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Abstract: This research paper explores the application of offline reinforcement 

learning (RL) in controlling battery operation in a grid-connected microgrid. The study 

investigates the impact of different parameters on the performance of the RL 

algorithm, such as the number of discretization levels, gamma, and alpha values. The 

results show that the convergence time and optimality of the RL algorithm are affected 

by the choice of these parameters. The research concludes that carefully selecting the 

discretization levels of state-action spaces and RL hyperparameters is crucial for 

optimal RL algorithm performance. The benchmark offline sensitivity analysis can be 

compared in the future with other RL approaches, such as function approximation or 

DRL methods. 
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I. INTRODUCTION  

Renewable energy sources are gaining 

popularity worldwide, with countries adopting 

policies and regulations to encourage their use in 

power generation [1]. Grid-connected microgrids 

are an innovative solution to manage energy from 

renewable sources effectively, and battery energy 

storage systems (BESS) play a crucial role in this 

process [2]. BESS help to store excess energy 

during periods of low demand, which can be used 

to meet demand during peak periods or when 

renewable energy generation is low [3]. However, 

managing BESS in grid-connected microgrids can 

be challenging, especially when dealing with 

uncertain energy generation and demand patterns 

[4]. 

Reinforcement learning (RL) algorithms have 

shown great potential in optimizing the 

performance of BESS in grid-connected 

microgrids [5]. RL is a type of machine learning 

algorithm that uses trial-and-error learning to 

develop an optimal policy for a given problem [6]. 

The RL algorithm learns by interacting with the 

environment and receiving feedback in the form 

of rewards or penalties, enabling it to find the best 

actions to take in different situations [7]. 

However, the performance of the RL algorithm is 

influenced by various system variables and 

hyperparameters, which can have a significant 

impact on its effectiveness [8]. 

In this regard, sensitivity analysis is a crucial 

step in evaluating the effectiveness of the RL 

algorithm [9]. Sensitivity analysis involves testing 

the algorithm's sensitivity to changes in system 

variables and hyperparameters, allowing for the 

identification of the optimal settings for achieving 

maximum performance [10].  

This research aims to investigate the 

sensitivity of RL algorithms to changes in system 

variables and hyperparameters, with a specific 

focus on managing BESS in a grid-connected 
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microgrid environment. This study will use 

MATLAB 2019 to simulate and evaluate different 

combinations of system states and 

hyperparameters to determine their impact on the 

performance of RL algorithms in grid-connected 

microgrids. This research will also investigate the 

effects of different discretisation levels of states 

and actions, and the modification of tuning 

parameters such as discount factor and learning 

rate on the performance of the RL algorithm. The 

findings of this research will provide insights into 

the best practices for implementing RL algorithms 

in energy management systems and will have 

significant implications for the development of 

future energy storage technologies. 

 

In this paper is structured as follows. Section 2 

outlines the research methodology used in this 

study, including the simulation framework and the 

sensitivity analysis approach. Section 3 presents 

the results of the simulation experiments and  

provides a discussion and analysis of the findings. 

Finally, section 4 concludes the paper with a 

summary of the research findings. 
 

II. METHODOLOGY 

This section provide an overview of the 

methodology used to perform sensitivity analysis. 

The forecasted PV and load data are input to RL 

at the beginning of the day. Q-learning is then run 

using the same input data until convergence is 

achieved. A policy is developed at the end of this 

phase that is used to generate commands for 

battery: charging, discharging, or remain idle.  In 

addition, a backup controller monitors battery 

control commands output from RL and make any 

necessary modifications before applying them to 

the physical system. The backup controller 

ensures that all physical constraints and 

limitations are met after applying the control 

actions from Q-learning. 

Each episode of one day consists of 24 steps (1-

hour interval). The RL continues to use the same 

data until convergence is achieved. A total of 

10,000 iterations were employed. A convergence 

may occur before 10000 iterations, but the 

objective of using a high number of iterations is to 

observe how convergence behaves when different 

levels of discretized system states are used. The 

optimized battery commands are dispatched at the 

start of the following day for the battery to operate 

in real-time using real load and PV profiles. 

However, this work assumes, the forecasted and 

real net demands are equal, i.e., forecast error is 

zero. Although this case does not exist in practice, 

it will serve as a useful comparison when different 

levels of system states and actions are analyzed.   

 

A. STATE SPACE 

  

The state space ( S ) is discretized at Δt = 1hr, 

which suggests that the learning agent captures 

the information related to the dynamics of the 

microgrid after the time interval of an hour. In 

Equation 1, t represents the time period, which 

has 24 states in 24h of a day due to its 

discretization at every hour of the day. 

 
                                                    (1)   

 

where SOC, battery state of charge.   

The SOC should be bounded by maximum and 

minimum limits such that: 
 

                                                                                                                  (2) 

 

We discretize the state space as shown in 

Equation 3 below in which the i, j indices 

represent the SOC and t, respectively as: 

 

                                                             (3) 

 

Each index in the state space can be selected using 

different levels. For example: i = 3,5,7,8 levels, j 

= 24, 48, 72 levels. The total number of states 

depend on number of level selected, for example 

if i and j are 3 and 24 respectively then 3×24=72.  

 

In this work we use different levels of SOC only 

to see the system performance, therefore, j is 24 in 

every case. 
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B. ACTION SPACE 
 

The action space consists of the charge, 

discharge, and idle command of the battery 

such as: 

 

                                                                                        (4) 

At each time step t, one action is selected 

from the action space A. If the action 

“Discharge” is chosen, the battery discharges 

into the main grid, supplies the load, or both. 

In case of the action “Idle”, the load demand 

is fulfilled by the PV source, main grid, or 

both. If the “Charge” action is selected, the 

battery is charged from the PV, the grid, or 

both. The actions levels or battery power can 

be determined using below equation 5. 

 

                                             (5) 

 

A1 and A2 are mentioned in below case 1 

and 2. In this work two cases are considered 

for simulation. 

a. CASE 1. 

 

                            (6) 

Hence, total number of actions =3 

b. CASE 2 

 
 (7)      

 

where the sign ± means charging or discharging 

of the battery while zero means battery is Idle. 

The actions in percentages are calculated on the 

basis of total capacity of the battery as shown in 

above equation 5. Therefore, total number of 

actions =21. 

 

 

 

c. EXPLORATION VS. EXPLOITATION 

 

Epsilon-

greedy 

decision-

making 

methods use a trade-off between exploration and 

exploitation in order to determine a suitable 

action. The greedy method refers to a strategy that 

promotes the actions the agent believes will 

produce the highest rewards. The ϵ -greedy 

methods include some non-greedy (exploratory) 

decisions with some degree of probability 1−ϵ. 

Some problems remain, though ϵ - greedy 

methods are that they choose the action to explore 

without discrimination. This means that there is 

no weighting or schedule for selecting which 

actions to explore. These methods are, however, 

robust and efficient, and are included in state-of-

the-art techniques despite some limitations. In 

cases where random exploration is not ideal, the 

exploration strategy itself may be inadequate. 

Figure 1 shows that in the beginning of the 

episodes RL agent is exploring so the sum of 

rewards are diverse in different episodes. 

However, as the agent starts exploiting the sum of 

rewards in each episode give similar values. 

 

 
Figure 1 Exploration verses Exploitation 

 

C. REWARD FUNCTION 

 

The reward function (s_t,a_t) is the negative of 

the cost of imported energy or the cost of exported 

energy.  The cost is calculated every 1hr (as Δt = 
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1hr) by multiplying the respective tariff rates, as 

mentioned in equation 8.  

 

Hence, the reward function used in this work can 

be formulated as follows: 

      (8) 

where and are the import and 

export tariffs, respectively.  is the grid power 

and is given by equation 9: 

 

                    (9) 

 

where  is the power used to charge the 

battery. 

 

D. TARIFF 

 

This work used following imported tariff rates: 

 

      (10) 

 

The export tariff does not vary and it is 

exp 0.033£ / kWhTariff = . 

 

III. SIMULATION RESULTS 

 

In this work, 10 kW of installed PV power is used 

to drive large residential load. The battery 

capacity is 12 kWh. The constraints and 

 are 100% and 40%, respectively. Open-

source data website has been used to retrieve data 

profiles for one day. For a better comprehension 

of the findings, one month of data sets are 

simulated on a daily basis to analyze convergence 

and optimality. Since the predicted load and PV 

profiles are the same as the real profiles. Hence, 

this case study presents the results of an offline 

RL ideal scenario.  Simulated results for the 

standard one-day are presented in below section. 

In this regard, figure 2, shows PV, load, and tariff 

rates with time intervals of 1hr for a complete 

day. 

 

 
Figure 2 Data Profiles (24 hours). 
 

During the optimization of the battery in a grid 

connected microgrid, the effects of System Space 

variables are studied in the following first 

subsection.  

In second subsection, the effect of hyper 

parameters related to RL are inspected by altering 

their values during simulation. 

 

A. EFFECT OF SYSTEM SPACES 

 

In this section, two important state space variables 

related to RL algorithm to manage BESS in a grid 

connected microgrid are varied to see the effect 

on EMS performance. 

 

1) State space 

2) Action Space 

 

a. VARY DISCRETISATION LEVELS OF 

STATE SPACE (SOC) 

 

The discretization levels of Soc as in equation 5.1 

are changed and the respective simulation results 

are shown in figure 3 below. The values of hyper 

parameters 𝛄, α, 𝛜, chosen after tuning are 0.85, 

0.9, and 0.8, respectively. The total number of 

discretization actions is 21 in this case. 
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Figure 3 Effect of SOC level's on convergence and optimal 

cost. 
 

Figure 3 shows, when Soc has the higher 

discretized level, it gives the best optimal cost as 

compared to a lower level of discretization. After 

convergence, the total cost achieved is also shown 

in the boxes at the end of each subplot, where X 

and Y depict the episode number and total cost 

respectively. Contrary to this, convergence 

achieved at higher discretization levels (Soc) 

takes more time than at lower discretization levels 

(Soc). In addition, when the number of 

descriptions is too low e.g. 3, the convergence is 

not achieved or is suboptimal. As a result, the 

total cost achieved for one day is random or 

sparse. As a result, the number of description 

levels during the selection process is crucial to 

achieving an optimal cost. 

 

b. VARIATION IN ACTION SPACE 

 

RL simulations are presented in this section to 

demonstrate different levels of action for 

controlling the operation of BESS in a grid-

connected microgrid. For instance, in case 1, the 

BESS in grid-connected microgrid will be 

configured using three discretization levels, while 

in case 2, it is configured using twenty one 

discretization levels. 

 

a) CASE 1 

 

The number of action levels considered in this 

case is 3. Hence, there is only one level available 

for each of battery charging, discharging, and idle 

mode as shown in figure 4. The power that can be 

used at any time interval is equal to 1440W for 

each charging and discharging cycle.  
 

Figure 4 Battery actions at total discretisation level =3 

(Charging level=1; discharging level=1; Idle level=1). 
 

When the total number of battery actions are 3, 

convergence is achieved after 4000 iterations. For 

this case 1, the cost is £134.6 (13461 pence) as 

described in figure 5. 

 
Figure 5 Performance in terms of convergence at total 

discretization of actions=3. 

 

b) CASE 2 

As per equation 7, there are 21 total levels of action in this 

case: 10 charging, 10 discharging, and 1 idle. The 

simulation result after the convergence of RL algorithm are 

mentioned in below figure 6. 
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Figure 6 Battery actions at total discretisation level =21 

(charging=10; discharging =10; Idle=1). 

 

Simulation results in figure 7 shows, convergence 

in case 2 occurs at approximately 8000 

iterations/episodes. Accordingly, the optimal cost 

achieved is 131.4 £ or 13157.3 pence. 

 
Figure 7 Performance in terms of convergence at total 

discretisation of actions=21. 

 

 

c. COMPARISON OF CASE 1 AND 2 

 

RL performance for battery optimization in a grid-

connected microgrid is affected by the 

discretization levels of action. It gives better cost 

optimization if the actions are flexible, such as 

different levels of options available to the RL 

agent regarding charging and discharging the 

battery. Conversely, convergence occurs sooner at 

lower levels of discretization (e.g. 3) but with 

suboptimal results than at higher levels (e.g. 21). 

 

B. EFFECT OF VARIATIONS IN HYPER-

PARAMETERS 

 

In this section the hyper parameters are varied to 

show the behaviour and performance of RL 

during the optimization of BESS connected to 

grid-tied microgrid. The benchmark results 

achieved and shown below when total state 

discretization levels (Soc) and total discretization 

actions levels are 8 and 21 respectively. Both used 

as a constant in following simulation section. 

 

a. VARIATION IN GAMMA 

 

In below simulation, figure 8, total number of 

discretization levels for Soc and actions are 8 and 

21 respectively. The values of hyper parameters 𝛜, 

𝛂 are 0.9 and 0.8 respectively. While the γ values 

changes to see the effect of discount factor in this 

section. 
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Figure 8 Effect of gamma on convergence and optimal cost 

 

In terms of cost, the best result is achieved when γ 

=0.85. Convergence occurs after approximately 

8000 episodes. Although convergence can be 

achieved with γ values lower than 0.85 but the 

cost and convergence are suboptimal. When γ =1, 

the RL algorithm fails to converge within 10000 

iterations or steps.  If γ is equal to one, the agent 

will consider future rewards with greater weight. 

It means that if an agent does something good in 

tenth action, it is just as valuable as doing it 

directly.  So learning doesn't work at that well at γ 

value equal to 1. Despite achieving convergence 

at γ =0, the sum of daily cost is not optimal 

because of the myopic (short sighted) behaviour 

of the γ at 0 prevents it being optimal. 
 

b. VARIATION IN LEARNING RATE   

 

In this simulation figure  9  shows the total 

number of discretization levels for Soc and 

actions are 8 and 21 respectively. The values of 

hyper parameters 𝛜, 𝛄 are 0.9 and 0.85 

respectively.  This section displays the effect of 

learning rate (𝛂) while changing its values. 

 

 
Figure 9 Effect of learning rate on RL performance. 

 

In simulation, the benchmark learning rate in 

order to tune RL is 0.8 out of different alpha 

values used in this work. In the case of alpha=0.8, 

the algorithm achieved convergence after 

approximately 8000 iterations, while the cost was 

the lowest. If the alpha value is very low, for 

example, 0.1, the agent will not learn, therefore 

convergence may not occur. That is why the total 

cost per day is high compared to the benchmark 

alpha value. Furthermore, upon maximization of 

alpha=1, convergence was achieved, but cost per 

day was suboptimal. 
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IV. CONCLUSION 

RL algorithm performance is examined in this 

study by adjusting the different parameters of the 

offline RL approach to control the battery 

operation in grid-connected microgrid. The 

impact of different parameters is clearly visible 

when this ideal offline case is used. Although 

variations of these parameters will affect this ideal 

scenario, it is used as a benchmark when 

examining the sensitivity of other types of RL 

algorithms and in real world scenarios when 

forecasted profiles differ from real RES and load 

profiles.  

 

Following are the key findings of this work: 

• When there are high number of 

discretization levels of state action spaces, 

the convergence time will be longer but 

the outcome in terms of cost saving 

(optimality) will be higher. 

• Convergence and optimal solutions are 

adversely affected by choosing the 

discretization level of state-action spaces 

too high or too low. 

• When gamma is 0 or 1, convergence is 

sparse. Values very close to 1 have a 

convergence problem, so they produce less 

optimal results.  If gamma is closer to 

zero, the agent will tend to consider only 

immediate rewards. If gamma is closer to 

one, the agent will consider future rewards 

with greater weight, willing to delay the 

reward. In this work optimal results are 

achieved when gamma is between 0.8 and 

0.9. Specifically, 0.85 gives best results in 

terms of cost savings, 

 

Low alpha, such as 0.1, gives divergent results, 

causing non-optimality. If agent's learning rate is 

too low, it takes a very long time to learn causing 

non optimal solution especially in real time 

applications when computational time is very 

important.  When alpha values are very high such 

as 1, convergence is achieved, but the results are 

suboptimal due to inadequate learning. In this 

work, the best results in terms of cost and 

convergence are achieved when alpha is 0.8. 

 

Therefore, this work recognizes and concludes 

that it is important to carefully select the 

discretization levels of state action spaces and RL 

hyper parameters. A small change in these 

variables and parameters can have a large impact 

on the performance of the RL algorithm. The 

benchmark offline sensitivity analysis can be 

compared in the future with other RL approaches, 

such as function approximation or DRL methods. 
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