

University of Sindh Journal of Information and Communication Technology

(USJICT)

Volume 6, Issue 2, July 2022

ISSN-E: 2523-1235, ISSN-P: 2521-5582 © Published by University of Sindh, Jamshoro
Website: http://sujo.usindh.edu.pk/index.php/USJICT/

 (c

Impact of Software Metrics on Software Quality using McCall

Quality Model: In-Depth Analysis

Sana Fatima, Zainab Fatima, Muhammad Abdullah Hayat, Muhammad Hamza Shahab, Muhammad Khurram Meraj, Rana M. Ibrahim,

Syed Muhammad Muneeb

Software Engineering Department, NED University of Engineering and Technology, Karachi, Pakistan

Sana.fatima@cloud.neduet.edu.pk, Zainab.ned@gmail.com, malik_muhammad222@outlook.com, hamzashahab1610@gmail.com,

khurrammeraj17@gmail.com, rmibrahim00@gmail.com, s.muneeb2k@gmail.com

Abstract: Software metrics plays a very vital role in life cycle of software development. Rapid software development techniques

and tools have made it very complex to fully control the quality of a software. Software metrics are required to make sure that the

quality of software is fully under control. Many software metrics have already been developed and applied to control the quality

of software products. Software metrics is the measurement of quality in which performance is measured against quality standards

to check whether they are according to the expectations. Quality metrics are also used to determine customer requirements into

acceptable performance measures. This paper discusses the concepts of software quality, quality factor model, mapping according

to McCall Quality Model & the quality metrics. The act of applying software quality measurements to functional components and

to keep up with factors is a mind-boggling task. Effective software quality affirmation is exceptionally reliant upon quality methods.

Future examination is needed to expand out and work on the approach to widen measurements that have been accepted on one

venture, utilizing our rules, legitimate proportions of value on future software project. This paper also dives deep into the impacts

of the various software metrics over different quality factors and explains the relationship between them.

Keywords: Software Metrics, Software Quality Factors, Software Quality Model, Software Quality Assurance.

I. INTRODUCTION

Software quality elements play a vital on the SQA
activities to achieve quality goal. Quality metric is
quantitative proportion of the degree to a framework,
segment, or process. Software quality factors are doing
significant role for acknowledgment in associations endeavor
to further develop venture quality. The measurements are the
quantitative proportions of how much quality measures in a
given property that influences its built quality. To improve
software quality, a detailed knowledge is required regarding
the most frequently occurring code smells, most used
refactoring technique and the software metrics that have a
direct influence on them [1].

SQA is a conventional interaction for assessing and
recording the attributes of the items created during every
phase of the product improvement lifecycle. The Software
metrics are necessary in the whole SDLC [2]. Software
metrics indulges in the measurement of development process
of software product and support in processing models. Using
it we can increase range of information regarding quality of
the product that is provided to the user, estimation of cost,
software project progress, and software system complexity
[3].

Meanwhile there is a proper map to the requirements and
factors needed in a document according to McCall Quality
Model [4]. They types are documented which helps to
achieve metrics. The impact of factors show that we have
found in order to attain software quality goal. We have quoted

formulas to calculate different elements related to quality. We
have mapped the factors according to the quality criteria.

The observations and the results concluded from the
various mappings and discussions are sophistically illustrated
in the form of tables which describe the impact of various
software criteria in different lifecycle phases and the effect of
software criteria of various software quality factors.

II. LITERATURE REVIEW

The first concept of software metrics was based on the
lines of code (LOC). The software metrics were used as the
measure of program quality as well as the programmer’s
productivity. In 1961, software quality metrics were
published for the first time, i.e., several defects per KLOC.
But the obvious drawbacks were observed in the mid-1970s
of this approach because the other aspects i.e., size,
complexity, and functionality were not considered in
software metrics [5].

Researches have been made using different aspects of the
software to find the relation between software quality and
software metrics, and how software metrics affect its quality.
In 2019, research was made to find a relation between
software metrics and complexity resulting in the variation of
software quality. After observing results of various metrics
on software quality and complexity, it was concluded that
source code metrics is the best possible way to predict the
build failure or success of software product. Also, the
technique of data stream mining technique is the best way
(yet) to ensure the quality of a software product. The impact

mailto:Sana.fatima@cloud.neduet.edu.pk
mailto:Zainab.ned@gmail.com
mailto:malik_muhammad222@outlook.com
mailto:hamzashahab1610@gmail.com
mailto:khurrammeraj17@gmail.com
mailto:rmibrahim00@gmail.com

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.6(2), pg.: 66-76

67

of different complexity metrics on software quality was
calculated using various techniques. To increase the quality
of the software product reliability, complexity, defect
removal efficiency metrics, etc. help in increasing the quality
& customer satisfaction model index is best for increasing
customer satisfaction which leads to the quality of the
software product [6].

To measure the quality of intermediate deliverables
during software development, different rubrics are used
which measure the quality of software according to
requirements, design, and coding, this unit of measuring is
called Software metrics [7]. To achieve the quality standards
only external factors, matter but to achieve these external
factors, the key role is played by internal factors. Different
kinds of metrics include dynamic metric, object-oriented
design metric, sub-factor metric, and structural metric for
process model. This research paper suggest that
understandability can be an easy approach for measuring.
Many measures help to estimate different quality factors.
Also that measure used in different studies shows that
dynamic metric, source code and metric relating to
documentation are mainly used in measuring the quality of
the software. [8]

III. METHODOLOGY AND DISCUSSION

A. Software Quality

Software Quality is a measure to which the software
works according to the requirements described in the
document. It is a degree to which the software can perform
the required tasks without any moderation [9]. There are
many ways to measure the quality of the software these
include a combination of different quality factors according
to different quality factor models

B. Quality Metrics and Its Types

Quality metrics are the main components in efficient
software project quality management. It is the measurement
of quality in which performance is measured against quality
standards to check whether they are according to the
expectations. Quality metrics are also used to determine
customer requirements into acceptable performance
measures. They are also used to evaluate and analyze
software products and processes. [10]

Software metrics can be divided into three types [11]:

1) Product Metrics
Product metrics are used to measure the quality of the

final product. The product metrics are the most extensive
metrics from the three categories. Since its based on product,
is measured at end of development phase [12]. It deals with
different aspects of the product such as:

● Size (LOC)

● Complexity

● Reliability

● Portability

2) Process Metrics
Process metrics are used to increase the quality of

software development and maintenance by considering many
factors, such as:

● Time required to complete a product using a process.

● The effort required in a process.

● Defects found in a process.

3) Project Metrics
Project metrics are used to monitor the project progress

and status so that the software development plan can be
optimized.

● Few examples of project metrics are:

● Scheduling of a project.

● Cost estimation.

● Resources used in a project.

Software quality metrics mainly target the quality aspects of

product, process, and project. They are further divided into

three categories:

1) Product Quality Metrics
Product quality metrics deal with the maintenance of the

quality of a product and its features. The true value of product
metrics comes from their association with measures of
important external quality attribute [13] s as it deals with
various aspects few of them are:

● Customer satisfaction.

● Defect density.

● Meantime to failure.

● Customer’s problems.

2) In-Process Quality Metrics
In-process quality metrics mainly deal with the tracking

of defects and errors during standard machine testing. They
are less formally defined than end products and they vary
among different developers. A few of its aspects are:

● Integration testing.

● Defect arrival.

● Defect removal pattern in a phase.

● Effectiveness of defect removal methods.

3) Software Maintenance Metrics
Software maintenance metrics are used during the phase

of maintenance to ensure the quality and verifying that the
software developed is according to the customer’s
requirements. It includes:

● Fixing backlog and backlog management index.

● Making sure that response time (to any defects
reported) is minimum.

● Fixing quality.

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.6(2), pg.: 66-76

68

C. Mapping McCall Quality Model to Criteria and its

Metrics

The table 1 given below shows the relationship between
various criteria for different factors. These quality factors are
obtained using McCall’s quality model. The main criteria in
the McCall model are correctness, efficiency, integrity,
usability, maintainability, flexibility, testability, portability,
reusability, interoperability. [14] The criteria are just the
simplification of the quality factor which makes it more
measurable, simple to understand and specific [15]
Achieving these criteria means that the quality factors have
been met. Like, the correctness of software depends on
completeness, consistency, etc. These quality criteria show
that for every quality factor there are multiple attributes of the
software product to depend on and these factors are used to
define the quality of the software.

Following are the quality criteria factors mentioned
below [16]:

1) Completeness
Attributes that require the module to provide the complete

functionality of required tasks [17].

2) Consistency
Attributes that require the software to have a uniform

design and functionality.

3) Operability
Attributes that are concerned with the correct functioning

of the operations of the software.

4) Conciseness
Attributes that require the implementation of functions

with minimum number lines of code.

5) Efficiency
Attributes that deal with minimizing the execution time

and storage requirements.

6) Augment Ability
Attributes of the software that can be easily extended for

further development.

7) Security
Attributes that are responsible for securing the software

and correcting the known issues [18].

8) Accuracy
Attributes of the quality that are concerned with correct

results in outputs.

9) Modularity
Attributes that deal with the structure of different

components of software to be used in further development.

10) Simplicity
Attributes of software that provide easy understanding

without any complexity.

11) Training

Attributes that help users to transition between the
modules easily.

12) Software Independence
Attributes that determine the ability of software to deal

with other software

13) Generality
Attributes that allow the software component to perform

general functions without many moderations.

14) Self-Documentation
Attributes of the software that do not need any extra

documentation and can be used easily with other modules.

15) Data commonality
Attributes that deals with correct data representation.

TABLE I. MAPPING MCCALL QUALITY MODEL TO CRITERIA AND ITS

METRICS

Q
u

a
li

ty

F
a

ct
o

rs

Quality

Criteria
Quality Metrics

C
o

rr
ec

tn
es

s

Completeness ● Completeness checklist

Consistency
● Data consistency

● Procedure consistency

Operability

● User output

communicativeness

● Operability checklist

● User input

communicativeness

E
ff

ic
ie

n
cy

Conciseness
● LOC metrics

● Conciseness Efficiency

Efficiency

● Storage effectiveness

measure

● Processing effectiveness

measure

● Communication

effectiveness measure

● Data usage effectiveness

● Measure

Operability

● User output

communicativeness

● Operability checklist

● User input

communicativeness

In
te

g
ri

ty

Augment

ability

● Channel extensibility

● Data storage expansion

● Design extensibility

● Computation extensibility

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.6(2), pg.: 66-76

69

Security ● Security metrics
R

el
ia

b
il

it
y

Consistency
● Data consistency

● Procedure consistency

Accuracy ● Accuracy checklist

Modularity ● Modular design

Simplicity

● Data and control flow

complexity

● Design structure

● Structured language

● Halstead’s level of

difficulty measure

● Coding simplicity

U
sa

b
il

it
y

Training

● Training checklist

Operability

● User output

communicativeness

● Operability checklist

● User input

communicativeness

M
a

in
ta

in
a

b
il

it
y

Conciseness
● LOC metrics

● Conciseness Efficiency

Software

independence

● Database independence

● Data structure

● Database management

● Microcode independence

● Database implementation

● Architecture

standardization

● Function independence

Consistency
● Data consistency

● Procedure consistency

Modularity ● Modular design

P
o

rt
a

b
il

it
y

 Simplicity

● Data and control flow

complexity

● Design structure

● Structured language

● Halstead’s level of

difficulty measure

● Coding simplicity

Consistency
● Data consistency

● Procedure consistency

Generality
● Unit referencing

● Unit implementation

Self-

Documentatio

n

● Quantity of comments

● Descriptiveness of

language

● Effectiveness of comments

Modularity ● Modular design

R
eu

sa
b

il
it

y

Self-

documentation

● Quantity of comments

● Descriptiveness of

language

● Effectiveness of comments

● Database independence

Modularity ● Modular design

Generality
● Unit referencing

● Unit implementation

Software

Independence

● Data structure

● Database management

● Microcode independence

● Database implementation

● Architecture

standardization

● Function independence

T
es

ta
b

il
it

y

Augment

ability

● Channel extensibility

● Data storage expansion

● Design extensibility

● Computation extensibility

Modularity ● Modular design

Self-

documentation

● Quantity of comments

● Descriptiveness of

language

● Effectiveness of comments

Simplicity

● Data and control flow

complexity

● Design structure

● Structured language

● Halstead’s level of

difficulty measure

● Coding simplicity

In
te

ro
p

er

a
b

il
it

y

Data

commonality

● Structured language

● Design structure

● Data commonality

checklist

F
le

x
ib

il
it

y
 Self-

documentation

● Quantity of comments

● Descriptiveness of

language

● Effectiveness of comments

Generality
● Unit referencing

● Unit implementation

Modularity ● Modular design

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.6(2), pg.: 66-76

70

Software

Independence

● Data structure

● Database management

● Microcode independence

● Database implementation

● Architecture

standardization

● Function independence

The table 1 above gives the relationship between quality

criteria and quality metrics. This shows that every quality
criterion is related to one or more quality metrics. Like
efficiency criteria of software is related to processing
effective measure, storage effectiveness measure, etc.

C. Measuring Quality Metrics

1) Completeness Checklist
The completeness of the checklist is measured by the

following factors:

● Unambiguous references (input, function, output)

● The data reference is defined either from computed or
are obtained from an external source

● Usage of all the defined functions

● Definition of all the referenced functions

● For each decision point, all the conditions and
processing are defined

● All sequence parameters are defined and agreed upon

● Resolution of all the problem reports

● The requirements are aligned with the designs

● Code is in alignment with the design The system
metric value is obtained as follows:

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

2) Data Consistency Measure
The measure of data consistency depends on the

following factors:

● Representation of standard data usage

● Unit consistency

● Data type consistency

● Consistent global definitions

● Naming conventions

Where each of the above parameters is calculated by the
following formula:

1 −
𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒 𝑟𝑢𝑙𝑒

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

The system metric value is obtained as:

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

3) Procedure Consistency Measure
The procedure consistency metric is measured by the

following elements:

● I/O conventions

● Standard design representation

● Error handling conventions

● Calling sequence conventions

Where each of the above parameters is calculated by the
following formula:

1 −
𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒 𝑟𝑢𝑙𝑒

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

The system metric value is obtained as follows:

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

4) Operability Checklist
This metric is measured by several parameters:

● It is described by all the operation steps

● Whether the appropriate description is made to the
operator for all errors, conditions, and responses?

● Necessary provisions are made for the operator to
obtain status, save, modify, interrupt and continue
processing

● There should be a reasonable number of operator
actions which is calculated as:

1 −
𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑗𝑜𝑏

● Description of job setup and tear down procedures

● Maintenance of hard copy log of interactions

● The responses standard and the consistent operator
messages:

The system metric value is obtained as follows:

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

5) Storage Effectiveness Measure
It is measured by the following elements:

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.6(2), pg.: 66-76

71

● Allocation of storage requirements to design

● Usage of virtual store facilities

● Common data is defined only once

1 −
𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 𝑜𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

● Program segmentation

1 −
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑙𝑒𝑛𝑔𝑡ℎ

● Data segmentation

1 −
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑢𝑛𝑢𝑠𝑒𝑑 𝑑𝑎𝑡𝑎

𝑡𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑎𝑡𝑎

● Utilization of dynamic memory management

● Usage of data packing

● Free of nonfunctional code

1 −
𝑜𝑓 𝑛𝑜𝑛 − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

● No code duplication

1 −
𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

● Storage optimizing compiler/assembly language used

● Data elements should be free from redundancy

1 −
𝑜𝑓 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 𝑑𝑎𝑡𝑎 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑑𝑎𝑡𝑎 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

The module metric value is obtained as follows:

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

The system metric value is obtained as follows:

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

6) Training Checklist
This metric is the collective measure of the following

applicable elements:

● Development of lesson plans and training material
provided to the operators, maintainers, and end-users

● Realistic simulated exercises

● Availability of diagnostic information and sufficient
help online

● The system metric value is obtained as follows:

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

7) Software Independence Measure
This metric is measured by calculating the following

factors:

● Dependency of software utility programs

1 −
𝑜𝑓 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠 − 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠

● Software library routines dependency

1 −
𝑜𝑓 𝑙𝑖𝑏𝑟𝑎𝑟𝑦 𝑟𝑜𝑢𝑡𝑖𝑛𝑒 𝑢𝑠𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 # 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

● Usage of a common and standard subset of the

language

1 −
𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒 𝑟𝑢𝑙𝑒

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

● Free from operating system references

1 −
𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑂𝑆 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

The system metric value is obtained as follows:

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

8) Conciseness Efficiency
It is measured by:

𝑉∗ = (𝑛1 + 𝑛2∗) log2(𝑛1 + 𝑛2∗)

V* is confines efficiency

n1 is number of unique operators

n2* is minimal set of operands

9) Accuracy Checklist
It is measured by following steps.

● Is error analysis performed to a module?

● Is there a conclusive statement of requirement for
output, input, constants, and processing accuracy?

● Is there an abundance of numerical methods?

● Is the execution of outputs within tolerance? The
metric value is obtained as follows:

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

10) Modular Design
It is measured by:

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.6(2), pg.: 66-76

72

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑐ℎ𝑎𝑛𝑔𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

11) Data and Control Flow Complexity
Complexity is measured by using Cyclomatic complexity

V (G) as proposed by McCable.

𝑉(𝐺) = 𝑒𝑑𝑔𝑒𝑠 − 𝑛𝑜𝑑𝑒𝑠 − 2 ∗ (𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠)

The system metric value is obtained as follows:

𝑠𝑢𝑚 𝑜𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

12) Design Structure Measure
It is measured by the following steps:

● Designed organized in a top-down fashion

● There are no duplicate functions

● Modularity of model

● The module is not depending on the processing of
previous steps

1 −
𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒 𝑟𝑢𝑙𝑒

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

● The module has only one entrance and exit point.

1 −
𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒 𝑟𝑢𝑙𝑒

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

● No global values

The system metric value is obtained as follows:

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

13) Structured Language
● Is Structured language used or not?

The system metric value is obtained as follows:

𝑠𝑢𝑚 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑠𝑐𝑜𝑟𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

14) Halstead’s Level of Difficulty Measure
It is measured by :

𝑢𝑛𝑖𝑞𝑢𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠

2
+

𝑡𝑜𝑡𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠

𝑢𝑛𝑖𝑞𝑢𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠

15) Coding Simplicity
It is calculated by:

● Number of nesting level

1

𝑛𝑒𝑠𝑡𝑖𝑛𝑔 𝑙𝑒𝑣𝑒𝑙𝑠

● Number of branches

1 −
𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒𝑠 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

● The naming of variables being unique

● Is module self-modifying

● Variable density

1 −
𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒𝑠 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

● Number of jumps or go to statements

1 −
𝑜𝑓 𝐺𝑂𝑇𝑂 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒𝑠 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

The module metric value is obtained as follows:

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

The system metric value is obtained as follows:

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑚𝑜𝑑𝑢𝑙𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

16) Unit Referencing
It is measured by the extent to which modules are

referenced by other modules

The system metric value is obtained as follows:

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

17) Unit Implementation

It is measured by the following factors:

● Is processing data value or volume-limited?

● Are machine-dependent and application functions
mixed in the same module?

● Are I/O, Processing functions mixed in a single
module?

 Each of the above parameters is calculated by the
following formula:

1 −
𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒 𝑟𝑢𝑙𝑒

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

18) Quantity of Comments

It is measured by:

1 −
𝑜𝑓 𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓𝑙𝑖𝑛𝑒𝑠

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.6(2), pg.: 66-76

73

19) Descriptiveness of Language
This is measured by the following steps:

● Are variables the physical name of the function?

● Is one line containing one statement?

● Is code logically indented or blocked?

● Are keywords used as variables names?

● Is high-level language code used?

Each of the above parameters is calculated by the
following formula:

1 −
𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒 𝑟𝑢𝑙𝑒

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

The system metric value is obtained as follows:

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

20) Effectiveness of Comments

It is measured by:

● Do modules have proper comments existing of the
module name, author, purpose, functions, inputs,
outputs, references, etc.?

● Do comments just repeat what function does?

● Is machine code commented?

● Is an attribute of all variables commented? Each of the
above parameters is calculated by the following
formula:

1 −
𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒 𝑟𝑢𝑙𝑒

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

The system metric value is obtained as follows:

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

IV. OBSERVATION AND RESULTS (HEADING 4)

After the in-depth analysis, we have derived following
observations. Table 2 provides the overview of each of the
quality metric, group as quality criteria over multiple phases
of software development. The seven phases of SDLC which
are requirement gathering, design, Development, testing,
operation and transition [19]. These 7 are grouped in 3 phases
as Development which includes 3 initial phase, Evaluation
phase based on testing, and operation which involves
implantation and post implementation phases. [20]

TABLE II. IMPACT OF CRITERIA ON LIFECYCLE PHASES

Where:

R = Requirement Analysis O = Operation

D =Design M = Maintenance

C = Code and Debug T = Transition

S = System Test.

⚫ where criteria should be measure

❌ where impact of poor quality is realized

The above table 2 emphasis on the implementation or
adoption of quality matrices in every phase of SDLC. Table
2 explains that which metric has to measure in which phase
and if we do not measure or apply any metric, it will affect
the product in later phases of SDLC.

Taking example of conciseness, if we do not check
concusses and apply matrices in the coding phase, it will
impact us in the maintainability and transition of product.
Conciseness impact the size of the product code or SLOC,
which if not minimized will result late run maintenance phase
as the more SLOC, more hard it will be to deal with its
maintenance.

Completeness and operability matrices must be applied in
every phase of development. If failed to apply or meet certain
requirements, the product will not pass any evaluation or it
will fail in operation.

All the matrices must be met and measured in the
respective phase as mentioned above. But not all matrices can
be measured and met or improved simultaneously. There are
always certain trade-offs which we have to adopt depending
on the product and scenarios. The relation between these
metrics which are mapped to quality factors is shown below

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.6(2), pg.: 66-76

74

TABLE III. EFFECT OF CRITERIA ON SOFTWARE QUALITY

FACTORS
 C

o
rr

ec
tn

es
s

R
el

ia
b

il
it

y

E
ff

ic
ie

n
cy

In
te

g
ri

ty

U
sa

b
il

it
y

M
ai

n
ta

in
ab

il
it

y

T
es

ta
b
il

it
y

F
le

x
ib

il
it

y

P
o

rt
ab

il
it

y

R
eu

sa
b

il
it

y

In
te

ro
p
er

ab
il

i

ty

Completeness

Consistency

Operability

Conciseness

Efficiency

Accuracy

Modularity

Training

Simplicity

Software

independence

Generality

Self-

Documentatio

n

Data

commonality

Where:

⚫ Negative effect on the quality factor

❌ Positive effect on the quality factor

Referring to Table 3, we determine the effect of various
criteria over the different software quality factors.

The completeness of the project positively impacts the
quality of the software enhancing its correctness, reliability,
and usability. However, it doesn’t have much impact on the
other quality factors.

Taking the consistency of the project into consideration,
the more consistent the project development practices are, the
more software improves in terms of correctness, reliability,
maintainability, testability, flexibility, and reusability.

The operability criteria of the software adversely impact
the efficiency of the software. The more operations there are
in software the less efficient it gets. However, operability
helps in enhancing the usability and reusability of the
software.

The conciseness of the software improves the correctness,
efficiency, maintainability, and testability of the software.

As for the efficiency criteria, the more efficient a software
is, the harder it gets to test the software and maintain its
portability thus negatively affecting the testability and
portability of the software.

The accuracy criteria determine the reliability and
usability of a software project and are in a direct relationship

with them however, it impacts badly on the efficiency of the
software since only one aspect of the software can be
maintained at a time.

The increased modularity of the software harms the
efficiency of the software. If software comprises
sophisticated and smaller modules it becomes easier to
maintain, test, and reuse the software and also has a positive
impact on the software flexibility and portability.

The training criteria are in a direct relationship with the
usability and reusability of the software, the more training
given to a user the more the software usability increases.

The simplicity of a project helps improve the correctness,
reliability, efficiency, maintainability, testability, flexibility,
portability, and reusability of the software.

The independence of software over other modules helps
to increase the flexibility, portability, reusability, and
interoperability of the software. On the other hand, it makes
the software less efficient.

The generality criteria reduce a software’s reliability,
efficiency, and integrity of software while increasing the
flexibility, reusability, and interoperability of the system.

Self-documentation is a criterion that adversely affects
the software’s efficiency while increasing its maintainability,
testability, flexibility, portability, and reusability.

Finally, data commonality is a basic criterion that helps in
enhancing the reusability and interoperability of the software
while reducing its integrity.

V. CONCLUSION

The primary focus of this research was to study the impact
of quality measures and formulas in achieving better software
quality. The research was carried out by comparing the
software quality factors described in McCall model with the
quality criterion. The findings of this research constitutes that
many of the quality metrics have a positive impact on the
lifecycle of the software, this lifecycle includes different
phases like development, testing, operations. The software
metrics are measured in these different phases according to
their impact on the overall software.

The types of metrics are defined in detail which further
help in the calculations and measurements. While measuring
the software metrics certain trade-offs have to adopted
considering the product and its working environment. This
research also discusses the impact of individual criterion on
the factors, in order to show a proper view and to get
knowledge about the results and experiments used for quality
goal.

ACKNOWLEDGMENT

We express our gratitude to the people who participated
in the surveys and interviews conducted for this research and
for giving their valuable time for sharing their experiences

University of Sindh Journal of Information and Communication Technology (USJICT) Vol.6(2), pg.: 66-76

75

with us. We managed to do our research through their
valuable contribution. We would also like to express our
gratitude to our supervisor Miss Sana Fatima for her
recommendations and guidance since the very beginning and
her never ending support.

REFERENCES

[1] M. Agnihotri and A. Chug, "A Systematic Literature

Survey of Software Metrics, Code Smells and

Refactoring Techniques," Journal of Information

Processing Systems, vol. 16, no. 4, pp. 915-934, 2020.

[2] N. Fenton and J. Bieman, Software metrics: a rigorous

and practical approach, CRC Press, 1991.

[3] K. J. Padmin, H. M. N. D. Bandara and I. Perera, "Use

of Software Metrics in Agile Software Development

Process," in MERCon 2015 - Moratuwa Engineering

Research Conference, 2015.

[4] R. Fitzpatrick, "Software quality: definitions and

strategic issues," Dublin, 1996.

[5] N. E. Fenton and M. Neil, "Software metrics: successes,

failures and new directions," Journal of Systems and

Software, 1999.

[6] J. Rashid, T. Mahmood and M. W. Nasir, "A Study on

Software Metrics and its Impact on software quality.,"

Technical Journal, University of Engineering and

Technology (UET) Taxila, Pakistan, vol. 24, no. 1, pp.

1-14, 2019.

[7] N. U. Eisty, G. K. Thiruvathukal and J. C. Carver, "A

Survey of Software Metric Use in Research Software

Development," in IEEE 14th International Conference

on eScience (e-Science), Amsterdam, 2018.

[8] S. Reyaz and D. Ranjan, "STUDY OF VARIOUS

QUALITY METRICS SUITABLE FOR THE OBJECT

ORIENTED ENVIRONMENT," International Journal

of Technical Research and Applications, vol. 6, no. 2,

pp. 92-97, 2018.

[9] F. N. Colakoglu, A. Yazici and A. Mishra, "Software

Product Quality Metrics: A Systematic Mapping

Study," in IEEE Access, vol. 9, pp. 44647-44670, 2021

[10] M. Maddox and S. Walker, "Agile Software Quality

Metrics," 2021 IEEE MetroCon, 2021, pp. 1-3

[11] M.-C. Lee, "Software Quality Factors and Software

Quality," British Journal of Applied Science &

Technology, vol. 4, no. 21, pp. 3070 -3095, 2014.

[12] T. Mladenova, "Software Quality Metrics –

Research, Analysis and Recommendation," in

International Conference Automatics and Informatics

(ICAI), 2020.

[13] T. R. Vanitha N., "A Report on the Analysis of

Metrics and Measures-A Literature Study,"

International Journal of Computer Science and

Information Technology, vol. 5, p. 5, 2014.

[14] D. A. Wahab, E. B. Setiawan and R. Wahdiniwaty,

"Comparative Analysis of Software Quality Model In

The Selection of Marketplace E-Commerce," in 2018

International Conference on Information Technology

Systems and Innovation (ICITSI), Bandung, 2018.

[15] D. Singh and N. B. Kassie, "User’s Perspective of

Software Quality," in 2nd International conference on

Electronics, Communication and Aerospace

Technology, 2018.

[16] S. Chouksey, S. Gupta, A. Pandey and S. Rao,

"Software Quality Metrices," International Journal of

Engineering Research & Technology (IJERT), vol. 6,

no. 4, pp. 642-647, 2017.

[17] Birhanu, Ermiyas, "Analysis of Software Quality

Using Software Metrics," International Journal on

Computational Science & Applications, vol. 8, pp. 11-

20, 2018.

[18] H. Mumtaz, M. Alshayeb, S. Mahmood, en M.

Niazi, “An empirical study to improve software security

through the application of code

refactoring”, Information and Software Technology, vol

96, pp. 112–125, 2018.

[19] O. J. Okesola, A. A. Adebiyi, A. A. Owoade, O.

Adeaga, O. Adeyemi, en I. Odun-Ayo, “Software

Requirement in Iterative SDLC Model”, in Intelligent

Algorithms in Software Engineering, pp. 26–34, 2020.

[20] N. B. Ruparelia, "Software Development Lifecycle

Models," SIGSOFT Softw. Eng. Notes, vol. 35, no. 3, p.

8– 13, 2010.

