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Abstract: When refactoring high-level models, measuring the differences between the original and the refactored 

model helps the designers know how the original model was modified and if the transformation added more 

complexity or/and improved the model. In our previous work, we developed the M2K methodology that parses 

legacy C code, maps it in a high-level model to represent the domain concepts and proposes a refactored model to 

improve the mapped design. Based on both models, we propose a distance to indicate, from the domain viewpoint, 

if the original identified concept keeps the same structure or, conversely, if the refactorings modify the concepts 

represented in the original model. Our approach is based on models generated through the M2K methodology and 

does not take into account syntactical variations between models. To show the applicability and the validation of 

our approach, firstly we show how we apply it on a trivial case study. Then, we show the results of applying our 

proposal to thirteen case studies (small-scale real projects implemented in C) that were also used to validate the 

M2K methodology. 
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I. INTRODUCTION  

Building high-level models is a key discipline within the 
context of Software Engineering. Once the applications are 
designed and implemented, it is a common practice that the 
high-level models of existing applications are modified by 
designers in order to improve or upgrade their designs. When 
the result of the reverse engineering generates two models (an 
original and a modified one), it is interesting to detect the 
degree or percentage of modifications between them. This 
feature is relevant if both models keep the same structure by 
defining the same domain concepts despite the 
transformation. Object-oriented models may be mapped as 
graphs. Thus, it would be possible to apply isomorphism 
algorithms between two graphs in order to look for 
similarities. In our case, as the object-oriented models we are 
measuring have no relationships between classes, we map 
them as strings (an object-oriented element concatenation). 
Our proposal uses the Levenshtein distance [1] as a starting 
point and measures the distance between object-oriented 
models from a domain viewpoint. 

The models are generated based on C source code using 
the M2K methodology [2]. 

This article is structured as follows: Section 2 summarizes 
the main concepts of M2K, which is a methodology that, by 
generating high-level models, allows us to understand the 
application structure of C source code. Section 3 summarizes 
the work related to our approach. Section 4 details the 
definition of the distance we introduce in this paper. Section 5 
shows in detail how the distance is applied to a specific case 

study and the result of applying our proposal to a set of case 
studies. Section 6 concludes our paper. 

II. M2K METHODOLOGY 

M2K is a methodology that generates a high-level model 
from legacy C code [2]. It has two phases: Source code 
Analysis (supported by a tool termed ModelMapper) and 
Expert mapping. 

The Source code Analysis is an automatic phase through 
which the code is parsed and mapped into a high-level model. 
The result of this phase is a group of Class Candidates 
Definitions (CCD), with no relationships between them. Each 
CCD represents a domain-specific concept and is 
implemented as a pair of elements (A, M), where A is a set of 
attributes and M is a set of methods. 

The Expert mapping phase is manual and requires an 
expert who refactors the group of CCDs in order to improve 
the high-level model from a design viewpoint. In this paper 
we refer to the group of CCDs obtained by the automatic 
phase as the Original Model (OM), and to the refactored set 
of CCDs as the Refactored Model (RM). Our proposed 
distance is calculated between OM and RM. 

III. RELATED WORK 

In software engineering, the activity of measuring the 
software, or any part of its life cycle, is a well-known 
discipline [3][4]. There are several works that propose a 
metric of a given object-oriented (OO) model [5][6]. These 
ones measure a software artifact (or a process) and assign a 
meaning (e.g. coupling, complexity, cohesion) to what they 
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measure [7]. These metrics apply at the source-code and at the 
design levels [4]. On the other hand, the definition of 
thresholds for the majority of software metrics is a complex 
task [8]. Xing et al. [9] and Lin et al. [10] works also propose 
an approach to the identification of certain types of 
refactorings between two UML models. Ohst et al. [11] 
address the problem of how to detect and visualize differences 
between versions of UML documents. The most significant 
disadvantage of this approach is that the algorithms and tools 
are document type-specific. On the other hand, Brun et al. [12] 
propose a method -and a tool- where models are serialized into 
vectors of software entities to visualize the changes in the 
model. 

Our proposal differs from other works in three main 
aspects: a) we focus on comparing two OO models, b) instead 
of applying a meaning to the measurement, we use the results 
to compare the models and infer their differences, and c) we 
focus on creating a measurement to know how much the M2K 
Methodology modifies the OM. 

According to Srinivasan and Devi, ”the software metrics 
researchers proposing a new metric have the trouble of proof 
to show that the metric is adequate for measuring the 
software” [13]. Thus, we consider that our approach is not a 
metric from a theoretical viewpoint. It fulfills the nine 
Weyuker properties [14] but the respective proof is a future 
work. 

Several software applications from bioinformatics and 
automatic linguistic recognition systems require comparing 
long strings to find similar subsequences. Two similarity 
metrics frequently used by these applications are the 
Hamming and Levenshstein distances [15]. Kolpakov et al. 
propose a general viewpoint about the application of 
Hamming distance to computer science problems [16]. For 
example, Kurtz et al. apply this distance to find repetitive 
DNA structures [17]. Norouzi et al. propose a mathematical 
framework to find semantic similarities between images [18]. 
It evaluates the Euclidean [19] and the Mahalanobis distances 
[20] as a starting point of the proposal. The conclusion of this 
comparative analysis is the same as our proposal: the 
Hamming distance is a useful mathematical tool to measure 
similarities between entities. Torralba et al. propose a similar 
approach to the Norouzi et al. work but from an algorithmic 
viewpoint [21]. Hamming distance is defined in same-length 
words [22]. As in our proposal the measured models (or 
CCDs) usually have not the same length, we use Levenshtein 
distance that, in its definition, let measure two words with 
different length.  

From our knowledge, there is no technique or 
methodology that compare two OO models using the 
Levenshtein distance in order to measure a transformation 
degree or difference between them. 

The indicators designed in this approach to measure the 
transformation percentage between an OM and a RM is the 
main contribution of this paper. 

IV. OUR PROPOSAL 

In this section, we summarize briefly the Levenshtein 
distance definition, propose new measurements and explain 
how they are calculated. In this work, Levenshtein distance is 

applied to two types of words that: a model (OM and RM) or 
a CCD. It depends on the target software artifact. 

A. Levenshtein Distance 

The Levenshtein distance between two strings/words a, b 
(of length |a|  and |b| , respectively) is given by 
𝑙𝑒𝑣𝑎,𝑏(|a|, |b|) where: 

 

𝑙𝑒𝑣𝑎,𝑏(i, j)

{
 
 

 
 

max(𝑖, 𝑗)     𝑖𝑓 min(𝑖, 𝑗) = 0,

𝑚𝑖𝑛 (

𝑙𝑒𝑣𝑎,𝑏(i − 1, j) + 1

𝑙𝑒𝑣𝑎,𝑏(i, j − 1) + 1

𝑙𝑒𝑣𝑎,𝑏(i − 1, j − 1) + 1(𝑎𝑖≠𝑏𝑗)
)
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

 
and 1(𝑎𝑖≠𝑏𝑗)is the indicator function equal to 0 when ai = 

bj  and equal to 1 otherwise. 
This function may also be referred to as edit distance and 

indicates the minimum number of single-character edits 
(insertions, deletions and substitutions) required to change 
one word into the other. 

For example, the Levenshtein distance between the word 
”intentions” and ”execution” is 6, since the following six 
edits change one into the other, and there is no way to do it 
with fewer than six edits: 

 

1. intentions → *ntentions (deletion of i) 

2. ntentions → etentions (substitution of n with e) 

3. etentions → exentions (substitution of t with x) 

4. exentions → execntions (insertion of c) 

5. executions → executions (substitution of n with u)  

6. executions → execution (deletion of s). 

 
This algorithm fits better to our proposal in comparison 

with the Hamming distance. For example, given two words 
with the same length ”flaw” and ”lawn”, Levenshtein distance 
equals 2 (deletion of ”f” from the front and insertion of ”n” at 
the end), meanwhile the Hamming distance related to this 
example equal 4. Letters ”a” and ”w” are present in both 
words and the Hamming distance is not able to take this into 
consideration. In that way, we consider that Levenshtein 
distance performs better. 

Software entities mapping applying Hamming 
distance. The word (that may be a model, a CCD, a set of 
attributes or a set of methods) is implemented as a vector. 
Each element of the original vector, that remains its concept 
after the refactoring process, will be in the same index of the 
refactored vector. In the same way, if an element of the 
original vector changes its concept from a domain viewpoint, 
it will be in a different index of the refactored vector. 
Accordingly, given two different words A = (a1, a2, … , an) 

and B = (b1, b2, … , bm), where ai ≠ bi for each i, A’and B

’ are vector implementations of A and B, A’= <a1, a2, … , 

an, null1, null2,…, nullm> and B’= <null1, null2, … , nulln, 

b1, b2, … , bm>. For example, given the words A = (C, A, N) 
and B = (M, E, N) where B is the RM of A, the vector 
implementations of A is A’ = (C, A, N, null1, null2) and the 
vector implementation of B is B’ = (null1, null2, N, M, E). 
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Concept N is in the same index position (3) of A’ and B’ 
because it represents the same concept in both models (the 
OM and the RM). In the others index position (1, 2, 4 and 5) 

A’[i] ≠ B’[i] because the Refactoring phase deleted the 

concept in the OM (index position 1 and 2) or added it in the 
RM (index position 4 and 5). 

To simplify the reading of the paper when we refer to a 
word, we also refer to its vector implementation, indistinctly. 

Equality between software entities. We consider that 
two elements (the original and the refactored) are equal when 
they represent the same concept from a design viewpoint. 
From an implementation viewpoint, the original element is 
equal to the refactored element when the refactored one was 
created by Modelmapper (the tool that supports the M2K 
methodology) in the Source code analysis phase, even when 
the Expert mapping phase removes arguments or refactor the 
name of the original element. 

Maximum distance between software entities. To 
calculate our measurement, we define the maximum distance 
between software entities (a model or a CCD). The maximum 
distance is derived from the Levenshtein distance and 
supposes that both entities are completely different. In 
numerical terms, we consider this difference as a maximum 
distance. 

Given two software entities A and B where A = (a1, a2,  … 

, an) and B = (b1, b2, … , bm), being n ≠ m and ai ≠ bi for each 

i, with i = min(n; m), then: 
 
 Dmax(A, B) = max(n, m) 
 
We use this distance as a reference value. The 

measurement we propose is used to indicate how close or how 
far both models (or both CCDs) are from their maximum 
distance. 

B. Distance definitions 

Following, we enumerate our proposed definitions of 
indicators: 

1. Distance between models: It is a distance between 
OM and RM. We can infer that if d(OM, RM) = 0, then they 
keep the same structure by defining the same domain 
concepts. If d(OM, RM) >> 0, we can infer that the 
transformation process modified significantly the OM from a 
design viewpoint. 

2. Distance between CCDs: Given C1 and C2, where 

C1 ∈ OM and C2 ∈ RM are CCDs, C1 and C2  representing 

the same domain concept, we define d(C1, C2) as a number 
that indicates the transformation degree between C1 and C2. If 
d(C1, C2) = 0, we can infer that the transformation process did 
not modify the concept represented in C1 in any of its aspects 
or features. In fact, this indicator is a list of distances that has 
as many elements as pairs of (C1, C2). Given an OM and a RM, 
there is a Distance between CCDs for each pair of CCDs (C1, 
C2). 

3. Difference between models: It shows the difference 
in percentage between models, when compared to the 
potential maximum distance. Two identical models differ in 
0%, while two completely different models differ in 100%. 

4. Difference between CCDs: It shows the same 
indicator as the previous item but referring to two given 
CCDs. As it is a percentage related to the indicator Distance 
between CCDs, this indicator is a list. 

To ease the analysis of the previous indicators, following 
we propose a global distance that includes and summarizes 
them. 

5. Global distance: This indicator includes and 
integrates the previous indicators, and it is proposed in order 
to offer a general view. It is a weighted percentage between 
the difference between models and the difference between 
CCDs, considering the number of modified CCDs. The goal 
of this indicator is to summarize the previous ones. 

C. Distance calculation 

Once we have defined each indicator, we proceed to 
explain how to calculate them. 

1. Distance between models: Let A be the OM and B, 
the RM, where model A = (a1, a2, … , an) and B = (b1, b2, … , 
bm) are vectors of CCDs. We consider that ai = bi when both 
CCDs represent the same concept. In this case di(ai, bi) = 0. 
Finally, by applying the distance defined in Section IV.A we 
obtain this indicator. Table I shows a small example where 
Distance between models is equal to 2. 

 
TABLE I: Example of the distance between models. 
  

 
Model A Model B Distance 

C
C

D
s 

CCD A_1 CCD A_2 0 

CCD B_1 CCD B_2 0 

 CCD C_2 1 

CCD C_1  1 

 d(A, B) 2 

 
2. Distance between CCDs: Given C1 and C2, where 

C1 ∈ OM and C2 ∈ RM, representing C1 and C2 the same 

domain concept, we define four words to calculate d(C1, C2): 
 
J: contains the vector of C1 attributes. 
K: contains the vector of C1 methods. 
M: contains the vector of C2 attributes. 
N: contains the vector of C2 methods. 
 
Thus: 
 d(C1, C2) = d1(J, M) + d2(K, N) 
 
From a domain viewpoint, Ji = Mi if both attributes 

represent the same concept, and Ki = Ni if both methods 
represent the same functionality. This means that even if there 
can be syntactical differences between Ki and Ni, if both 
represents the same functionality, the distance is 0. Table II 
shows a simplified example where Distance between CCDs is 
3. 

 
TABLE II: Example of the distance between CCDs. 
 

 

CCD C_1 CCD C_2 Distance 

C
C

D
s 

int a int a 0 

char b char b 0 

int c  1 

float d <generic> d 0 



University of Sindh Journal of Information and Communication Technology (USJICT) Vol.3(1), pg.: 27-33 

30 

 

 char e 1 

M
et

ho
ds

 int f1(a, b, c) int f1(a, b, c) 0 

f2(d) f2() 0 

char f3() char f3(m, n) 0 

 int f4(j, h) 1 

 d(C_1, C_2) 3 

 
It is worth explaining some important points related to 

Table II: 

• In the transformation process, the int c attribute was 
removed from CCD A and the char e attribute was 
added in CCD B. We understand that both generate a 
distance since there is a domain modification in the 
software entity. 

• We understand that the transformation of the float d 
attribute into <generic> d does not mean a domain 
modification. The new attribute <generic> d includes 
float d and as a result, it has not modified its domain 
meaning. 

• The transformation process has carried out a syntactical 
modification in f2(), by removing its argument. In this 
case, as the functionality of f2() has not changed, even 
when the approach removes the arguments we consider 
that there is no distance. We apply the same criteria to 
f3(). 

• The function f4() was created in CCD B, and as this 
behavior is not explicit in CCD A, a distance is 
generated. 

 
3. Difference between models: Let A be the OM and 

B the RM, where model A = (a1, a2, … , an) and B = (b1, b2, 
… , bm) are vectors of CCDs. We define it as follows: 

  

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝑜𝑑𝑒𝑙𝑠 =  
𝑑(𝐴, 𝐵)

𝐷𝑚𝑎𝑥(𝐴, 𝐵)
∗ 100% 

 
4. Difference between models: Let A be the OM and 

B the RM, where model A = (a1, a2, … , an) and B = (b1, b2, 
…, bm) are vectors of CCDs. We define it as follows: 

 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐶𝐶𝐷𝑠 =  
∑ 𝑑(𝐴𝑖 , 𝐵𝑖)
𝑛
𝑖=1

∑ 𝐷𝑚𝑎𝑥(𝐴𝑖 , 𝐵𝑖)
𝑛
𝑖=1

∗ 100% 

 
5. Global distance: Given OM = (COM1, COM2, …, 

COMn)  and RM = (CRM1, CRM2, …, CRMm) global distance 
is defined as follows: 

 

𝐷(𝑂𝑀 , 𝑅𝑀) =  (
𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝐶𝐶𝐷𝑠

𝐷𝑚𝑎𝑥(𝑂𝑀 , 𝑅𝑀)
∗

𝑑(𝑂𝑀, 𝑅𝑀)

𝐷𝑚𝑎𝑥(𝑂𝑀 , 𝑅𝑀)

+ (1 −
𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝐶𝐶𝐷𝑠

𝐷𝑚𝑎𝑥(𝑂𝑀, 𝑅𝑀)
)

∗
∑ 𝑑(𝑂𝑀𝑖 , 𝑅𝑀𝑖)
𝑛
𝑖=1

∑ 𝐷𝑚𝑎𝑥(𝑂𝑀𝑖 , 𝑅𝑀𝑖)
𝑛
𝑖=1

) ∗ 100% 

 
where Matched CCDs is the number of CCDs of the OM 

that remains in the RM without modifications in its concepts 
from a domain viewpoint. Thus, it indicates the amount of 
times that the indicator difference between CCDs is applied. 

V. VALIDATION 

As this paper improves an existing approach, we use the 
same case studies presented in our previous work [2] to 
validate our proposal. In that work we have used as case 
studies thirteen small-scale real projects implemented in C. 
They come from two different sources: a) ten case studies 
were designed with UML classes and implemented by a group 
of advanced computer science students and b) three case 
studies were downloaded from different Internet websites.  

A. Case studies 

To give the reader an overview of the case studies, Table 
III shows the number of software entities of eight case studies 
we chose because they are the most representative in our 
analysis using M2K. We selected them to ease the 
comprehension and to show how the indicators work on 
different scenarios. Table IV shows the number of classes 
stated in the documentation/specification, the number of 
CCDs in the OM and the number of CCDs in the RM. 

 
TABLE III: Number of software entities of each case 

study. 
 

TABLE IV: Number of classes in different analysis 
phases of each case study. 

 

 
 

TABLE V: Distance between Models for University 
case study. 

 

 

Model A Model B Distance 

C
ol

le
ct

io
n 

of
 C

C
D

s 

University.c  1 

Student_final Student 0 

Student.h Student_set 0 

 BubbleSort 1 

 Printing_Strategies 1 

 Printing_Best_10 1 

 Print_Avgs 1 

 Print_Exams 1 

 int f4(j, h) 1 

 D(A, B) 6 

 Dmax(A, B) 10 

Case Study LOC Functions ADT’s Vars Modules 

University 162 9 1 2 1 

Calculator 200 9 0 0 0 

Bank 216 5 7 2 0 

MovieClub 116 3 3 0 1 

AssemblyLine 168 8 2 0 2 

BallotBoxes 228 17 4 1 4 

LightBulbs 285 22 4 0 3 

Elevators 295 19 4 1 4 

Case Study 
UML 

classes Initial CCDs 
Refactored 

CCDs 

University 1 3 7 

Calculator 1 1 10 

Bank 2 2 2 

MovieClub 4 4 3 

AssemblyLine 3 4 3 

BallotBoxes 7 6 9 

LightBulbs 6 4 8 

Elevators 8 6 10 
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TABLE VI: Distance between Student Final and 

Student. 

 Student_Final Student Distance 

Atributes 

student_code: 
int 

student_code 
int 

0 

grade: int grade: int 0 

Methods   0 

 D(Student_Final, Student) 0 

 Dmax(Student_Final, 
Student) 

4 

 

TABLE VII: Distance between Student.h and Student_set. 

 

 Student.h Student_set Distanc
e 

A
tr

ib
ut

es
 grades: int grades: int 0 

 ELEMENTS: int 1 

 STUDENTS: int 1 

 finals: int 1 

 averages: int 1 

M
et

ho
ds

 

init_finals(…) init_finals(…) 0 

search_exam_per_student(
…) 

search_exam_per_studen
t(…) 

0 

print_exam_per_student(…)  1 

average_per_student(…) average_per_student(…) 0 

print_average_per_student(
…) 

 1 

averages(…) averages(…) 0 

BubbleSort(…)  1 

print_Best_10_averages(…)  1 

D(Student.h, Student_set) 8 

 Dmax(Student.h, Student_set) 18 

 
In the following section, firstly we show in detail how our 

proposal is applied to one of the case study of the eight ones 
mentioned previously. Then, we show the indicators of the 
chosen eight case studies performing a brief analysis. 

B. Case study University 

University is an application that takes information from 
two arrays in order to obtain a summary of the students 
information.  

Distance between models. Table V shows the OM 
(Model A) of University generated by the automatic phase of 
M2K Methodology, and the RM (Model B) resulting from the 
Expert mapping phase. In this table we observe that the 
transformation process generated a Distance between models 
equals to 6. Since University.c no longer exists, the 
transformation process generated 5 extra CCDs to keep the 
same behavior of the model. 

There are 2 CCDs (Student_Final and Student.h in 
Model A) where no transformations were applied. According 
to our proposal, they must be analyzed by using the indicator 
of Distance between CCDs (Tables VI and VII). 

Distance between CCDs. Table VI shows the distance 
between the CCDs Student_Final and Student.h. We 
observe that the transformation process only generated a 
naming refactoring of each CCD. Although it is an 

improvement that eases the comprehension of the model, we 
do not consider that this refactoring implies a transformation 
from the domain viewpoint. Thus, the distance between these 
two CCDs is equal to 0. 

Table VII shows the distance between the CCDs 
Student.h and Student_set. We observe a relevant variation 
from a design viewpoint. Four attributes were added in the 
CCD Student_set and four methods were deleted from the 
CCD Student.h. The transformation process corresponds to 
the distance between these two CCDs. 

Difference between models. As Dmax(A, B) = 10 (in Table 
V), the percentage of difference between models is equal to 
60%. 

Difference between CCDs. As the sum of all distances 
between CCDs is equal to 8 (8+0) and the sum of all 
maximum distances between CCDs is equal to 22 (18+4), the 
percentage of difference between CCDs is equal to 36%. 

Global distance. As Matched CCDs is equal to 2, the 
global distance is equal to 55%. 

We consider that the resulting indicators correspond to the 
transformations that the M2K Methodology generates from 
OM to RM. More specifically, the fact that Global distance 
is equal to 55% shows the relevant transformations between 
models, and between CCDs Student_final and Student.  

C. Global case studies analysis 

Table VIII shows the resulting indicators of the selected 
case studies. To ease the comparison between case studies, we 
include the resulting measured distances of the case study 
University (explained in the previous section).  

Following some analysis related to Table VIII are 
suggested: 

• University: We observe that even when the modified 
CCDs are high (80%), the refactorings in the classes were 
small (36%) but the impact of the analysis is given in the 
models (60%) in an intermediate value. Based on these 
indicators, we can infer that the OM has only been affected in 
a 50%. 

• Calculator: In this case study, we observe that all 
values in the last four indicators are high. This situation is 
normal because the applied refactorings implemented a 
Command pattern to abstract the calculator operations, and the 
number of added classes was the same as the number of 
needed operators. 

• Bank: Differently to the previous case study, this 
case study shows low values in its indicators, confirming that 
there is no difference between models. The Global distance 
measures the difference between CCDs by taking into account 
the percentage of modified CCDs. We consider that the result 
is coherent with what the expert analyzed for the test case. 

• MovieClub: Conversely to the previous case study, 
our approach is applied on a case study where there is no 
difference between CCDs and there is a difference between 
models. Thus, the final indicator is composed only of the  
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difference between models by taking into account the 
percentage of modified CCDs. 

• AssemblyLine: We consider that this case study is 
similar to Bank case study except for the Difference between 
models indicator. The final indicator shows the 
correspondence between both percentages in the differences 
(Difference between CCDs and Difference between models). 

• BallotBoxes, LightBulbs and Elevators: These case 
studies are similar from the indicators viewpoint. We include 
them in order to show case studies with average results and to 
enforce the proposal validation. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we propose a set of indicators that measure 
the transformation degree between two models. Although it is 
applied to the M2K methodology, we consider that it can be 
used for any pair of object-oriented models. Our approach 
offers four partial indicators and a global one. The Global 
distance includes and weighs two aspects, expressed in the 
partial indicators: the distance between models and the 
distance between CCDs. The percentages, that our proposal 
provides, measure the transformation degree between two 
models and ease the comprehension of the transformation 
itself. The indicators let us identify if the transformation 
process was applied to the model, to its members, or both. It 
is worth to remark that this proposal does not offer any 
interpretation (qualitative results) of the indicators 
(quantitative results). We consider that this proposal refines 
and empowers the M2K methodology by including a 
measurement methodology for its output. As future work, we 
will study the correspondence of these indicators with the set 
of refactorings defined in [2]. Some refactorings increase 
significantly our indicators and, conversely, others -despite 
they are repeatedly applied- do not. 

Software engineers have agreed that there is a 
correspondence between the resulting indicators and the 
transformation degree between the OM and the RM, both 
from a design viewpoint. Although we evaluate the 
application in real case studies, we consider that it can be 
validated in larger applications. We also consider that the 
comparison between CCDs can be further refined by taking 
into account different distances between attributes and 
methods as two different weights. We will work to enforce the 
mathematical fundamentals of the approach in order to change 
the concept indicator by distance. Finally, we will prove that 
our approach fulfills the nine properties of Weyuker in order 
to be considered as a software metric [14]. 
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