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Abstract: This paper used the Newton-type Method for estimating a single root of nonlinear equations. This method 

is iterative method and also known as one of the open methods. Open method are fast converging method as 

compared to closed method but the convergence is not guaranteed. Since open methods are fast convergence 

methods that is why they are widely used in Applied Mathematics. The proposed numerical technique is second 

order of convergence, and which is based on Newton Raphson method. The developed algorithm is compared with 

the well-known Newton Raphson Method and results show that our developed method is much better than the well-

known method. Furthermore, examples are also give in order to give more detailed about the present work and 

reader will come to know that why developed method is much better as compare to well-known method.  
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I. INTRODUCTION 

In this paper, we have developed an iterative method in 

order to find a simple root x* of the nonlinear equations  

 

𝑓(𝑥) = 0 

 

where f: D⊂R→R is a scalar function on an open interval D. 

The design of iterative formulae for solving nonlinear 

equations f(x) is a very interesting and important work in 

numerical analysis. Many iterative methods have been 

developed using different techniques including Taylor 

series, decomposition method, homotopy techniques, 

quadrature formulae [1-7]. It is observed repeatedly that the 

classical Newton Raphson method is one of the best 

iterative methods for solving the nonlinear equations                        

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
  

 

This method is fast converging and second quadratically 

converge technique but is not reliable as it has pitfall [8]. 

However, it is most useful and vigorous numerical 

techniques. Recently, it is seen in literature that a few 

modifications in Newton Raphson method has been 

observed using Taylor series and difference operator for 

finding a single root of a nonlinear equation [9-10]. 

Consequently, we have suggested a new iterated method 

using references [11-13] and Newton Raphson Method to 

find the real root of nonlinear equations. The purpose of 

new iterated method is to introduce a mathematical tool for 

solving all possible roots of polynomials of higher degree 

functions and transcendental functions. It is shown that the 

proposed method has second order of convergence. C++ and 

MATLAB have been used to explain the results of second 

order iterated method.  

 

II. ITERATIVE METHOD 

By using the Newton Raphson Method, such as   

𝑥 = 𝑥0 −
𝑓(𝑥0)

𝑓`(𝑥0)
 

For better approximation, we are taking average of 
1

𝑓`(𝑥)
 at point (𝑥0, 𝑥1), we get 

𝑥 = 𝑥0 −
𝑓(𝑥0)

2
[

1

𝑓`(𝑥0)
+

1

𝑓`(𝑥1)
] 

In general,  

𝑥 = 𝑥𝑛 −
𝑓(𝑥𝑛)

2
[

1

𝑓`(𝑥𝑛)
+

1

𝑓`(𝑥𝑛+1)
] 
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This is homerier method, where 𝑥0 is an initial guess 

sufficiently close to root. The homerier method can also be 

written as 

𝑥 = 𝑥𝑛+1 −
𝑓(𝑥𝑛+1)

2
[

1

𝑓`(𝑥𝑛+1)
+

1

𝑓`(𝑥𝑛)
] 

Finally, we get 

𝑥𝑛+1 = 𝑦𝑛 −
𝑓(𝑦𝑛)

2
[

1

𝑓`(𝑦𝑛)
+

1

𝑓`(𝑥𝑛)
] 

Where 𝑦𝑛 = 𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
 

Hence this is new iterated method. 

 

III. CONVERGENCE ANALYSIS 

The following statement will be used to show that the New 

Developed Method has second order of Convergence. 

 

Proof: 

Using the relation 𝑒𝑛 = 𝑥𝑛 − a in Taylor series, 

therefore from Taylor series we estimate 

𝑓(𝑥𝑛), 𝑓`(𝑥𝑛) 𝑎𝑛𝑑 𝑓 (𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
) with using this condition 

c =  
𝑓``(𝑎)

2𝑓`(𝑎)
 and neglecting higher order terms in order to 

obtain required condition. Such as  

 

                 𝑓(𝑥𝑛) = 𝑓`(𝑎)(𝑒𝑛  + 𝑐𝑒𝑛
2)            − − − (𝑖) 

               𝑓`(𝑥𝑛) = 𝑓`(𝑎)(1 + 2𝑐𝑒𝑛)            − − − (𝑖𝑖) 

By using (𝑖) 𝑎𝑛𝑑 (𝑖𝑖) 𝑖𝑛 (2), we get 

𝑦𝑛 = 𝑒𝑛 −
𝑓`(𝑎)(𝑒𝑛  + 𝑐𝑒𝑛

2)

 𝑓`(𝑎)(1 + 2𝑐𝑒𝑛)
 

𝑦𝑛 = 𝑒𝑛−𝑒𝑛(1 + 𝑐𝑒𝑛)(1 + 2𝑐𝑒𝑛)−1 

𝑦𝑛 = 𝑒𝑛−𝑒𝑛(1 + 𝑐𝑒𝑛)(1 − 2𝑐𝑒𝑛) 

𝑦𝑛 = 𝑒𝑛−𝑒𝑛(1 − 𝑐𝑒𝑛) 

𝑦𝑛 = c𝑒2
𝑛 

Thus, 

𝑓(𝑦𝑛) = 𝑓`(𝑎)(c𝑒2
𝑛  + 𝑐3𝑒𝑛

4) 

 

           𝑓(𝑦𝑛) = c𝑒2
𝑛𝑓`(𝑎)(1 + 𝑐2𝑒𝑛

2)     − − − (𝑖𝑖𝑖) 

And  

𝑓′(𝑦𝑛) = 𝑓`(𝑎)(2c𝑒𝑛  + 3𝑐3𝑒𝑛
3) 

                  𝑓′(𝑦𝑛) = c𝑒𝑛𝑓`(𝑎)(2 + 3𝑐2𝑒𝑛
2)   − − (𝑖𝑣) 

By using (𝑖), (𝑖𝑖), (𝑖𝑖𝑖) 𝑎𝑛𝑑 (𝑖𝑣) 𝑖𝑛 (3), we get  

𝑒𝑛+1 = c𝑒2
𝑛 −

c𝑒2
𝑛𝑓`(𝑎)(1 + 𝑐2𝑒𝑛

2)

2
[

1

c𝑒𝑛𝑓`(𝑎)(2 + 3𝑐2𝑒𝑛
2)

+
1

𝑓`(𝑎)(1 + 2𝑐𝑒𝑛)
] 

 

𝑒𝑛+1 = c𝑒2
𝑛 −

c𝑒2
𝑛(1 + 𝑐2𝑒𝑛

2)

2
[

1

c𝑒𝑛(2 + 3𝑐2𝑒𝑛
2)

+
1

(1 + 2𝑐𝑒𝑛) 
] 

 

𝑒𝑛+1 = c𝑒2
𝑛 −

c𝑒2
𝑛(1 + 𝑐2𝑒𝑛

2)

2
[
1 + 2𝑐𝑒𝑛 + c𝑒𝑛(2 + 3𝑐2𝑒𝑛

2)

c𝑒𝑛(2 + 3𝑐2𝑒𝑛
2)(1 + 2𝑐𝑒𝑛) 

] 

 

𝑒𝑛+1 = c𝑒2
𝑛 −

𝑒𝑛(1 + 𝑐2𝑒𝑛
2)

2
[

1 + 4𝑐𝑒𝑛

(2 + 4𝑐𝑒𝑛 + 3𝑐2𝑒𝑛
2) 

] 

 

𝑒𝑛+1 = c𝑒2
𝑛 −

𝑒𝑛(1 + 𝑐2𝑒𝑛
2)

4
[(1

+ 4𝑐𝑒𝑛)(1 + 4𝑐𝑒𝑛 + 3𝑐2𝑒𝑛
2)−1] 

 

𝑒𝑛+1 = c𝑒2
𝑛 −

𝑒𝑛(1 + 𝑐2𝑒𝑛
2)

4
[(1 + 4𝑐𝑒𝑛)(1 − 4𝑐𝑒𝑛

− 3𝑐2𝑒𝑛
2)] 

 

𝑒𝑛+1 =
4c𝑒2

𝑛 − 𝑒𝑛(1 + 𝑐2𝑒𝑛
2)(1 − 16𝑐2𝑒𝑛

2)

4
 

𝑒𝑛+1 =
4c𝑒2

𝑛 − 𝑒𝑛(1 − 15𝑐2𝑒𝑛
2)

4
 

          𝑒𝑛+1 =
−𝑒𝑛 + 4c𝑒2

𝑛 + 15𝑐2𝑒𝑛
3

4
     − − −  (𝑣) 

for nonlinear equation such as 𝑓(𝑥𝑛) = 0, 𝑡ℎ𝑒𝑛 (𝑖) can also 

be written as  

𝑓`(𝑎)𝑒𝑛 + 𝑓``(𝑎)𝑒𝑛
2 = 0 

𝑒𝑛 =
−𝑓``(𝑎)𝑒𝑛

2

𝑓`(𝑎)
 

                             𝑒𝑛 = 𝑐𝑒𝑛
2        − − −  (𝑣𝑖) 

Note  𝑐 =
−𝑓``(𝑎)

𝑓`(𝑎)
 

𝐵𝑦 𝑢𝑠𝑖𝑛𝑔 (𝑣𝑖) 𝑖𝑛 (𝑣), we get  
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𝑒𝑛+1 =
−𝑐𝑒𝑛

2 + 4c𝑒2
𝑛 + 15𝑐2𝑒𝑛

3

4
 

 

              𝑒𝑛+1 =
3

4
c𝑒2

𝑛 +
15

4
𝑐2𝑒𝑛

3         − − − (𝑣𝑖𝑖) 

 

Hence this proves that the proposed iterative method has 

second order of convergence. 

 

IV. RESULTS AND DISCUSSION 

In this section, we have given a few examples in order to 

show that why our developed method is much better as 

compare to well-know method. These results are test by 

Newton Raphson Method. Numerical results are solved by 

using C++ programing and all calculations have been 

completed. We are using the accuracy criteria such as 

|𝑥𝑛+1 − 𝑥𝑛| < 1010. In Table-1, we have listed the results 

obtained by new method and compared with Newton 

Raphson Method. As we can observe from the Table-1 that 

the results obtained by our method is much better as it 

converges to the root much faster than the Newton Raphson, 

and in Table-1, it is also shown that the number of iterations 

of each method using different initial guess. Henceforth, 

from results it has been observed that the table-1 clearly 

shows that proposed method takes less number of iterations 

and gives better accuracy than Newton Raphson Method for 

solving nonlinear equations.  

 

TABLE-1 

FUNCTIONS METHODS ITERATIONS X A E % 

sin2x-x2+1 

𝒙𝟎=1 

Newton Raphson Method 

Newton-type Method 

5 

4 

1.40449 5.96046e-7 

1.44243e-5 

2x-lnx-7 

𝒙𝟎=6 

Newton Raphson Method 

Newton-type Method 

4 

3 

4.21991 4.76837e-5 

1.37329e-4 

e-x-cosx 

𝒙𝟎=4 

Newton Raphson Method 

Newton-type Method 

3 

3 

4.72129 1.21212e-3 

1.57356e-5 

2x2 -5x-2 

𝒙𝟎=0 

Newton Raphson Method 

Newton-type Method 

5 

3 

0.350781 2.98023e-8 

1.15931e-5 

Sinx-x+1 

𝒙𝟎=1 

Newton Raphson Method 

Newton-type Method 

5 

4 

1.93456 5.84126e-6 

6.85453e-5 

 

V. CONCLUSION 

We have composed a Newton-type iterative method 

with second order convergence obtained with Newton 

raphson method and numerical technique for estimating 

nonlinear equations. From Table-1, it has been shown 

that the efficiency of proposed method performs better 

than classical second order newton raphson method as 

iteration point of view and as well as accuracy 

perceived. Henceforth, from numerical results 

demonstrate that the proposed method is performing-

well, more efficient and easy to employ with reliable 

results for solving non-linear equations.  
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