
 

 

University of Sindh Journal of Information and Communication Technology  

(USJICT) 

Volume 6, Issue 4, December 2022 
 

ISSN-E: 2523-1235, ISSN-P: 2521-5582                                                 © Published by University of Sindh, Jamshoro 
Website: http://sujo.usindh.edu.pk/index.php/USJICT/                                         

 

Deep Inception-based Siamese Network for Active User Detection in 

Grant-free NOMA System 

Abdul Wahab Khokhar, Sundar Ali Khowaja, Syed Zafi Sherhan Shah, Shahnawaz Shah 
Department of Telecommunication Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan 

engr.awyaqoob@gmail.com, sandar.ali@usindh.edu.pk, zafisherhan.shah@faculty.muet.edu.pk, Shahnawaz@usindh.edu.pk 

 

Abstract— Recent years have seen a rapid growth and development in the field of wireless communication networks. Specifically, 

the grant-free access and non-orthogonal multiple access (NOMA) in connection with deep learning algorithms. Which facilitate 

massive machine-type communication devices and improve performance in terms of active user detection (AUD). The detection 

procedure in the grant-free NOMA systems is difficult due to the signal being received is superimposed. Existing studies focused on 

deep learning methods to increase the detection performance. However, the models show limitations over the computational 

complexity. Integration of LSTM and GRUs can only handle temporal modeling not the spatial correlations. The aim of this paper 

is to add inception modules with Siamese network. The proposed S-net goes wider instead of deeper which reduces computational 

complexity and increase detection performance Furthermore, parameter sharing characteristics of S-Net helps in generalizing the 

performance for large sparse matrices with varying SNR values. The comparative analysis show that the proposed S-Net outperforms 

existing state-of-the-art methods in an effective manner. 
Keywords—grant-free NOMA, Active User detection, Siamese network, inception modulus  

I. INTRODUCTION 

NOMA is a term describing the use of multiple access 

technique that utilize the bandwidth effectively in the fifth 

generation (5G) wireless communication networks [1]. Due 

to non-orthogonality mechanism, the received signal is 

represented as a superimposed information signal with inter-

user interference (IUI) of multiple devices in a cell. In order 

to reduce IUI, device specific non-orthogonal sequence is 

used by NOMA, and intentionally design non-linear receiver 

based on successive interference cancellation (SIC) and 

message pass algorithm (MPA) [2]. In addition to that when 

NOMA is used with grant-free mechanism, that is GF-

NOMA, it supports the massive connectivity to base station 

for massive machine-type communication (mMTC) devices 

(for instance, sensors, drones, robots and machines). The 

primary goal of mMTC is to establish connection among 

MTC devices and to keep massive connectivity in an uplink 

dominated network [3]. It has gained lots of attention due to 

its applications in wireless networks based on machine 

learning approach such as auto-driving, smart factories, and 

IoT to name a few. Massive connectivity is desirable in 

conventional wireless networks namely, narrow band 

Internet-of-Things (NB-IoT) and Long Term Evolution –

MTC (LTE-M) due to complex acknowledgement procedure 

lacked by orthogonal resource assignment to huge MTC 

devices [4]. Moreover, due to narrowband-width, it is unable 

to handle the massive access. Therefore, NOMA with grant-

free is getting popular for supporting massive access of MTC 

devices. Grant-free NOMA authorizes transmission of MTC 

devices excluding acknowledgement mechanism [5].  

As each device in the cell transmits data without any 

scheduling procedure, a process to identify the transmitting 

device (i.e., active device) in all the potential devices is 

desired. This procedure of identifying the transmitting device 

is termed as active user detection (AUD) [6], and it is 

important to carry out the mMTC, afterward, BS cannot 

ascertain for the device transmitting information signal and 

the grant-free NOMA has no meaning without the proper use 

of AUD process [7]. It is constituted from many existing 

studies that in a cell a few active devices send information. 

Due to defined fact that the AUD is required to get 

information of sparse active connections between passive 

devices, and this is taken as the problem connected to sparse 

recovery. 

Apart from conventional methods of detection, deep learning 

models are much efficient to achieve higher detection 

accuracy. The conventional neural network (CNN) model is 

the genuine classification models. CNN has a lot of accessible 

data for training section. The CNN model identifies on the 

base of a particular class in the training sets [8]. On the other 

hand, the architecture of Siamese network distinguishes 

irrespective of the listed class [9].  The deep learning models 

are dense and complex which limit the performance of the 

model in terms of training time [10-14]. For instance, a 

convolutional layer can be designed with a kernel size of 3x3, 

with input and output of 128 channels. In this scenario, each 

output channel is linked with the input channel and most of 

these connections are not used, or taken as redundant. Sparse 

connection can be used in deep network to cop this problem. 

This computational complexity limits the sparsity handling 

that is scalability is affected. Integration of long short-term 

memory (LSTM) with gated recurrent units (GRU) can only 

handle temporal modeling but lack in spatial correlation [15-

17]. Considering the aforementioned facts, inception module 

is used to address sparse connection. Inception module takes 

the small kernel size by 1x1, 3x3, and 5x5 [18].  

Xin et al [19] employ the MPA and solved AUD problems 

considering a single measurement vector. Choi et al. [12] 

submitted a scheme for detection named as compressed-

sensing (CS). The active user identified on the bases of the 

correlation between the signal received and unique sequence 

of the device. This scheme shows less performance as the 

system matrix (i.e., sparsity) get increases and high 
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correlation of columns. The listed parameters such as system 

matrix columns, correlation of columns, under-determined 

ratio and the number of devices has the direct relationship and 

increase as any other parameter goes up and system gained 

more complex computation. Jiang et al. [20] carried out the 

detection procedure by estimating the message pass 

algorithm (MPA). Cai et al. [21] used every other complex 

direction scheme of multipliers for estimation of active 

device by a one and multi-carrier NOMA system. Wei et al. 

[22] presented a superposition of reduction to approximate 

message passing to build the sparsity for active devices and 

the resultant sparsity is limited by the computational 

complexity. Fu et al. [23] recommended using a vector 

machine and sparse Bayesian learning to determine which 

device is active. In relation with compressed sensing 

mechanism, as the number of device keep on increasing 

which results the higher sparsity of the sensing matrix. 

Therefore, the detection is poor due to high up correlation in 

a highly sparsed matrix. This attained high computational 

complexity. [5], [12]. Thus, a framework which can manage 

the AUD issues when the number of devices increases and 

sparsity is required. Lately, deep learning frameworks have 

been widely applied in many applications due to its success 

rate concerned with the autonomous games, sentiment 

analysis, time-series data prediction, image grading, and 

pattern recognition. [24]. On-going research direction has 

already been started focusing on deep learning models 

pertaining to communication systems like wireless-

scheduling, MIMO detection, direction-of-arrival 

approximation. Cui et al. [25] Study proposed the mapping 

among the interference pattern and optimized scheduling in 

deep learning models. Shahab et al. [26] DNNs are applied 

focusing on NOMA symbols for encoding and decoding. Gui 

et al. [26] Study shows the identification and evaluating of 

channel in grant-free based NOMA by deploying the deep 

learning based architecture.  

Kim et al. [5] submitted DNNs based grant-free NOMA for 

AUD only. Miao et al. [27] study has been though about the 

previous data in NOMA system and LSTM network for 

AUD. Ye et al. [28] presented his work on DeepNOMA, a 

multi-user detection method based on deep learning for 

NOMA Systems. This deal with IUI and employ the muti-

task learning patterns for AUD, simultaneously. Emir et al. 

[29] this study uses LSTM to detect multi-user in grant-free 

NOMA scheme. Authors submit that proposed model on 

DeepMUD framework performs better than the conventional 

methods, and achieves better scalabilities. This framework 

confined the network to estimate the active user and can 

manage a great deal on sparse scenario and less sparsity as 

shown in results. In addition to that, the studies such as [21], 

[5], [28], and [29] emphasized over active user detection 

section, thus, do not leverage the computational complexity 

of the network. Despite all these methods, still there is a need 

to reduce the complexity and increase the accuracy of the 

system. Thus, this work presents a mechanism of adding 

inception modules in Siamese network to reduce 

computational complexity with increasing the accuracy of 

active user detection in grant-free NOMA systems. 

II. METHODOLOGY 

The assumptions and system model parameters for this study 

are based on [3] and [4], respectively. We have assumed that 

a single antenna has been used along with N devices to 

consider the uplink transmission scenario based on GF-

NOMA principles. Most of the devices are silent (inactive), 

while a few of them are active, thus, they need to transfer 

some information, accordingly. Based on the limited 

resources, the target is to identify the active users so that the 

resources could be efficiently utilized in the aforementioned 

scenario. Since GF-NOMA systems allow the transmission of 

information without granting permission, therefore, the 

problem of active user detection   is analogous to sparse 

signal recovery problem. The conventional systems used 

pilot systems at the base station to detect the active users, for 

instance, considering the demodulation reference signal in 

fourth generation communication system or new radio in fifth 

iteration of the communication systems. Nevertheless, for 

achieving the task, channel estimation techniques were 

widely used such as LMMSE estimator [30], [31]. However, 

in NOMA systems, the signals from various devices are 

superimposed within the identical resources, therefore, the 

channel estimation techniques do not work, appropriately. In 

this regard, this work proposes Siamese Network (S-Net) 

architecture for detecting active users in GF-NOMA systems. 

The proposed S-Net for active user detection is depicted in 

Figure 1. Let us denote the received NOMA signal with �̅�. 

The main aim of the proposed S-Net is to identify the active 

users from the channels using �̅� . In this regard, the 

formulation for mapping �̅�  to 𝜌𝑎𝑢𝑑  (Ω̂)  for active user 

detection and mapping from �̅�  to 𝜌𝑐𝑒  ( Ωh ) for channel 

estimation is shown in equation 1 and 2, respectively. 

Ω̂ =  𝜌𝑎𝑢𝑑(�̅�; Θ𝑎𝑢𝑑),  (1) 

Ωh =  𝜌𝑐𝑒(𝑦,̅ Ω̂; Θ𝑐𝑒)   (2) 

Where the notations Θ𝑎𝑢𝑑  and Θ𝑐𝑒  represent the network 

parameters for the task of active user detection and channel 

estimation, respectively. The task of S-Net is to learn the 

aforementioned mapping in order to maximize the success 

probability of active user detection while minimizing the 

error associated with channel estimation.  

Existing works have mostly used deep neural networks but 

they need to train two separate networks in order to map the 

active user detection and channel estimation, which is 
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impractical at times. Therefore, in this regard, the S-Net uses 

Siamese networks that trains two networks but in a single 

end-to-end fashion. The twin networks learn the patterns that 

are associated to both networks and jointly optimized the 

weights to achieve better performance. Furthermore, existing  

DNNs takes a lot of training time which is also not 

sustainable either for the environment or for the task itself. 

The S-Net employs inception module that not only makes the 

training faster but also sustainable for the detection task.  

Another problem that the S-Net solves is the generalization. 

Existing networks need to train multiple deep neural 

networks in order to adapt to the sparsity of active devices, 

which is also impractical as figure of active devices can exist 

in magnitudes of hundreds when considering 5G or 6G 

networks. To cope with this issue, the S-Net employs long 

short-term memory (LSTM) networks. As depicted in Figure 

1, the input to the LSTM networks is characterized by the 

parameters that are optimized, i.e. Θ𝑎𝑢𝑑  and Θ𝑐𝑒 . The 

assumption of S-Net suggests that the LSTM is capable of 

adapting to the changes to number of active devices, 

therefore, the sparsity can be handled, accordingly. 

Additionally, LSTM is also helpful in modeling temporal 

information while incorporating relevant information such as 

codewords, and rejecting insignificant information such as 

the one generated from inactive devices.  

Primarily, an LSTM cell is comprised of the two elements. 

First is the cell state ℓ𝑐
𝑗
 , and in the second place are three 

gates, i.e., forget gate ℓ𝑓
𝑗
, input gate ℓ𝑖

𝑗
, and output gate ℓ𝑜

𝑗
 as 

shown in Error! Reference source not found. (c). Input, 

output, and forget gates make up  

the three gates that the call state defines to be the memory to 

store data removed from preceding inputs throughout 

subsequent passes along these three gates. 

Establishing at each moves, the input 𝑧𝑗 and the past output 

𝑜𝑗−1  vectors, the output vector 𝑜𝑗  is produced as the 

information in the cell state is eliminates, writes and read at 

each gate. In proposed work, the features of active and silent 

devices are accepted or refused on the bases of input and 

forget gates, respectively. In addition to the cell state, the 

memory for storing feature-related data is incrementally 

changed to gradually improve device identification quality 

and CE.  

Operations at each gate in the 𝑗 − 𝑡ℎ LSTM cell is expressed 

as  

ℓ𝑓
𝑗

= 𝜎𝑔(𝑊𝑓𝑧𝑗 + 𝑈𝑓𝑜𝑗−1 + 𝑏𝑓),  (3) 

ℓ𝑖
𝑗

= 𝜎𝑔(𝑊𝑖𝑧
𝑗 + 𝑈𝑖𝑜

𝑗−1 + 𝑏𝑖),  (4) 

ℓ𝑜
𝑗

= 𝜎𝑔(𝑊𝑜𝑧𝑗 + 𝑈𝑜𝑜𝑗−1 + 𝑏𝑜),  (5) 

ℓ̅𝑐
𝑗

= 𝑡𝑎𝑛ℎ(𝑊𝑐𝑧𝑗 + 𝑈𝑐𝑜𝑗−1 + 𝑏𝑐),  (6) 

ℓ𝑐
𝑗

= ℓ𝑓
𝑗

⊗ ℓ𝑐
𝑗−1

+ ℓ𝑖
𝑗

⊗ ℓ̅𝑐
𝑗
,  (7) 

𝑜𝑗 = ℓ𝑜
𝑗

⊗ 𝑡𝑎𝑛ℎ(ℓ𝑐
𝑗
),   (8) 

Where 𝑊𝑓 , 𝑊𝑖 , 𝑊𝑜 , and 𝑊𝑐  ∈ ℝ𝛼×𝛼  act as the various 

weights corresponding to 𝑧𝑗, and 𝑈𝑓, 𝑈𝑖 , 𝑈𝑜, and 𝑈𝑐, ∈ ℝ𝛼×𝛼 

are various the weights corresponding with 𝑜𝑗−1 . Also, 

𝑏𝑓 ,  𝑏𝑖  , 𝑏𝑜 , and 𝑏𝑐  ∈ ℝ𝛼×1  act as the various biases, and 

sigmoid function is 𝜎𝑔(𝑥) =
1

1+𝑒−𝑥  and hyperbolic tangent 

function tanh(𝑥) =
𝑒2𝑥−1

𝑒2𝑥+1
 respectively.  

A. S-Net Architecture 

The S-Net architecture is depicted in Error! Reference 

source not found.(a). The architecture first converts the 

vector �̅� to a real vector and then fed to the fully connected 

layer. The output of the fully connected layer yields a one-

dimensional vector, i.e. �̿�  and is formulated according to 

equation 

�̿� =  �̌� + �̌�. �̅�   (9) 

Where �̌�  and �̌�  are weights and bias, accordingly. The 

vector �̿� is then passed through the Siamese network (batch 

normalization, ReLU, and inception layers) followed by 

another fully connected layer to generate the probability 

vector. The probability vector is then provided an input to the 

LSTM network followed by the decision making layer to  

classify between active and non-active users. There are two 

networks that are trained in Siamese fashion, suggesting that 

both networks have different initialization while all other 

parameters remain the same. The S-Net uses two 

optimization functions, the first is binary cross entropy while 

the second is the sigmoid function.  

 
Fig. 1. 1 

 
Fig. 1. 2 

 
Fig. 1. 3 

 
 

 

Fig. 1. (a) Siamese Network Architecture. (b) Inception Module I and II [9]. (c) LSTM module and fully connected layer 

 

(a) 

(b) 

(c) 
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III. SIMULATIONS AND DISCUSSIONS 

This section demonstrates the specifics of simulation setup, 

performance assessment, and comparative analysis using 

proposed S-net.  

A. Simulation Setup 

In the simulation, our work focuses on up-link grant-free 

NOMA systems. Which is taken into account by systems that 

use orthogonal frequency division multiplexing (OFDM). We 

set system’s bandwidth to have 500 subcarriers. The barrier 

of 15 kHz is fixed between each subcarrier (as per LTE/NR 

grade). We placed the quantity of devices to 100 (K=100), 

with every device transmitting a payload of 250 bits 

supported by QPSK modulation. In the training phase of S-

net for a channel model, we take into account the multipath 

Rayleigh fading model with tap coefficients. That vary 

separately for every device in the time domain. We calculate 

the path loss component 𝜁𝑖  taking 𝜁𝑖 = 128.1 +
37.6𝑙𝑜𝑔10(𝛾𝑖) [dB], where 𝛾𝑖  represents the separation 

between the BS and 𝑖 − th  device. A fixed noise spectral 

density of -170 dBm/Hz persists. We increase the spreading 

length of the LDS codeword to 𝐿 = 7 , and used an i.i.d 

Gaussian random variable to generate nonzero values for the 

LDS codebook.   

In our simulation for S-net, we fixed 107samples for training, 

105  samples for validation, and 105  samples for testing 

purpose. The training dataset’s active device count is drawn 

at random from the discrete uniform, distribution i.e., K ~ 

U(1,10). We used the Adam optimizer throughout the training 

phase, with learning rates of 𝜂𝐴 =0.0001, and 𝜂𝐶 = 0.001 for  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AUD and CE, respectively. We set the device activity 

probability threshold 𝜏 , the number of LSTM cells, the 

number of hidden layers, and the size of the training batch to 

0.5,3,256,1000 respectively. As the performance indicator for 

AUD and CE. We use normalized mean squared error 

(NMSE), which is calculated as the proportion of the 

successfully detected active devices, the AUD success 

probability 𝑃𝑠𝑢𝑐𝑐  and normalized MSE of the estimated 

channels of active device, respectively. 

 

B. Simulation Results  

We measured the performance comparison of s-net in terms 

of probability of success and validation loss. The probability 

of success with respect to the function of SNR (signal to noise 

 

 
 

(a)                                                                            (b)                                                                             (c) 

Fig. 2. Probability of success (𝑃𝑆𝑈𝐶𝐶) in relation to SNR for multiple K devices .(𝑎) 𝐾 = 7. (𝑏)𝐾 = 10. (𝑐)𝐾 = 15. 

 

 

Fig. 4 NOMA measurements are generated by arbitrary 

number of devices K ~ U (1,10) (SNR=10 dB) 

 

Fig. 3 NOMA measurements are generated by K=5 devices 

(SNR=10 dB) 
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ratio) as given in figure 2 for various number of devices. The 

results show that the s-net outperforms in comparison with 

the existing studies (such as AMP, LS-BOMP, MMSE-

BOMP, BRNN, D-AUD, BRNN, L-AUD etc.).  

 

 

Additionally, the validation loss as a function of training 

iterations of s-net as shown in figure 3 and 4. The results show 

that the s-net has low validation loss to each training 

iterations, and it keeps on decreasing as the training iteration 

goes on increasing. Moreover, the comparative analysis 

shows s-net has less validation loss as existing studies. 

However, the validation loss for all existing studies are 

unstable and diverge. And the convergence is not swift due to 

computational complexity as our proposed work. The 

probability of detection of existing models is higher for 

limited SNR and K number of devices. Whereas the proposed 

work shows a good detection as the SNR and K devices are 

increases with the existing studies.  

TABLE I. S-NET TRAINING TIME COMPARISON FOR VARIOUS 

SNR LEVELS 

SNR(dB) 0 5 10 15 20 
L-AUD[4](sec) 2.94

× 104 

3.28 × 104 3.74 × 104 5.42 × 104 7.41 × 104 

S-Net (sec) 1.37
× 102 

1.65 × 102 2.08 × 102 2.77 × 102 3.82 × 102 

 

In  

 

Additionally, the validation loss as a function of training 

iterations of s-net as shown in figure 3 and 4. The results show 

that the s-net has low validation loss to each training 

iterations, and it keeps on decreasing as the training iteration 

goes on increasing. Moreover, the comparative analysis 

shows s-net has less validation loss as existing studies. 

However, the validation loss for all existing studies are 

unstable and diverge. And the convergence is not swift due to 

computational complexity as our proposed work. The 

probability of detection of existing models is higher for 

limited SNR and K number of devices. Whereas the proposed 

work shows a good detection as the SNR and K devices are 

increases with the existing studies.  

TABLE I, we report the training time comparison with a 

recent approach Error! Bookmark not defined.Error! 

Reference source not found. for various SNR levels where 

runtime is  

taken in seconds. The results highlight that proposed S-net 

reduces the training time by almost a factor of 2 (x/2).  

IV. CONCLUSION 

In this paper, we propose a Siamese network architecture S-

Net for active user detection in grant-free NOMA systems. 

We employed two deep network architectures that consist of 

residual and inception blocks for parallel training to improve 

the neural expressive power followed by LSTM network to 

improve the neural expressive power for identification of 

active user devices. The key idea behind S-Net network 

architecture is to leverage the parameter sharing 

characteristics between Siamese network to improve the 

feature extraction process while generalizing the 

performance for large sparse matrices. The LSTM is then 

used to model the temporal characteristics for considering 

channel estimation for improving the active user detection 

process. The results demonstrate that the proposed method is 

effective for arbitrary number of devices with varying SNR 

values, respectively. Furthermore, the results also reveal that 

the probability success of the proposed method is higher in 

comparison to existing state-of-the-art works.  
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