
(c

University of Sindh Journal of Information and Communication Technology

(USJICT)

Volume 3, Issue 3, July 2019

ISSN-E: 2523-1235, ISSN-P: 2521-5582 © Published by University of Sindh, Jamshoro
Website: http://sujo.usindh.edu.pk/index.php/USJICT/

Systems Development Life Cycle Test Driven Technique and

Defect investigation

Soobia Saeed1, Asadullah Shaikh2, Muhammad Ali Memon3, Muhammad Ali Nizamani3
1Department of Software Engineering, University Teknologi Malaysia,

2College of Computer Science and Information Systems, Najran University Saudi Arabia,
3Institute of Information & Communication Technology IICT University of Sindh,

soobiasaeed1@gmail.com, asshaikh@nu.edu.sa, muhammad.ali@usindh.edu.pk, ma.nizamani@usindh.edu.pk

Abstract: Software testing is essential to build and improve programming. Software testing is the basic order of construction software.

Testing is undoubtedly expensive and involves the biggest individual time. Its supreme undertakings to conquer the costs and improve the

viability of decreasing software implementation and expand the hazardous aspects of the quality level. The examination explores the

convergence of test schemes with the counteractive action of imperfection and the following measurements used in Software Improvement

by which the execution and viability of the value product is achieved. The research study further emphasizes pre-testing and quantifiable

measurements of execution by which testing efforts can be broken down and the result can anticipate software execution within the

progress process. The research study provides information of interest to understand and apply test techniques as desired. It is essential to

make the correct decisions to embrace test techniques that fit the prerequisite of the venture. This study examines what works best together

with SDLC and provides center information on when and how best to apply them. The measurements decide the decreased deformity rates

to enhance execution by comparing each other's imperfection rates for each module or portion of usefulness. This assigns more assets and

time before organization to settle deformities, resulting in a reduced rate of imperfection after sending reported by end customers.

Keywords: SDLC, software, testing systems, clients

I. INTRODUCTION

Information technology becomes quicker and changing

quickly in every day, in this inciting development and

substantial foundation control is currently finished with

the assistance of developing and conjuring new

procedures and applying them and upholding the group to

execute these methods as day by day and rehashed

errands to meet client prerequisites and expanding trust

and business without a moment's delay by giving the

privilege tried and bug free item. Additionally estimation

is the vital to examine and figure execution through

testing measurements. It gives speediest reaction,

adaptable and savvy results [1].

A. Objective

The objective of research is to study and analyze the

following key factors:

▪ Study on test rates and profound kind

▪ Provide point of interest and first-hand information in

one document for apprentices to start testing the

actualities and processes of the world.

▪ Measurement of the use of measurements and their

viability to predict programming progress Study and

investigate fundamental SDLC stages to adjust

powerful

B. Comprehensive Study on Software Testing

Testing is a motion for QA. Testing is conducted as a

distinct and complete phase in routine advancement

methodology. Both robotic and manual test systems are a

day by now. The programming product is becoming

complicated and because it requires enormous manual

frameworks to be robotized, quality issues and testing are

becoming strict [3].

C. Software Testing Method

The effective software approach comprises of test

instances intended to form a sequence of developmental

steps that lead to a successful product. Strategies for

testing provide a road map for testing. It is the

management team's duty to create flexible software policy

that can be modified to pick the correct route. There are

four basic types of software testing, identified as follows,

which plays a critical role in the stage of growth.

D. Component Testing

Developers ensure that each system created is bug-free

before forwarding it to testing for the workers. In the

design stage, developers ensure device accidents based on

basic requirements and source code errors are removed.

Therefore, the exam team can check the customer's

viewpoint.

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.3(3), pg.: 128-134

129

E. Assimilation Testing

After successful unit testing, all sections are merged as

well as next levels are tested for integration testing.

Integration testing consists of two classifications

Underside up integration testing and Top Straight up

integration testing. The original type Bottom-up usually

starts with unit testing the reduced level than the higher

level I at first this particular. Age Modules and shapes.

Top down will be pursued next, generally starting with

top-level web theme testing and gradually as well as

lower-level web theme testing.

F. Top down Assimilation

The incremental strategy is to generate organization of the

programmed. The integration of the module is performed

by moving downwards, beginning with the fundamental

control module.

G. Bottom up Assimilation

Starting as the name suggests the approach from the

individual modules. The components are integrated from

the bottom up; the required processing is connected to the

integrated module, reducing the need for stubs.

H. System Testing

This test is carried out by the exclusive team when almost

all parts are incorporated in order to ensure that certain

quality standards are thoroughly tested. System testing is

important because it is the first test in software

development, that implementation is attempted in its

entirety indicating that the software is directed towards

the deployed setting, which is why the system can be

produced. It allows the specific testers to check and check

the earlier defined standard standards for that user

expectation and company requirements compliance along

with application specifications. System testing has any

major kinds that can be Recovery Testing, Protection

Testing, Graphical Program Testing, & Research

Compatibility.

I. Acceptance or User Acceptance testing

The quality assurance team carries out acceptance testing

to guarantee that the system works in manufacturing as

required and user expectations are defined. Not only is it

performed to check spelling, cosmetic flaws or not only

interface problems, it also drags out potential mistakes

that can crash the application system. It usually comprises

of client testing and recognition on the grounds of the

implementation created by other companies according to

their demands. From the inner scheme, the customer is

not much known, so it comes under the black box test

method. This test also called testing for quality assurance,

testing for validation, final testing and testing for

implementation.

II. SOFTWARE TESTING TYPES

A. Regression Testing

Regression testing is done to confirm this shift after bug

fixes have never impacted the system's other features.

Due to its gap finding in implementation after

modifications made, the significance of regression testing

is owing. The verification of the other parts of the

application probably did not affect the adjustments made

to fixes. When software is regressively tested, mitigate

raises the risk factor. During regression testing, the time

lines are useless because they are quick and concise to

verification norms

.

B. Alpha Testing

Whenever unit, incorporation and framework testing is

consolidated called Alpha testing. It is performed by the

two engineers and QA groups.

C. Beta Testing

When alpha testing is performed, beta testing is

conducted effectively. It is also referred to as Pre-release.

The application is mounted to execute and use the

application before the real launch for the broad spectrum

of test customers. User will install, operate and provide

feedback. Fixes will be produced before the real launch

during beta testing if bugs are reported by the test

customer. As more bugs are recorded, the high quality is

increased. Having greater quality improves the

organization and business ' customer satisfaction and

development.

D. Performance Testing

This test is recognized in terms of velocity, ability and

stability as the significant and compulsory testing in

software.

• Load Testing performs testing based on big information

input and peak user and information load. Most of the

load testing is done by automated instruments such as

Load runner, Apache JMeter, AppLoader, IBM Rational

Performance Tester.

• Stress testing — Check behavior in unusual

circumstances such as shutting down and restarting

network ports. Turn on or off the databases. CPU,

memory, consumption of server resources by distinct

procedures.

E. Usability Testing

Software system user friendliness testing defines the

precise user behavior to be conducted on the application

in order to fulfill their expectations. It is used to detect

mistakes merely through user view, activities and use

because of its black box testing. In five components I

Nielsen clarifies usability. e. People with efficiency,

errors / safety, ability to memorize, satisfaction, and

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.3(3), pg.: 128-134

130

capacity to learn. Nigel and Macleod indicated how it was

the requirement quality measure tested on the grounds of

software results. In addition, ISO-9241-11, ISO-13407,

ISO-9126 AND IEEE std, as well as quality models.

61012 In terms of characteristics and their sub-properties,

describe this test.

 F. User Interface Testing

It's the usability testing subpart. It is made up of GUI

testing. Ensures the necessary elements such as color,

alignment, size and other characteristics.

G. Security Testing

Ensure the safety of the software against vulnerabilities,

whether known or unknown. Security testing should

guarantee the primary elements such as integrity,

accessibility, permission, authentication, data security,

safe rules and regulations implemented injection faults,

problems with session management and buffer overflow

problems.

H. Portability Testing

It is possible to move the reusable and software from one

location to another [22]. Building executable (.exe) to test

software on other systems and second installing the

application from one machine to another is the

fundamental techniques used for portability testing. The

main focus of this form of testing involves general testing

of distinct environments through its use, computer

hardware, operating system and testing of browsers. The

prerequisites for this test must be to ensure that the testing

of the unit and integration has been carried out. The

software design should be based on the application

flexibility and its portability requirements. To ensure the

test environment will be established easily anywhere [4].

I. Testing disciplines

1. Specification based testing

It is possible to publish the test specification in either for

mal or non-

formal language. There are three kinds of specifications: p

rocess algebras, describe system conditions for interaction

 and active agent behavior; algebraic specifications, outlin

ed in terms of system operations applications; Model-

based specification, build explicit system state models and

 execute how to change the different activities.

2. Random testing

Test instances are selected randomly. Because of its

efficient outcomes and prompt finding of failures, it is

well recognized and adaptive among users. Whether,

there is no option for the test developer to select event in

sequences. It can lead to big numbers of test instances and

resource wastage owing to unworkable test instances. [17]

3. Test Metrics

Software bugs cost the bulk of the productivity of the

software. Identifying and removing early defects policies

can lead to reduced defect rates. It is often said that what

you can't measure can't be improved [15]. The standards

of measurement are known as test metrics. Estimate

software development activities ' usefulness and

efficiency. Throughout the test attempt, they are gathered

and constructed. Provide an objective measure of a

software project's achievement. Test metric comprises of

a few easy steps for quality outcomes and helpful

measures i.e. Keep it easy, make it meaningful, follow it,

and use it [21].

4. Deficiency

Deficiency is something that requires suitable and

concentrated testing to remove from code. Defect is

anything that the software dose does not mention but

reflects software. Defect is the unwanted result of the

software system [16]. During the development cycle,

there are two kinds of flaw management to regulate flaw

frequency in a documented manner to maintain track and

record for the future. These are:

Deficiency detection

III. RESEARCH DESIGN

The assessment is carried out in the type of exploratory

research. This sort of studies is generally aimed at gaining

and locating thoughts and insights about the chosen

subject [5].

Research is dependent on secondary funds, event surveys

and knowledge. Detailed research of the SDLC phases

and their measurement significance respected the

difference in defect reduction before and after deployment

of the software product. The study could concentrate on

your literature and research findings and findings.

Secondary research sources include study articles,

publications, and separate observations of consultants,

review and evaluation of literature. Literature search and

case analysis based on observed results during SDLC

focused primarily on evaluating and reporting the efficacy

of defects with adequate follow-up testing and tracking of

the development cycle. This research includes multiple

data resource analyzes and data and information

observations from both personal and external resources.

This research study sample is component of the bug

folder that was developed throughout the development

stage of the project. To evaluate the cost and effectiveness

of the test techniques used, the technique of defect

evaluation and error prevention is used. Exploring

techniques for over a year and undergoing latest and

formal methods of testing implementing improvement and

more domain exploration of test techniques.

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.3(3), pg.: 128-134

131

A. Collection of Data

The data collected for assessment and findings will be

based on the extensive life cycle of software development

and the process analysis of defects will be discussed on.

The basis of available data, irritating files and outcomes.

B. Methodology

In this fast-growing globe of software engineering, due to

the elevated expectations of the user and notable quality

products, as it is not simple. Indeed, it would be hard to

properly grip the project at this stage of globalization,

finish it on demand and enable it to be effective from the

restricted funds on time. The research assessment is

carried out on such a statistical basis as project experience

and results to narrow down the characteristics to be

regarded for the high quality and achievement of the

challenge Adaptive strategy has been developed in

software engineering to implement trending testing means

to improve software testing and efficient outcomes to

produce quality products. Effective techniques include

Test Driven Development (TDD). Requirements serve as

the basis for generating amount of test instances for

software parts to detect bugs and mistakes from each

component's information structures and functionality.

TDD emphasizes the idea of launching a test plan before

the software architecture is developed and continuously

monitoring and monitoring defects [11]. The vital

enhancement of SDLC-focused characteristics combined

with TDD method is used to solve the SDLC defect rate

merely by highlighting the following significant

strategies:

▪ Constraint gathering and analysis

▪ Development

▪ Communication

▪ Define Process

▪ Skills and knowledge

▪ Tools

▪ Panel work

▪ Craving to give something extra

IV. CONSTRAINT GATHERING AND ANALYSIS

The first stage in the creation of software is to

comprehend and list the demands according to user and

client needs. Requirement should be measurable from the

beginning of the SDLC and track able. This allows the

quality culture from the start of the creation of software.

For such outcomes, the test oriented method is

appropriate. Each requirement should have at least one or

more test cases with distinctive traceability identification.

Analyzing and measuring, selecting and planning metrics

to assess requirement modifications as follows:

A. Requirement unpredictability

Total # of requirements v/s total # of changed

requirements

= (# of Requirements Added + Removed + Changed)

*100

Total # of Requirements

Makes sure the requirements are defined correctly while

estimating

Here, Total req. = 67 in start, further digging into the

project requirement phase added new req. = 7 and

afterwards deleted some requirements = 3 and changed

requirements = 11

So, it can be estimated as

= (7 + 3 + 11) * 100 = 31.34%

67

The results shows 1/3 of the requirement changed after

initial requirement gathering

B. Development

Preparing is the basis of nearly any successful project. It

includes the consideration and execution of all significant

operations planning throughout the design phase and also

after deployment. The design stage includes the potential

for weakness, strength and team, the availability of

instruments, requirements, limitations and methods to

address barriers. The result of excellent coordination and

participation of suggested subsidiaries plus client inputs

or even stories will be the excellent growth. More

impressive range is performed and enforced at all levels.

The TDD approach can be used to reduce defects by

analyzing and controlling defects throughout the

requirement and development phase by testing the

generated test cases. To carry out planned unit testing, the

test cases are distributed to the team and the system is

also being tested. This procedure diminishes the genuine

deformity rate during the whole improvement and test

stage. These pre-produced test examples as of now

guarantee central and useful testing. The bud record

demonstrates the details saw during the trials on finishing

of one component during the development. The

exploration demonstrates the outcomes as deformity

driven examinations by the measurement utilized.

Effectiveness of Defect Removal

DRE = (# of Defects fixed during development cycle

x100%) / Defects latent

Defects latent = Defects fixed within development cycle +

defects reported and found after deployment. Here,

observed and recorded data shows the following statistics

Defects found within the development cycle = 68

Defects reported by users = 13

Defect latent = 68+13= 81

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.3(3), pg.: 128-134

132

DRE = (68*100)/81 = 83.9%

The result shows the reduction in reported defects after

deployment by users. The major part is covered in

development cycle by analyzing daily defect prevention

and fixing efficiently with pre-testing technique.

 C. Communication

In the SDLC, communication plays a crucial role.

Whether its team cooperation, management cooperation

and most importantly client communication is proving

efficient and different outcomes with a strong

comprehension of needs. Due to time and effort concerns,

it is observed as the hardest job. While communicating as

much as necessary, the client may demonstrate less

interest. The team must use various methods to capture

customer care and their quality time to reduce project

flaws. Here a need for adequate network communication

or alternatives is required to discuss project procedures.

Best practices may include casual and scheduled

meetings, surveys, prototype, sample verifications,

confirmation and reminder calls and emails, and many

other social methods of adopting cooperation for best and

enhancement. Accomplishment of Deficiency reduction

process within SDLC.

The project cannot succeed without having to

pursue any practice. From the planning stage the defining

mission is certainly the efficient approach to completing

the project irrespective of the planning is to follow agile

or even waterfall processes. However, the method must be

described to measure and schedule the real cycle and

subsequent implementation of the defect decrease. The

initially proposed task is the requirement for measurement

and tracking and the rate of defects across the SDLC [19].

Generate hand-to-hand documents for the performance of

the project. A bug record is retained and updated as the

stage of product development to make this occur. As a

result of analyzing the element-based performance, the

observed flaws were listed. By using this approach, the

method demonstrates the notable difference in the

decrease of previous and present faults.

D. Software Tools

The decision to apply suitable and space explicit

instruments improves the proficiency of the venture.

Devices can diminish your time and less asset cooperation

with profitability and detectability contrasts. Testing

includes the ongoing patterns and focused results to

improve the nature of the item. Testing endeavors can be

decreased by utilizing devices, as testing is without a

doubt an exorbitant stage. The remarkable yield may

change in necessity following, bug following, announcing

instruments, and the board instruments.

E. Panel Work

The co-individuals and cooperative people can all the

more likely understand certain conditions and think of

phenomenal contemplations over the encounters part.

This is the minute to value every part's view and

proposals in the advancement and arranging stage to

conquer the mistake rate. Any place there is a quality

cooperation, the private sense of self spots. Worth the

group and underscore the possibility that every single

individual is in charge of venture achievement and quality

control. It is the executives' obligation to give such air and

inspiration to quality venture accomplishment.

F. Craving to give something extra

The seasoned saying is that giving clients some extra time

to develop and deploy earns respect and satisfaction. In

trust development, helpful data supplied by the business

during non-working hours or little care to avoid critical

flaws can create a difference.

G. Charts

Bug reporting on one-week leadership and fundamental

module. Upon completion of each test cycle, progress

towards leadership is recorded to obtain a clear view of

the quality of growth as well as the occurrence of defects

and their fixes.

TABLE.1: Metrics Calculation Data

Base Metrics Calculated

Metrics

Metric Value Metric Value

Total # of

TCs

100 % Complete 47.0%

Executed 64 % Test

Coverage

64.0%

Passed 47 % TCs

Passed

73.4%

Failed 5 % TCs

Blocked

8.0%

UI 4 % 1st Run

Failures

15.6%

Blocked 8 % Failures 20.3%

Unexecuted

36 % Defects

Corrected

66.7%

Re-

executed

5

Total

Executions

74

Total Passes 47

Total

Failures

15

1st Run

Failures

10

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.3(3), pg.: 128-134

133

TABLE.2: DEFECT TRACKING GRAPH

Actual Results

 New Resolved

Day Defects Defects

1 1 0

2 2 1

3 5 1

4 10 7

5 8 2

6 6 18

7 12 1

8 9 8

9 14 12

10 9 6

11 5 15

12 8 12

13 9 13

Total 98

V. RESULT & DISCUSSION

After studying software evaluation methods and

strategies, software testing could be an ongoing and

coexisting development practice. We should talk about

the critical components of testing that could be helpful

and reasonable during the existence cycle of

programming improvement. Necessity designing could be

the strategy to evaluate, take and keep up programming

prerequisites. Counting the Realistic Unified Process [7],

Extreme Programming [8] in conjunction with Scrum [9]

means that requirement engineering is often an continuing

activity in your project development lifetime.

Without specifying the prerequisite, testing is impossible.

All requirements of linked test instances alone must be

traceable and measurable. Each requirement should have

ID relevant for testing ID and at least one requirement ID

should be associated with each test ID[10].Testing is

often the team's heavy and accountable work. Developer

must have separate vision and scheduled testing

specifications to ensure that the tester team does not

receive any buggy code. Next, if testers participated

during development using the ongoing testing operations

along with all test instances produced prior to a finished

development stage, designers will readily hide and

overlook bugs during unit evaluation. As a result, team

players from the specified moment spam are testing and

verifying specifications every moment in all procedures.

Unfortunately, testing and testers have been noted to

finish their assignments in brief spam time. As it took a

lot more time in actual growth and it is too brief to

conduct all experiments in less time for testing. In this

scenario, pre-planning and defining functional

specification can solve the time issue. Upon completion

of the design phase, the testing method is also prepared to

carry out all functional tests to test the error rate. The

benefit of a functional specification is that the generation

of test instances is also began in parallel during the

development phase, so that when the production code is

prepared for test instances, the sequence of bottlenecks is

removed from the development process. Secondly, it is

recorded so that outcomes and observations can be

analyzed by reporting defects, keeping track of the

performance of each finished assignment, fixing defects

on time within the development period and involving

expert opinion by reporting defects and effectiveness

metrics to highlight the weakness and conduct evaluation

to enhance and reduce the rate of defects within the

development process. Sharing and listening policy with

clients to clarify stuff from the user's point of view can

readily confirm that the build item meets anticipated

demands. This helps to very carefully comprehend the

demands and makes it easy to map and schedule the

process to satisfy the functional requirements.

VI. CONCLUSION

The measurements displayed for estimating testing

endeavors give proficient a noteworthy advantage,

perceivability in the accuracy of the improvement and

status for discharge or generation, and the product item

standard a work in progress can be watched. This offers

the key data for making choices to deploy along with

stopping testing attempts or even improving efficiency in

the missing region with good measurements to finish the

quality product well-timed and decreased error rate of

around 33 percent by comparing a few performance

modules one by defect-driven reporting with another by

easy software.

A. Future Work

Software testing is costly and SDLC operation takes time.

Recently, automation is the main factor that reduces many

researchers ' testing attempts. The future research will be

based on the finest instruments to automate the testing

process with cost and effort decrease.

B. Presentation Analysis

The last presentation involves an overview, study

methodology and research-related objects. This

exploration study offers a reasonable picture of how to

keep up quality from the earliest starting point of the

assembling connected to the product framework and

precisely what is the hugeness of programming testing in

the consistently finishing programming item advancement

life cycle. The deformity driven strategy is utilized to

reveal insight into primary concerns of SDLC techniques

to diminish the mistake rate in the SDLC and after

arrangement.

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.3(3), pg.: 128-134

134

ACKNOWLEDGEMENT

Authors are grateful to the Department of Software

Engineering, UTM, to carry out this work.

REFERENCE

[1]. Tosun, A., Dieste, O., Fucci, D. et al. Empir Software Eng (2016),

An industry experiment on the effects of test-driven development

on external quality and productivity doi:10.1007/s10664-016-

9490-0
[2]. Davide Fucci , Burak Turhan , Natalia Juristo , Oscar Dieste , Ayse

Tosun-Misirli , Markku Oivo, Towards an operationalization of

test-driven development skills, Information and Software
Technology, v.68 n.C, p.82-97, December 2015

[doi>10.1016/j.infsof.2015.08.004]

[3]. Davide Fucci, Giuseppe Scanniello, Simone Romano, Martin
Shepperd, Boyce Sigweni, Fernando Uyaguari, Burak Turhan,

Natalia Juristo, Markku Oivo “An External Replication on the

Effects of Test-driven Development Using a Multi-site Blind
Analysis Approach” in ESEM '16 Proceedings of the 10th

ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement, (2016)
[4]. Romano, S., Fucci, D.D., Scanniello, G., Turhan, B. and Juristo,

N., 2016. Results from an ethnographically-informed study in the

context of test-driven development (No. e1864v1). PeerJ Preprints.
[5]. Arthur, J.D. and Dabney. J.B.: Applying standard independent

verification and validation (IV&V) techniques within an Agile

framework: Is there a compatibility issue?. Proceedings of Systems
Conference, IEEE, 2017.

[6]. Fleming, C.: Safety-driven early concept analysis and

development. Dissertation. Massachusetts Institute of Technology,
2015.

[7]. Wang, Y. and Wagner, S.: Toward integrating a system theoretic

safety analysis in an agile development process. Proceedings of

Software Engineering, Workshop on Continuous Software

Engineering, 2016.

[8]. Leveson, N.: Engineering a safer world: Systems thinking applied
to safety. MIT Press, 2011.

[9]. Wang, Y. and Wagner, S.: Towards applying a safety analysis and

verification method based on STPA to agile software development.
IEEE/ACM International Workshop on Continuous Software

Evolution and Delivery, IEEE, 2016.

[10]. Martins, L.E. and Gorschek, T.: Requirements engineering for
safety-critical systems: Overview and challenges. IEEE Software,

2017.

[11]. Vuori, M.: Agile development of safety-critical software. Tampere
University of Technology. Department of Software Systems, 2011.

[12]. Fucci, D. et al.: A dissection of test-driven development: Does it
really matter to test-first or to test-last. IEEE Transactions on

Software Engineering 43.7 (2017): 597-614.

[13]. Silva, T.R., Hak, J.L. and Winckler, M.: A behavior-based
ontology for supporting automated assessment of interactive

systems. Proceedings of the 11th International Conference on

Semantic Computing. IEEE, 2017.
[14]. Falessi, D. et al.: Empirical software engineering experts on the

use of students and professionals in experiments. Empirical

Software Engineering 23.1 (2018): 452-489.
[15]. Enoiu, E.P. et al.: A controlled experiment in testing of safety-

critical embedded software. Proceedings of the International

Conference on Software Testing, Verification and Validation.
IEEE, 2016.

[16]. Scanniello, G. et al.: Students’ and professionals’ perceptions of

test-driven development: a focus group study. Proceedings of the
31st Annual Symposium on Applied Computing. ACM, 2016.

[17]. Kitchenham, B. et al.: Robust statistical methods for empirical

software engineering. Empirical Software Engineering 22.2
(2017): 579-630.

[18]. Krenn, W., R. Schlick, S. Tiran, B. Aichernig, E. Jobstl and H.
Brandl, 2015. Momut: UML model-based mutation testing for

UML. Proceedings of the IEEE 8th International Conference on

Software Testing, Verification and Validation, April 13-17, 2015,
Graz, Austria, pp: 1-8.

[19]. Graf-Brill, A. and H. Hermanns, 2017. Model-Based Testing for

Asynchronous Systems. In: Critical Systems: Formal Methods and
Automated Verification, Petrucci, L., C. Seceleanu and A.

Cavalcanti (Eds.). Springer, Cham, ISBN: 978-3-319-67113-0, pp:

66-82.
[20]. Lindvall, M., D. Ganesan, R. Ardal and R.E. Wiegand,

2015. Metamorphic model-based testing applied on NASA DAT:

An experience report. Proceedings of the 37th International
Conference on Software Engineering-Volume 2, May 16-24, 2015,

Florence, Italy, pp: 129-138.

[21]. S Saeed, A. Shaikh, M.A. Memon, M.A.Nizamani, Faheem
Ahmed Abbasi, Syed Mehmood Raza Naqvi, " Evaluating the

Quality of Point of Sale (POS) Software". University of Sindh

Journal of Information and Communication Technology (USJICT),

Volume 3, Issue 2, April2019.

[22]. S.Ali, M.A.Memon, K.T.Pathan, F.A.Abbasi, " Comparative

Analysis of Location Based Technologies Inorder To Develop IOT
Applications". University of Sindh Journal of Information and

Communication Technology (USJICT), Volume 3, Issue 2,

April2019.

