameworks. Hadoop is primarily designed

for batch data where the data exists before the processing. It

fails at processing of data, which comes incessantly real

time. In Hadoop, for new incoming data it requires to

rebuild the model with all existing data, which is the

wasteful technique. Hence, Hadoop is not appropriate for

real-time processing. Similarly HBase [15] and BashReduce

[16] undergoes with the same problem. Moreover, there are

other streaming processing tools like apache storm [17] and

apache S4 [18] but apache spark outperforms with respect to

speed [19]. Hence, it was the main reason to use apache

spark as our tool of the experiment. Furthermore, it is fault-

tolerant and scalable.

We have performed our experiments on VMware

environment, which is performed on single machine in [20],

but we are implementing it with more than one machine

which gives the flavor of distributed work. We have also

compared the time taken by single machine with the

distributed environment. Furthermore, we are analyzing

other parameters like accuracy, anomaly detection time,

false positive rate and true positive rate while [20] only

calculates the accuracy.

III. PROPOSED MODEL

In the proposed model as in figure no.3, first of all, the
stream of data is generated using the Kafka producer from
the dataset Kddcup99. The data reaches at the spark engine
in the form of Kafka queues or partitions. Each newly
arrived data instance is tested by anomaly detection model to
check its possibility of being an anomalous instance. After
checking the data status, the model can be retrained with
either of two methods. In first method, the model is retrained
with only newly arrived instance, which saves time, and in
second method the model is retrained with the existing data
and newly arriving data instance which takes time and
suitable for real-time applications. The first method is used
by apache spark Streaming KMeans as in our work while
mini-batch algorithms use the second method. After
checking the anomalies, the accuracy rate of the algorithm is
calculated along with other parameters like false positive
rate, true positive rate, and anomaly detection time. All the
parameters are computed both on the single and distributed
mode.

Figure 3. Streaming data anomaly detection model

IV. ALGORITHM FOR ANOMALY DETECTION

The cluster is premediated in Figure No.3 utilizing the

apache spark. The stream produced on KddCup99 dataset is

getting through the Kafka Queues. The information stream

is isolated in little units called as the DStream. To prepare

the information and foresee the anomalies from the

streaming data, we set numerous changes and activities. At

each progression of the change and activity, a piece of the

information is put away in memory and the outcomes are

moved to the following Dstream unit for additional

preparation. In additional preparation process, the surge of

information is gotten by the model and after that it proceeds

to the anomaly detection process.

During the process of anomaly detection, the spark DStream

model gets the stream from the cluster of Kafka. The

DStream contains four key groups of attacks in the dataset

like U2R, R2L, DoS and Probe. The principle calculation of

University of Sindh Journal of Information and Communication Technology (USJICT) , Vol.2(3), pg.: 156-161

159

0,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,511,0.00,0.00,0.00,0.00,1.
00,0.00,0.00,255,255,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,smurf.

0,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,511,0.00,0.00,0.00,0.00,1.

00,0.00,0.00,255,255,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,smurf.
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,237,18,0.00,0.00,1.00,1.00,0.08,0.

07,0.00,255,18,0.07,0.07,0.00,0.00,0.00,0.00,1.00,1.00,neptune.

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,215,7,1.00,1.00,0.00,0.00,0.03,0.0
6,0.00,255,7,0.03,0.07,0.00,0.00,1.00,1.00,0.00,0.00,neptune.

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,135,11,1.00,1.00,0.00,0.00,0.08,0.

07,0.00,255,11,0.04,0.06,0.00,0.00,1.00,1.00,0.00,0.00,neptune.
0,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,511,0.00,0.00,0.00,0.00,1.

00,0.00,0.00,255,255,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,smurf.
19,209,450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,6,0.00,0.00,0.00,0.00,1.00,

0.00,0.50,215,218,1.00,0.00,0.00,0.01,0.00,0.00,0.00,0.00,normal.

0,959,331,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,2,0.00,0.00,0.00,0.00,1.00,0
.00,1.00,87,48,0.55,0.05,0.01,0.00,0.00,0.00,0.00,0.00,normal.

0,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,511,0.00,0.00,0.00,0.00,1.

00,0.00,0.00,255,255,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,smurf.
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,246,17,1.00,1.00,0.00,0.00,0.07,0.

06,0.00,255,16,0.06,0.07,0.00,0.00,1.00,1.00,0.00,0.00,neptune.

Processed a total of 46297 messages

the DStream begins to process mean with mapped and

reduced transformations. From mean, the square of the

distinction is figured and from the distinction, the difference

is figured. Similarly from distinction, the standard deviation

is computed. After every one of these computations, the

values are then standardized using standard deviation and

mean. Subsequent to playing out the normalization

procedure, the KMeans streaming model is made and

introduced. The model is then connected to information

which was normalized in the previous step. After at that

point, it is the way toward figuring the DistancetoCentroid

for each element. At that point the code defines the

threshold. On the off chance that the DistancetoCentroid of

the component surpasses the threshold, at that point it is

reflected as an anomaly.

Besides, in the proposed work, the procedure of anomaly

detection begins by utilizing feature engineering which

helps to remove the four attack labels rather than 21 present

in the dataset. In the process of Stream clustering, the

clusters are updated when new data arrives in the Kafka

queues.

V. STREAM OF DATA GENERATED FROM KDDCUP99

 There 42 different labels of the KDDCup99 dataset. The

attributes from 1 to 9 are the fields defining the the tcp

connection [21]. The attributes from 32 to 42 are used to

evaluate the attacks in the dataset. Among these attributes,

the attribute 41 is used to identify the type of the attack.

There are 4 different categories of the attacks in the dataset

as specified in table no.1.

VI. TYPES OF ANOMALIES

In the table no.1, we are calculating the anomaly type from

the stream of data. The analysis result show that most of the

anomalous data instances are DoS (Denial of Service)

instances.

Table I. Types of Anomalies

Index DoS Probe U2R R2L Normal

1 15 0 0 0 8

2 79 0 0 0 20

3 9 0 0 0 1

4 4 0 0 0 0

5 2 0 0 0 1

6 1 0 0 0 1

7 2 0 0 0 1

8 3 0 0 0 0

9 5 0 0 0 2

10 6 0 0 0 2

VII. RESULTS

The results of the experiments performed in our work are

described in table no.2 and table no.3. The table no.2

contains the results of single mode which consists of 1

Master and 1 Worker. The table no.3 exhibits the results of

the distributed mode which includes 1 Master and 2

Workers. In the table no.2, if we calculate the average

accuracy of the model, it is 76%. Interestingly, some of

results showing the 100% accuracy which is because of the

no false positives at the indexes of 4 and 8. Furthermore, the

table no.2 shows the minimum anomaly detection or

processing time of 49seconds, which is shown in the index

no.1. On contrast, in the table no.3, which is the case of

distributed mode, where minimum processing time is

33seconds and the average accuracy, is 68%. In this mode,

we also observed the 100% accuracy at the index no. 7 and

9. Although, there is a slight difference of accuracy rate

both in single and distributed mode but the distributed mode

showing a good amount of the reduction in the processing

time.

If we further say the reason behind the 100% accuracy rate,

it may be due to the detected anomalies and real anomalies,

which are same at number to the particular instance of data.

University of Sindh Journal of Information and Communication Technology (USJICT) , Vol.2(3), pg.: 156-161

160

Table III. 1 Master 2 Workers (Distributed Mode)

Ind
ex

Accu
racy

Anomaly
detection

time
(Seconds)

Det
ect
ed
An
om
alie

s

Real
Anom
alies

True
posit
ive

1 .84 33.276976865 25 21 21

2 .78 43.750534611 65 51 51

3 .5 51.004885917 4 2 2

4 .6 57.031494693 5 3 3

5 .5 62.526298527 2 1 1

6 .9 67.899759682 10 9 9

7 1.0 72.342786019 3 3 3

8 .2 76.306710162 5 1 1

9 1.0 80.787546223 8 8 8

10 .5 84.916666357 2 1 1

Ind
ex

False
posit
ive

Positives Ne
gat
ive
s

True
Positi

ve
Rate

False
Posit
ive

Rate

1 4 25 26 .84 .15

2 14 65 71 .78 .19

3 2 4 10 .5 .2

4 2 5 9 .6 .22

5 1 2 6 .5 .16

6 1 10 12 .9 .08

7 0 3 9 1.0 0.0

8 4 5 15 .2 .26

9 0 8 9 1.0 0.0

10 1 2 7 .5 .14

Table II. 1 Master and 1 Worker (Single Mode)

Ind
ex

Accu
racy

Anomaly
detection

time
(Seconds)

De
tec
ted
An
om
ali
es

Real
Anom
alies

True
posi
tive

1 .65 49.01934301
1

23 15 15

2 .79 57.92875465 99 79 79

3 0.9 64.31645418
1

10 9 9

4 1.0 70.17001933
9

4 4 4

5 .66 74.25929513
9

3 2 2

6 .5 77.41612176 2 1 1

7 .66 80.24955300
8

3 2 2

8 1.0 83.80429537
9

3 3 3

9 .71 86.80345738
4

7 5 5

10 .75 89.54261118
8

8 6 6

Ind
ex

Fals
e

posi
tive

Positives Ne
gat
ive
s

True
Positi

ve
Rate

Fals
e

Posi
tive
Rate

1 8 23 24 0.65 0.33

2 20 99 10
0

.79 .2

3 1 10 11 0.9 .09

4 0 4 5 1.0 0.0

5 1 3 4 .66 .25

6 1 2 3 .5 .33

7 1 3 4 .66 .25

8 0 3 4 .66 .25

9 2 7 8 .71 .25

10 2 8 9 .75 .22

University of Sindh Journal of Information and Communication Technology (USJICT) , Vol.2(3), pg.: 156-161

161

VIII. CONCLUSION

In this paper, we have implemented the anomaly detection

of streaming data using Streaming KMeans. The

experiments were performed using the apache kafka and

apache spark. We produced the stream of dataset from

Kddcup99 using the API’s of apache kafka producer. To

detect the anomalies, we designed a kafka consumer based

on the apache spark for processing both on the single and

distributed mode. In the experiment, we firstly computed the

rate of accuracy of the Streaming KMeans model then we

calculated the anomaly detection time both on the single and

distributed mode. The model is showing 76% and 68%

accuracy rates respectively on single and standard mode. At

some instances, it has also exhibited the 100% accuracy rate

because of same amount of detected anomalies and real

anomalies or having no false positive rate at some instances

of data. Furthermore, in the case of anomaly detection we

saw a considerable reduction in the processing time when

the process is distributed to the multiple machines. In our

case, it is up to 33seconds when we are using 1 master and 2

worker which is 49seconds when it is 1 master and 1

worker.

REFERENCES

[1]. Sculley D , “Web-scale k-means clustering”, In:

Proceedings of the 19th international conference on

World wide web. ACM 2010 S. 1177-1178

[2]. https://www.inovex.de/blog/online-offline-machine-

learning-network-anomaly-detection/

[3]. https://spark.apache.org/streaming/

[4]. https://hortonworks.com/hadoop-tutorial/introduction-

spark-streaming/

[5]. https://mapr.com/blog/spark-streaming-hbase/

[6]. Kreps, Jay, Neha Narkhede, and Jun Rao. "Kafka: A

distributed messaging system for log processing." in

Proceedings of the NetDB, pp. 1-7, June 2011.

[7]. W. Lee , J. Stolfo , “A framework for constructing

features and models for intrusion detection systems,”

ACM Trans. Inf. Syst. Sec., 2000

[8]. S. Bridges, B. Vaughn, “Fuzzy Data Mining and

Genetic Algorithms Applied to Intrusion Detection,”

Proceedings of the National Information Systems

Security Conference (NISSC), Baltimore,MD, October,

2000

[9]. Govinda, Manish, “A framework for fast and efficient

cybersecurity,” Conference on Advances in Computing

& Communications, ICACC 2016, 6-8 September 2016,

Cochin, India

[10]. Lighari, S. N. and Hussain, D. M. A, “Testing of

algorithms for anomaly detection in Big data using

apache spark”, 1 Sep 2017 2017 9th International

Conference on Computational Intelligence and

Communication Networks (CICN). IEEE, p. 97-100 4 p.

(International Conference on Computational Intelligence

and Communication Networks (CICN)).

[11]. Lighari, S. N. & Hussain, D. M. A, “Hybrid model of

rule based and clustering analysis for big data security”,

1 Nov 2017 2017 First International Conference on

Latest trends in Electrical Engineering and Computing

Technologies (INTELLECT). IEEE, p. 1-5 5 p

[12]. L. Yu and Z. Lan, "A scalable, non-parametric anomaly

detection framework for hadoop," in Proceedings of the

2013 ACM Cloud and Autonomic Computing

Conference. acm, 2013, p. 22.

[13]. M. Gupta, A. B. Sharma, H. Chen, and G. Jiang,

"Context-aware time series anomaly detection for

complex systems”, Published 2013

[14]. Apache mahout. [Online]. Available:

https://mahout.apache.org/

[15]. Apache hbase. [Online]. Available:

https://hbase.apache.org/

[16]. http://www.linux-mag.com/id/7407/

[17]. Storm-distributed and fault-tolerant realtime

computation.[Online].Available:

http://storm.incubator.apache.org/

[18]. s4. [Online]. Available: http://incubator.apache.org/s4

[19]. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.

Mccauley, M. Franklin, S. Shenker, and I. Stoica, "Fast

and interactive analytics over hadoop data with spark”,

August 2012

[20]. Padma, Priya, and Chitturi, “Spark for data science cook

book”, Packt 2016

[21]. Preeti, Sudheer, “Analysis of Kdd Dataset attributes-

Class wise intrusion detection”, ICRTC 2015

https://hortonworks.com/hadoop-tutorial/introduction-spark-streaming/
https://hortonworks.com/hadoop-tutorial/introduction-spark-streaming/
http://incubator.apache.org/s4

