
27

(c

University of Sindh Journal of Information and Communication Technology

(USJICT)

Volume 3, Issue 1, January 2019

ISSN-E: 2523-1235, ISSN-P: 2521-5582 © Published by University of Sindh, Jamshoro
Website: http://sujo.usindh.edu.pk/index.php/USJICT/

Measuring The Distance Between High-Level Models In A

Reengineering Process.

Ignacio Cassol1,a, Ignacio Berdiñas1,b, Gabriela Arévalo2,c

1Facultad de Ingeniería, Universidad Austral, LIDTUA (CIC), Argentina
2Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina

aicassol@austral.edu.ar, bignacio.berdinas@ing.austral.edu.ar, cgarevalo@unq.edu.ar

Abstract: When refactoring high-level models, measuring the differences between the original and the refactored

model helps the designers know how the original model was modified and if the transformation added more

complexity or/and improved the model. In our previous work, we developed the M2K methodology that parses

legacy C code, maps it in a high-level model to represent the domain concepts and proposes a refactored model to

improve the mapped design. Based on both models, we propose a distance to indicate, from the domain viewpoint,

if the original identified concept keeps the same structure or, conversely, if the refactorings modify the concepts

represented in the original model. Our approach is based on models generated through the M2K methodology and

does not take into account syntactical variations between models. To show the applicability and the validation of

our approach, firstly we show how we apply it on a trivial case study. Then, we show the results of applying our

proposal to thirteen case studies (small-scale real projects implemented in C) that were also used to validate the

M2K methodology.

Keywords: measurement; object-oriented; paradigm; reengineering; high-level model; legacy software; design recovery.

I. INTRODUCTION

Building high-level models is a key discipline within the
context of Software Engineering. Once the applications are
designed and implemented, it is a common practice that the
high-level models of existing applications are modified by
designers in order to improve or upgrade their designs. When
the result of the reverse engineering generates two models (an
original and a modified one), it is interesting to detect the
degree or percentage of modifications between them. This
feature is relevant if both models keep the same structure by
defining the same domain concepts despite the
transformation. Object-oriented models may be mapped as
graphs. Thus, it would be possible to apply isomorphism
algorithms between two graphs in order to look for
similarities. In our case, as the object-oriented models we are
measuring have no relationships between classes, we map
them as strings (an object-oriented element concatenation).
Our proposal uses the Levenshtein distance [1] as a starting
point and measures the distance between object-oriented
models from a domain viewpoint.

The models are generated based on C source code using
the M2K methodology [2].

This article is structured as follows: Section 2 summarizes
the main concepts of M2K, which is a methodology that, by
generating high-level models, allows us to understand the
application structure of C source code. Section 3 summarizes
the work related to our approach. Section 4 details the
definition of the distance we introduce in this paper. Section 5
shows in detail how the distance is applied to a specific case

study and the result of applying our proposal to a set of case
studies. Section 6 concludes our paper.

II. M2K METHODOLOGY

M2K is a methodology that generates a high-level model
from legacy C code [2]. It has two phases: Source code
Analysis (supported by a tool termed ModelMapper) and
Expert mapping.

The Source code Analysis is an automatic phase through
which the code is parsed and mapped into a high-level model.
The result of this phase is a group of Class Candidates
Definitions (CCD), with no relationships between them. Each
CCD represents a domain-specific concept and is
implemented as a pair of elements (A, M), where A is a set of
attributes and M is a set of methods.

The Expert mapping phase is manual and requires an
expert who refactors the group of CCDs in order to improve
the high-level model from a design viewpoint. In this paper
we refer to the group of CCDs obtained by the automatic
phase as the Original Model (OM), and to the refactored set
of CCDs as the Refactored Model (RM). Our proposed
distance is calculated between OM and RM.

III. RELATED WORK

In software engineering, the activity of measuring the
software, or any part of its life cycle, is a well-known
discipline [3][4]. There are several works that propose a
metric of a given object-oriented (OO) model [5][6]. These
ones measure a software artifact (or a process) and assign a
meaning (e.g. coupling, complexity, cohesion) to what they

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.3(1), pg.: 27-33

28

measure [7]. These metrics apply at the source-code and at the
design levels [4]. On the other hand, the definition of
thresholds for the majority of software metrics is a complex
task [8]. Xing et al. [9] and Lin et al. [10] works also propose
an approach to the identification of certain types of
refactorings between two UML models. Ohst et al. [11]
address the problem of how to detect and visualize differences
between versions of UML documents. The most significant
disadvantage of this approach is that the algorithms and tools
are document type-specific. On the other hand, Brun et al. [12]
propose a method -and a tool- where models are serialized into
vectors of software entities to visualize the changes in the
model.

Our proposal differs from other works in three main
aspects: a) we focus on comparing two OO models, b) instead
of applying a meaning to the measurement, we use the results
to compare the models and infer their differences, and c) we
focus on creating a measurement to know how much the M2K
Methodology modifies the OM.

According to Srinivasan and Devi, ”the software metrics
researchers proposing a new metric have the trouble of proof
to show that the metric is adequate for measuring the
software” [13]. Thus, we consider that our approach is not a
metric from a theoretical viewpoint. It fulfills the nine
Weyuker properties [14] but the respective proof is a future
work.

Several software applications from bioinformatics and
automatic linguistic recognition systems require comparing
long strings to find similar subsequences. Two similarity
metrics frequently used by these applications are the
Hamming and Levenshstein distances [15]. Kolpakov et al.
propose a general viewpoint about the application of
Hamming distance to computer science problems [16]. For
example, Kurtz et al. apply this distance to find repetitive
DNA structures [17]. Norouzi et al. propose a mathematical
framework to find semantic similarities between images [18].
It evaluates the Euclidean [19] and the Mahalanobis distances
[20] as a starting point of the proposal. The conclusion of this
comparative analysis is the same as our proposal: the
Hamming distance is a useful mathematical tool to measure
similarities between entities. Torralba et al. propose a similar
approach to the Norouzi et al. work but from an algorithmic
viewpoint [21]. Hamming distance is defined in same-length
words [22]. As in our proposal the measured models (or
CCDs) usually have not the same length, we use Levenshtein
distance that, in its definition, let measure two words with
different length.

From our knowledge, there is no technique or
methodology that compare two OO models using the
Levenshtein distance in order to measure a transformation
degree or difference between them.

The indicators designed in this approach to measure the
transformation percentage between an OM and a RM is the
main contribution of this paper.

IV. OUR PROPOSAL

In this section, we summarize briefly the Levenshtein
distance definition, propose new measurements and explain
how they are calculated. In this work, Levenshtein distance is

applied to two types of words that: a model (OM and RM) or
a CCD. It depends on the target software artifact.

A. Levenshtein Distance

The Levenshtein distance between two strings/words a, b
(of length |a| and |b| , respectively) is given by
𝑙𝑒𝑣𝑎,𝑏(|a|, |b|) where:

𝑙𝑒𝑣𝑎,𝑏(i, j)

{

max(𝑖, 𝑗) 𝑖𝑓 min(𝑖, 𝑗) = 0,

𝑚𝑖𝑛 (

𝑙𝑒𝑣𝑎,𝑏(i − 1, j) + 1

𝑙𝑒𝑣𝑎,𝑏(i, j − 1) + 1

𝑙𝑒𝑣𝑎,𝑏(i − 1, j − 1) + 1(𝑎𝑖≠𝑏𝑗)
)
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

and 1(𝑎𝑖≠𝑏𝑗)is the indicator function equal to 0 when ai =

bj and equal to 1 otherwise.
This function may also be referred to as edit distance and

indicates the minimum number of single-character edits
(insertions, deletions and substitutions) required to change
one word into the other.

For example, the Levenshtein distance between the word
”intentions” and ”execution” is 6, since the following six
edits change one into the other, and there is no way to do it
with fewer than six edits:

1. intentions → *ntentions (deletion of i)

2. ntentions → etentions (substitution of n with e)

3. etentions → exentions (substitution of t with x)

4. exentions → execntions (insertion of c)

5. executions → executions (substitution of n with u)

6. executions → execution (deletion of s).

This algorithm fits better to our proposal in comparison

with the Hamming distance. For example, given two words
with the same length ”flaw” and ”lawn”, Levenshtein distance
equals 2 (deletion of ”f” from the front and insertion of ”n” at
the end), meanwhile the Hamming distance related to this
example equal 4. Letters ”a” and ”w” are present in both
words and the Hamming distance is not able to take this into
consideration. In that way, we consider that Levenshtein
distance performs better.

Software entities mapping applying Hamming
distance. The word (that may be a model, a CCD, a set of
attributes or a set of methods) is implemented as a vector.
Each element of the original vector, that remains its concept
after the refactoring process, will be in the same index of the
refactored vector. In the same way, if an element of the
original vector changes its concept from a domain viewpoint,
it will be in a different index of the refactored vector.
Accordingly, given two different words A = (a1, a2, … , an)

and B = (b1, b2, … , bm), where ai ≠ bi for each i, A’and B

’ are vector implementations of A and B, A’= <a1, a2, … ,

an, null1, null2,…, nullm> and B’= <null1, null2, … , nulln,

b1, b2, … , bm>. For example, given the words A = (C, A, N)
and B = (M, E, N) where B is the RM of A, the vector
implementations of A is A’ = (C, A, N, null1, null2) and the
vector implementation of B is B’ = (null1, null2, N, M, E).

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.3(1), pg.: 27-33

29

Concept N is in the same index position (3) of A’ and B’
because it represents the same concept in both models (the
OM and the RM). In the others index position (1, 2, 4 and 5)

A’[i] ≠ B’[i] because the Refactoring phase deleted the

concept in the OM (index position 1 and 2) or added it in the
RM (index position 4 and 5).

To simplify the reading of the paper when we refer to a
word, we also refer to its vector implementation, indistinctly.

Equality between software entities. We consider that
two elements (the original and the refactored) are equal when
they represent the same concept from a design viewpoint.
From an implementation viewpoint, the original element is
equal to the refactored element when the refactored one was
created by Modelmapper (the tool that supports the M2K
methodology) in the Source code analysis phase, even when
the Expert mapping phase removes arguments or refactor the
name of the original element.

Maximum distance between software entities. To
calculate our measurement, we define the maximum distance
between software entities (a model or a CCD). The maximum
distance is derived from the Levenshtein distance and
supposes that both entities are completely different. In
numerical terms, we consider this difference as a maximum
distance.

Given two software entities A and B where A = (a1, a2, …

, an) and B = (b1, b2, … , bm), being n ≠ m and ai ≠ bi for each

i, with i = min(n; m), then:

 Dmax(A, B) = max(n, m)

We use this distance as a reference value. The

measurement we propose is used to indicate how close or how
far both models (or both CCDs) are from their maximum
distance.

B. Distance definitions

Following, we enumerate our proposed definitions of
indicators:

1. Distance between models: It is a distance between
OM and RM. We can infer that if d(OM, RM) = 0, then they
keep the same structure by defining the same domain
concepts. If d(OM, RM) >> 0, we can infer that the
transformation process modified significantly the OM from a
design viewpoint.

2. Distance between CCDs: Given C1 and C2, where

C1 ∈ OM and C2 ∈ RM are CCDs, C1 and C2 representing

the same domain concept, we define d(C1, C2) as a number
that indicates the transformation degree between C1 and C2. If
d(C1, C2) = 0, we can infer that the transformation process did
not modify the concept represented in C1 in any of its aspects
or features. In fact, this indicator is a list of distances that has
as many elements as pairs of (C1, C2). Given an OM and a RM,
there is a Distance between CCDs for each pair of CCDs (C1,
C2).

3. Difference between models: It shows the difference
in percentage between models, when compared to the
potential maximum distance. Two identical models differ in
0%, while two completely different models differ in 100%.

4. Difference between CCDs: It shows the same
indicator as the previous item but referring to two given
CCDs. As it is a percentage related to the indicator Distance
between CCDs, this indicator is a list.

To ease the analysis of the previous indicators, following
we propose a global distance that includes and summarizes
them.

5. Global distance: This indicator includes and
integrates the previous indicators, and it is proposed in order
to offer a general view. It is a weighted percentage between
the difference between models and the difference between
CCDs, considering the number of modified CCDs. The goal
of this indicator is to summarize the previous ones.

C. Distance calculation

Once we have defined each indicator, we proceed to
explain how to calculate them.

1. Distance between models: Let A be the OM and B,
the RM, where model A = (a1, a2, … , an) and B = (b1, b2, … ,
bm) are vectors of CCDs. We consider that ai = bi when both
CCDs represent the same concept. In this case di(ai, bi) = 0.
Finally, by applying the distance defined in Section IV.A we
obtain this indicator. Table I shows a small example where
Distance between models is equal to 2.

TABLE I: Example of the distance between models.

Model A Model B Distance

C
C

D
s

CCD A_1 CCD A_2 0

CCD B_1 CCD B_2 0

 CCD C_2 1

CCD C_1 1

 d(A, B) 2

2. Distance between CCDs: Given C1 and C2, where

C1 ∈ OM and C2 ∈ RM, representing C1 and C2 the same

domain concept, we define four words to calculate d(C1, C2):

J: contains the vector of C1 attributes.
K: contains the vector of C1 methods.
M: contains the vector of C2 attributes.
N: contains the vector of C2 methods.

Thus:
 d(C1, C2) = d1(J, M) + d2(K, N)

From a domain viewpoint, Ji = Mi if both attributes

represent the same concept, and Ki = Ni if both methods
represent the same functionality. This means that even if there
can be syntactical differences between Ki and Ni, if both
represents the same functionality, the distance is 0. Table II
shows a simplified example where Distance between CCDs is
3.

TABLE II: Example of the distance between CCDs.

CCD C_1 CCD C_2 Distance

C
C

D
s

int a int a 0

char b char b 0

int c 1

float d <generic> d 0

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.3(1), pg.: 27-33

30

 char e 1

M
et

ho
ds

 int f1(a, b, c) int f1(a, b, c) 0

f2(d) f2() 0

char f3() char f3(m, n) 0

 int f4(j, h) 1

 d(C_1, C_2) 3

It is worth explaining some important points related to

Table II:

• In the transformation process, the int c attribute was
removed from CCD A and the char e attribute was
added in CCD B. We understand that both generate a
distance since there is a domain modification in the
software entity.

• We understand that the transformation of the float d
attribute into <generic> d does not mean a domain
modification. The new attribute <generic> d includes
float d and as a result, it has not modified its domain
meaning.

• The transformation process has carried out a syntactical
modification in f2(), by removing its argument. In this
case, as the functionality of f2() has not changed, even
when the approach removes the arguments we consider
that there is no distance. We apply the same criteria to
f3().

• The function f4() was created in CCD B, and as this
behavior is not explicit in CCD A, a distance is
generated.

3. Difference between models: Let A be the OM and

B the RM, where model A = (a1, a2, … , an) and B = (b1, b2,
… , bm) are vectors of CCDs. We define it as follows:

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝑜𝑑𝑒𝑙𝑠 =
𝑑(𝐴, 𝐵)

𝐷𝑚𝑎𝑥(𝐴, 𝐵)
∗ 100%

4. Difference between models: Let A be the OM and

B the RM, where model A = (a1, a2, … , an) and B = (b1, b2,
…, bm) are vectors of CCDs. We define it as follows:

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐶𝐶𝐷𝑠 =
∑ 𝑑(𝐴𝑖 , 𝐵𝑖)
𝑛
𝑖=1

∑ 𝐷𝑚𝑎𝑥(𝐴𝑖 , 𝐵𝑖)
𝑛
𝑖=1

∗ 100%

5. Global distance: Given OM = (COM1, COM2, …,

COMn) and RM = (CRM1, CRM2, …, CRMm) global distance
is defined as follows:

𝐷(𝑂𝑀 , 𝑅𝑀) = (
𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝐶𝐶𝐷𝑠

𝐷𝑚𝑎𝑥(𝑂𝑀 , 𝑅𝑀)
∗

𝑑(𝑂𝑀, 𝑅𝑀)

𝐷𝑚𝑎𝑥(𝑂𝑀 , 𝑅𝑀)

+ (1 −
𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝐶𝐶𝐷𝑠

𝐷𝑚𝑎𝑥(𝑂𝑀, 𝑅𝑀)
)

∗
∑ 𝑑(𝑂𝑀𝑖 , 𝑅𝑀𝑖)
𝑛
𝑖=1

∑ 𝐷𝑚𝑎𝑥(𝑂𝑀𝑖 , 𝑅𝑀𝑖)
𝑛
𝑖=1

) ∗ 100%

where Matched CCDs is the number of CCDs of the OM

that remains in the RM without modifications in its concepts
from a domain viewpoint. Thus, it indicates the amount of
times that the indicator difference between CCDs is applied.

V. VALIDATION

As this paper improves an existing approach, we use the
same case studies presented in our previous work [2] to
validate our proposal. In that work we have used as case
studies thirteen small-scale real projects implemented in C.
They come from two different sources: a) ten case studies
were designed with UML classes and implemented by a group
of advanced computer science students and b) three case
studies were downloaded from different Internet websites.

A. Case studies

To give the reader an overview of the case studies, Table
III shows the number of software entities of eight case studies
we chose because they are the most representative in our
analysis using M2K. We selected them to ease the
comprehension and to show how the indicators work on
different scenarios. Table IV shows the number of classes
stated in the documentation/specification, the number of
CCDs in the OM and the number of CCDs in the RM.

TABLE III: Number of software entities of each case

study.

TABLE IV: Number of classes in different analysis
phases of each case study.

TABLE V: Distance between Models for University
case study.

Model A Model B Distance

C
ol

le
ct

io
n

of
 C

C
D

s

University.c 1

Student_final Student 0

Student.h Student_set 0

 BubbleSort 1

 Printing_Strategies 1

 Printing_Best_10 1

 Print_Avgs 1

 Print_Exams 1

 int f4(j, h) 1

 D(A, B) 6

 Dmax(A, B) 10

Case Study LOC Functions ADT’s Vars Modules

University 162 9 1 2 1

Calculator 200 9 0 0 0

Bank 216 5 7 2 0

MovieClub 116 3 3 0 1

AssemblyLine 168 8 2 0 2

BallotBoxes 228 17 4 1 4

LightBulbs 285 22 4 0 3

Elevators 295 19 4 1 4

Case Study
UML

classes Initial CCDs
Refactored

CCDs

University 1 3 7

Calculator 1 1 10

Bank 2 2 2

MovieClub 4 4 3

AssemblyLine 3 4 3

BallotBoxes 7 6 9

LightBulbs 6 4 8

Elevators 8 6 10

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.3(1), pg.: 27-33

31

TABLE VI: Distance between Student Final and

Student.

 Student_Final Student Distance

Atributes

student_code:
int

student_code
int

0

grade: int grade: int 0

Methods 0

 D(Student_Final, Student) 0

 Dmax(Student_Final,
Student)

4

TABLE VII: Distance between Student.h and Student_set.

 Student.h Student_set Distanc
e

A
tr

ib
ut

es
 grades: int grades: int 0

 ELEMENTS: int 1

 STUDENTS: int 1

 finals: int 1

 averages: int 1

M
et

ho
ds

init_finals(…) init_finals(…) 0

search_exam_per_student(
…)

search_exam_per_studen
t(…)

0

print_exam_per_student(…) 1

average_per_student(…) average_per_student(…) 0

print_average_per_student(
…)

 1

averages(…) averages(…) 0

BubbleSort(…) 1

print_Best_10_averages(…) 1

D(Student.h, Student_set) 8

 Dmax(Student.h, Student_set) 18

In the following section, firstly we show in detail how our

proposal is applied to one of the case study of the eight ones
mentioned previously. Then, we show the indicators of the
chosen eight case studies performing a brief analysis.

B. Case study University

University is an application that takes information from
two arrays in order to obtain a summary of the students
information.

Distance between models. Table V shows the OM
(Model A) of University generated by the automatic phase of
M2K Methodology, and the RM (Model B) resulting from the
Expert mapping phase. In this table we observe that the
transformation process generated a Distance between models
equals to 6. Since University.c no longer exists, the
transformation process generated 5 extra CCDs to keep the
same behavior of the model.

There are 2 CCDs (Student_Final and Student.h in
Model A) where no transformations were applied. According
to our proposal, they must be analyzed by using the indicator
of Distance between CCDs (Tables VI and VII).

Distance between CCDs. Table VI shows the distance
between the CCDs Student_Final and Student.h. We
observe that the transformation process only generated a
naming refactoring of each CCD. Although it is an

improvement that eases the comprehension of the model, we
do not consider that this refactoring implies a transformation
from the domain viewpoint. Thus, the distance between these
two CCDs is equal to 0.

Table VII shows the distance between the CCDs
Student.h and Student_set. We observe a relevant variation
from a design viewpoint. Four attributes were added in the
CCD Student_set and four methods were deleted from the
CCD Student.h. The transformation process corresponds to
the distance between these two CCDs.

Difference between models. As Dmax(A, B) = 10 (in Table
V), the percentage of difference between models is equal to
60%.

Difference between CCDs. As the sum of all distances
between CCDs is equal to 8 (8+0) and the sum of all
maximum distances between CCDs is equal to 22 (18+4), the
percentage of difference between CCDs is equal to 36%.

Global distance. As Matched CCDs is equal to 2, the
global distance is equal to 55%.

We consider that the resulting indicators correspond to the
transformations that the M2K Methodology generates from
OM to RM. More specifically, the fact that Global distance
is equal to 55% shows the relevant transformations between
models, and between CCDs Student_final and Student.

C. Global case studies analysis

Table VIII shows the resulting indicators of the selected
case studies. To ease the comparison between case studies, we
include the resulting measured distances of the case study
University (explained in the previous section).

Following some analysis related to Table VIII are
suggested:

• University: We observe that even when the modified
CCDs are high (80%), the refactorings in the classes were
small (36%) but the impact of the analysis is given in the
models (60%) in an intermediate value. Based on these
indicators, we can infer that the OM has only been affected in
a 50%.

• Calculator: In this case study, we observe that all
values in the last four indicators are high. This situation is
normal because the applied refactorings implemented a
Command pattern to abstract the calculator operations, and the
number of added classes was the same as the number of
needed operators.

• Bank: Differently to the previous case study, this
case study shows low values in its indicators, confirming that
there is no difference between models. The Global distance
measures the difference between CCDs by taking into account
the percentage of modified CCDs. We consider that the result
is coherent with what the expert analyzed for the test case.

• MovieClub: Conversely to the previous case study,
our approach is applied on a case study where there is no
difference between CCDs and there is a difference between
models. Thus, the final indicator is composed only of the

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.3(1), pg.: 27-33

32

difference between models by taking into account the
percentage of modified CCDs.

• AssemblyLine: We consider that this case study is
similar to Bank case study except for the Difference between
models indicator. The final indicator shows the
correspondence between both percentages in the differences
(Difference between CCDs and Difference between models).

• BallotBoxes, LightBulbs and Elevators: These case
studies are similar from the indicators viewpoint. We include
them in order to show case studies with average results and to
enforce the proposal validation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a set of indicators that measure
the transformation degree between two models. Although it is
applied to the M2K methodology, we consider that it can be
used for any pair of object-oriented models. Our approach
offers four partial indicators and a global one. The Global
distance includes and weighs two aspects, expressed in the
partial indicators: the distance between models and the
distance between CCDs. The percentages, that our proposal
provides, measure the transformation degree between two
models and ease the comprehension of the transformation
itself. The indicators let us identify if the transformation
process was applied to the model, to its members, or both. It
is worth to remark that this proposal does not offer any
interpretation (qualitative results) of the indicators
(quantitative results). We consider that this proposal refines
and empowers the M2K methodology by including a
measurement methodology for its output. As future work, we
will study the correspondence of these indicators with the set
of refactorings defined in [2]. Some refactorings increase
significantly our indicators and, conversely, others -despite
they are repeatedly applied- do not.

Software engineers have agreed that there is a
correspondence between the resulting indicators and the
transformation degree between the OM and the RM, both
from a design viewpoint. Although we evaluate the
application in real case studies, we consider that it can be
validated in larger applications. We also consider that the
comparison between CCDs can be further refined by taking
into account different distances between attributes and
methods as two different weights. We will work to enforce the
mathematical fundamentals of the approach in order to change
the concept indicator by distance. Finally, we will prove that
our approach fulfills the nine properties of Weyuker in order
to be considered as a software metric [14].

REFERENCES

[1] Levenshtein, V. (1966). Binary Codes Capable of Correcting
Deletions, Insertions and Reversals. Soviet Physics Doklady, 10:707.

[2] Cassol, I. and Arévalo, G. (2015). M2k an approach for an object-
oriented model of c applications. In Evaluation of Novel Approaches
to Software Engineering (ENASE), 2015 International Conference on,
pages 250–256.

[3] Chidamber, S. R. and Kemerer, C. F. (1994). A metric suite for object-
oriented design. IEEE Transactions on Software Engineering,
20(6):293–318.

[4] Mohagheghi, P. and Dehlen, V. (2009). Existing model metrics and
relations to model quality. In Software Quality, 2009. WOSQ ’09.
ICSE Workshop on, pages 39–45.

[5] Lorenz, M. and Kidd, J. (1994). Object-oriented software metrics - a
practical guide.

[6] Shatnawi, A., Seriai, A. D., Sahraoui, H., & Alshara, Z. (2017).
Reverse engineering reusable software components from object-
oriented APIs. Journal of Systems and Software, 131, 442-460.

[7] Mohagheghi, P., Dehlen, V., and Neple, T. (2008). Towards a tool-
supported quality model for model-driven engineering. In Proc. 3rd
Workshop on Quality in Modelling (QiM’08) at MODELS, volume
2008, page 15.

[8] 8 Filó, T. G., Bigonha, M., & Ferreira, K. (2015). A catalogue of
thresholds for object-oriented software metrics. Proc. of the 1st
SOFTENG, 48-55.

[9] Xing, Z. and Stroulia, E. (2005). Umldiff: an algorithm for object-
oriented design differencing. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering, pages
54–65. ACM.

[10] Lin, Y., Gray, J., and Jouault, F. (2007). Dsmdiff: a differentiation tool
for domain-specific models. European Journal of Information Systems,
16(4):349–361.

[11] Ohst, D., Welle, M., and Kelter, U. (2003). Differences between
versions of uml diagrams. In Proceedings of the 9th European Software
Engineering Conference Held Jointly with 11th ACM SIG-SOFT
International Symposium on Foundations of Software Engineering,
ESEC/FSE-11, pages 227–236, New York, NY, USA. ACM.

[12] Brun, C. and Pierantonio, A. (2008). Model differences in the eclipse
modeling framework. UPGRADE, The European Journal for the
Informatics Professional, 9(2):29–34.

[13] Srinivasan, K. and Devi, T. (2014). A complete and comprehensive
metrics suite for object-oriented design quality assessment.
International Journal of Software Engineering and Its Applications,
8(2):173–188.

[14] Aggarwal, K., Singh, Y., Kaur, A., and Malhotra, R. (2007). Software
design metrics for object-oriented software. Journal of Object
Technology, 6(1):121–138.

[15] Todd, A., Nourian, M., & Becchi, M. (2017, December). A Memory-
Efficient GPU Method for Hamming and Levenshtein Distance
Similarity. In High Performance Computing (HiPC), 2017 IEEE 24th
International Conference on (pp. 408-418). IEEE.

[16] Kolpakov, R. and Kucherov, G. (2003). Finding approximate
repetitions under hamming distance. Theoretical Computer Science,
303(1):135–156.

TABLE VIII: Results of our approach applied to case studies.

 University Calculator Bank MovieClub AssemblyLine BallotBoxes LightBulbs Elevators

Dmax(OM, RM) 10 10 4 7 7 15 12 16
D(OM, RM) 6 8 0 1 1 5 4 4
D(COMi, CRMi) 8 7 6 0 4 11 7 16

Dmax(COMi, CRMi) 22 9 30 0 26 51 65 77
Modified CCDs 80% 90% 50% 57% 57% 67% 67% 63%
Difference between CCDs 36% 78% 20% 0% 15% 22% 11% 21%

Difference between models 60% 80% 0% 14% 14% 33% 33% 25%

Global distance 55% 80% 10% 8% 15% 29% 26% 23%

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.3(1), pg.: 27-33

33

[17] Kurtz, S., Choudhuri, J. V., Ohlebusch, E., Schleiermacher, C., Stoye,
J., and Giegerich, R. (2001). Reputer: the manifold applications of
repeat analysis on a genomic scale. Nucleic Acids Research,
29(22):4633–4642.

[18] Norouzi, M., Fleet, D. J., and Salakhutdinov, R. R. (2012). Hamming
distance metric learning. In Pereira, F., Burges, C. J. C., Bottou, L., and
Weinberger, K. Q., editors, Advances in Neural Information
Processing Systems 25, pages 1061–1069. Curran Associates, Inc.

[19] Charikar, M. S. (2002). Similarity estimation techniques from rounding
algorithms. In Proceedings of the thiry-fourth annual ACM symposium
on Theory of computing, pages 380–388. ACM.

[20] Jegou, H., Douze, M., and Schmid, C. (2011). Product quantization for
nearest neighbor search. IEEE transactions on pattern analysis and
machine intelligence, 33(1):117–128.

[21] Torralba, A., Fergus, R., and Weiss, Y. (2008). Small codes and large
image databases for recognition. In Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8.
IEEE.

[22] Robinson, D. J. (2003). An introduction to abstract algebra. Walter de
Gruyter.

