Assessment of Urban Heat Island and Spatiotemporal Landscape Transformation In Three Cities Of Sindh, Pakistan

Main Article Content

Mariam Khan
Huzaifa Muhammad Mukhtiar

Abstract

Urban Heat Island is considered one of the main causes of urbanization. It impacts the overall livability of a city. It is mainly due to the biophysical changes of the land surface due to urbanization. This study is based on three cities of Sindh namely: Hyderabad, Sukkur and Larkana. To study the UHI effects, a Land Surface Temperature algorithm is used. Land use land cover changes are identified by using Maximum likelihood classification. This study reveals that there is a major change in urban development in Hyderabad and Sukkur that is (82 to 97) Km2 and (18 to 25.7) Km2, respectively. While, in Larkana, minimal urban development is observed (33 to 34.6) Km2. Similarly, massive changes in vegetation are also observed in Sukkur and Larkana from 1990 to 2020 that are (90 to 161) Km2 and (82 to 331) Km2, respectively. Increase in vegetation is majorly due to the agricultural activities mainly occurring in different seasons. This study confirms that the LST has a strong negative correlation with NDVI because with increasing vegetation the LST is reduced. The findings also reveal that the major source of increased surface temperature is not only urban areas but the bare lands. The study finds that the skin temperature of the ground drops at least 3-5 degrees in the areas having a water body or any vegetation. This research highlights the importance of the inclusion of green strategies in better and effective urban planning to maintain a healthy urban environment.

Article Details

How to Cite
Mariam Khan, & Huzaifa Muhammad Mukhtiar. (2022). Assessment of Urban Heat Island and Spatiotemporal Landscape Transformation In Three Cities Of Sindh, Pakistan . Sindh University Research Journal - SURJ (Science Series), 54(1). https://doi.org/10.26692/surj.v54i1.4494
Section
Articles

References

[1] S. Deep and A. Saklani, “Urban sprawl modeling using cellular automata,” Egypt. J. Remote Sens. Sp. Sci., vol. 17, no. 2, pp. 179–187, 2014, doi: https//doi.10.1016/j.ejrs.2014.07.001
[2] U. Nation, World Urbanization Prospects, vol. 12. 2018.
[3] World Bank, “Urban Development,” 2020.
[4] M. Z. K. Safdar, “Pakistan: The impact of urbanisation on society,” The Nation, Oct. 2018.
[5] S. Alam, “Globalization, Poverty and Environmental Degradation: Sustainable Development in Pakistan,” J. Sustain. Dev., vol. 3, no. 3, pp. 103–114, 2010, doi: 10.5539/jsd.v3n3p103.
[6] J. Amanollahi, C. Tzanis, M. F. Ramli, and A. M. Abdullah, “Urban heat evolution in a tropical area utilizing Landsat imagery,” Atmos. Res., vol. 167, pp. 175–182, 2016, doi: 10.1016/j.atmosres.2015.07.019.
[7] C. B. Karakuş, “The Impact of Land Use/Land Cover (LULC) Changes on Land Surface Temperature in Sivas City Center and Its Surroundings and Assessment of Urban Heat Island,” Asia-Pacific J. Atmos. Sci., vol. 55, no. 4, pp. 669–684, Nov. 2019, doi: 10.1007/s13143-019-00109-w.
[8] S. N. MohanRajan, A. Loganathan, and P. Manoharan, “Survey on Land Use/Land Cover (LU/LC) change analysis in remote sensing and GIS environment: Techniques and Challenges,” Environ. Sci. Pollut. Res., vol. 27, no. 24, pp. 29900–29926, 2020, doi: 10.1007/s11356-020-09091-7.
[9] M. Reisi, M. Ahmadi Nadoushan, and L. Aye, “Remote sensing for urban heat and cool islands evaluation in semi-arid areas,” Glob. J. Environ. Sci. Manag., vol. 5, no. 3, pp. 319–330, 2019, doi: 10.22034/gjesm.2019.03.05.
[10] M. Mirzaei, J. Verrelst, M. Arbabi, Z. Shaklabadi, and M. Lotfizadeh, “Urban heat island monitoring and impacts on citizen’s general health status in Isfahan metropolis: A remote sensing and field survey approach,” Remote Sens., vol. 12, no. 8, pp. 1–17, 2020, doi: 10.3390/RS12081350.
[11] H. Farhadi, M. Faizi, and H. Sanaieian, “Mitigating the urban heat island in a residential area in Tehran: Investigating the role of vegetation, materials, and orientation of buildings,” Sustain. Cities Soc., vol. 46, p. 101448, 2019, doi: 10.1016/j.scs.2019.101448.
[12] K. Ward, S. Lauf, B. Kleinschmit, and W. Endlicher, “Heat waves and urban heat islands in Europe: A review of relevant drivers,” Sci. Total Environ., vol. 569–570, pp. 527–539, Nov. 2016, doi: 10.1016/j.scitotenv.2016.06.119.
[13] L. Zhao, X. Lee, R. B. Smith, and K. Oleson, “Strong contributions of local background climate to urban heat islands,” Nature, vol. 511, no. 7508, pp. 216–219, 2014, doi: 10.1038/nature13462.
[14] W. Zhou, Y. Qian, X. Li, W. Li, and L. Han, “Relationships between land cover and the surface urban heat island: seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures,” Landsc. Ecol., vol. 29, no. 1, pp. 153–167, Jan. 2014, doi: 10.1007/s10980-013-9950-5.
[15] V. K. Oad et al., “Identification of shift in sowing and harvesting dates of rice crop (L. oryza sativa) through remote sensing techniques: A case study of Larkana district,” Sustain., vol. 12, no. 9, 2020, doi: 10.3390/SU12093586.
[16] A. Polydoros, T. Mavrakou, and C. Cartalis, “Quantifying the Trends in Land Surface Temperature and Surface Urban Heat Island Intensity in Mediterranean Cities in View of Smart Urbanization,” Urban Sci., vol. 2, no. 1, p. 16, 2018, doi: 10.3390/urbansci2010016.
[17] M. Naserikia, E. A. Shamsabadi, M. Rafieian, and W. L. Filho, “The urban heat island in an urban context: A case study of Mashhad, Iran,” Int. J. Environ. Res. Public Health, vol. 16, no. 3, 2019, doi: 10.3390/ijerph16030313.
[18] G. Levermore, J. Parkinson, K. Lee, P. Laycock, and S. Lindley, “The increasing trend of the urban heat island intensity,” Urban Clim., vol. 24, pp. 360–368, 2018, doi: 10.1016/j.uclim.2017.02.004.
[19] E. Bocher, G. Petit, J. Bernard, and S. Palominos, “A geoprocessing framework to compute urban indicators: The MApUCE tools chain,” Urban Clim., vol. 24, pp. 153–174, 2018, doi: 10.1016/j.uclim.2018.01.008.
[20] Y. Chen, C. Yao, T. Honjo, and T. Lin, “The application of a high-density street-level air temperature observation network ( HiSAN ): Dynamic variation characteristics of urban heat island in Science of the Total Environment The application of a high-density street-level air temperature observa,” Sci. Total Environ., vol. 626, no. January, pp. 555–566, 2018, doi: 10.1016/j.scitotenv.2018.01.059.
[21] F. Mumtaz et al., “Modeling spatio-temporal land transformation and its associated impacts on land surface temperature (LST),” Remote Sens., vol. 12, no. 18, 2020, doi: 10.3390/RS12182987.
[22] D. Zhou, S. Bonafoni, L. Zhang, and R. Wang, “Remote sensing of the urban heat island effect in a highly populated urban agglomeration area in East China,” Sci. Total Environ., vol. 628–629, pp. 415–429, Jul. 2018, doi: 10.1016/j.scitotenv.2018.02.074.
[23] X. Huang and Y. Wang, “ISPRS Journal of Photogrammetry and Remote Sensing Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data : A case study of Wuhan , Central China,” ISPRS J. Photogramm. Remote Sens., vol. 152, no. April, pp. 119–131, 2019, doi: 10.1016/j.isprsjprs.2019.04.010.
[24] S. Jain, S. Sannigrahi, S. Sen, and S. Bhatt, “Urban heat island intensity and its mitigation strategies in the fast- growing urban area,” J. Urban Manag., vol. 9, no. 1, pp. 54–66, 2019, doi: 10.1016/j.jum.2019.09.004.
[25] S. Maithani, G. Nautiyal, and A. Sharma, “Investigating the Effect of Lockdown During COVID-19 on Land Surface Temperature: Study of Dehradun City, India,” J. Indian Soc. Remote Sens., vol. 48, no. 9, pp. 1297–1311, 2020, doi: 10.1007/s12524-020-01157-w.
[26] H. Zhang, Z. Qi, X. Ye, Y. Cai, W. Ma, and M. Chen, “Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China,” Appl. Geogr., vol. 44, pp. 121–133, Oct. 2013, doi: 10.1016/j.apgeog.2013.07.021.
[27] D. Zhou, S. Zhao, S. Liu, and L. Zhang, “Spatiotemporal trends of terrestrial vegetation activity along the urban development intensity gradient in China’s 32 major cities,” Sci. Total Environ., vol. 488–489, pp. 136–145, Aug. 2014, doi: 10.1016/j.scitotenv.2014.04.080.
[28] D. X. Tran, F. Pla, P. Latorre-Carmona, S. W. Myint, M. Caetano, and H. V. Kieu, “Characterizing the relationship between land use land cover change and land surface temperature,” ISPRS J. Photogramm. Remote Sens., vol. 124, pp. 119–132, Feb. 2017, doi: 10.1016/j.isprsjprs.2017.01.001.
[29] S. Chakraborti, A. Banerjee, S. Sannigrahi, S. Pramanik, A. Maiti, and S. Jha, “Assessing the dynamic relationship among land use pattern and land surface temperature: A spatial regression approach,” Asian Geogr., vol. 36, no. 2, pp. 93–116, 2019, doi: 10.1080/10225706.2019.1623054.
[30] T. Adulkongkaew, T. Satapanajaru, S. Charoenhirunyingyos, and W. Singhirunnusorn, “Effect of land cover composition and building configuration on land surface temperature in an urban-sprawl city, case study in Bangkok Metropolitan Area, Thailand,” Heliyon, vol. 6, no. 8, p. e04485, 2020, doi: 10.1016/j.heliyon.2020.e04485.
[31] X. Yang et al., “Contribution of urbanization to the increase of extreme heat events in an urban agglomeration in east China,” Geophys. Res. Lett., vol. 44, no. 13, pp. 6940–6950, Jul. 2017, doi: 10.1002/2017GL074084.
[32] M. B. Peerzado, H. Magsi, and M. J. Sheikh, “Urbanization and causes of agricultural land conversion in Hyderabad, Sindh, Pakistan,” Int. J. Dev. Sustain., vol. 7, no. 2, pp. 755–763, 2018, doi: 10.17485/ijst/2018/v11i5/119053.
[33] A. A. Mahessar, A. L. Qureshi, B. Sadiqui, S. M. Kori, K. C. Mukwana, and K. Q. Leghari, “Rainfall Analysis for Hyderabad and Nawabshah, Sindh, Pakistan,” Eng. Technol. Appl. Sci. Res., vol. 10, no. 6, pp. 6597–6602, 2020, doi: 10.48084/etasr.3923.
[34] A. Jawed, M. A. H. Talpur, I. A. Chandio, and P. N. Mahesar, “Impacts of In-Accessible and Poor Public Transportation System on Urban Enviroment: Evidence from Hyderabad, Pakistan,” Eng. Technol. Appl. Sci. Res., vol. 9, no. 2, pp. 3896–3899, 2019, doi: 10.48084/etasr.2482.
[35] N. P. Abbasi, A. Shahani, S. A. Ghanghro, G. P. Abbasi, and A. M. Soomro, “Evaluating And Detecting The Area Of Date Palm Canopies Using Quickbird Data In Assessing The Ndvi And Cataloging The land cover monitoring in sukkur, khairpur districts of sindh.,” Pakistan Geogr. Rev., vol. 74, no. 2, pp. 90–103, 2019.
[36] S. Sultana and A. N. V. Satyanarayana, “Urban heat island intensity during winter over metropolitan cities of India using remote-sensing techniques: impact of urbanization,” Int. J. Remote Sens., vol. 39, no. 20, pp. 6692–6730, 2018,
[37] M. Imran, A. Stein, and R. Zurita-milla, “International Journal of Geographical Using geographically weighted regression kriging for crop yield mapping in West Africa,” Int. J. Geogr. Inf. Sci., vol. 29.2, pp. 234–257, 2015, doi: 10.1080/13658816.2014.959522.
[38] Y. Zha, J. Gao, and S. Ni, “Use of normalized difference built-up index in automatically mapping urban areas from TM imagery,” Int. J. Remote Sens., vol. 24, no. 3, pp. 583–594, Jan. 2003, doi: 10.1080/01431160304987.
[39] M. S. Saleem, S. R. Ahmad, Shafiq-Ur-Rehman, and M. A. Javed, “Impact assessment of urban development patterns on land surface temperature by using remote sensing techniques: a case study of Lahore, Faisalabad and Multan district,” Environ. Sci. Pollut. Res., vol. 27, no. 32, pp. 39865–39878, Nov. 2020, doi: 10.1007/s11356-020-10050-5.
[40] C. Deng and C. Wu, “BCI: A biophysical composition index for remote sensing of urban environments,” Remote Sens. Environ., vol. 127, pp. 247–259, Dec. 2012, doi: 10.1016/j.rse.2012.09.009.
[41] J. S. Rawat and M. Kumar, “Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India,” Egypt. J. Remote Sens. Sp. Sci., vol. 18, no. 1, pp. 77–84, Jun. 2015, doi: 10.1016/j.ejrs.2015.02.002.
[42] T. Lillesand, R. Kiefer, and J. Chipman, Remote Sensing and Image Interpretation. Wiley & Sons., 2014.
[43] M. Bokaie, M. K. Zarkesh, P. D. Arasteh, and A. Hosseini, “Assessment of Urban Heat Island based on the relationship between land surface temperature and Land Use/ Land Cover in Tehran,” Sustain. Cities Soc., vol. 23, pp. 94–104, 2016, doi: 10.1016/j.scs.2016.03.009.
[44] J. Siqi and W. Yuhong, “Effects of land use and land cover pattern on urban temperature variations: A case study in Hong Kong,” Urban Clim., vol. 34, p. 100693, Dec. 2020, doi: 10.1016/j.uclim.2020.100693.
[45] M. B. Sridhar, R. Sathyanathan, and N. Sree Shivani, “Spatial and temporal structure of urban heat island in Ludhiana city,” IOP Conf. Ser. Mater. Sci. Eng., vol. 912, no. 6, 2020, doi: 10.1088/1757-899X/912/6/062072.
[46] J. Wang and I. N. Maduako, “Spatio-temporal urban growth dynamics of Lagos Metropolitan Region of Nigeria based on Hybrid methods for LULC modeling and prediction,” Eur. J. Remote Sens., vol. 51, no. 1, pp. 251–265, Jan. 2018, doi: 10.1080/22797254.2017.1419831.
[47] N. Kamal, M. Imran, and T. K., N., “Greening the urban environment using geospatial techniques, a case study of Bangkok, Thailand,” Procedia Environ. Sci., vol. 37, pp. 141–152, 2017, doi: 10.1016/j.proenv.2017.03.030.
[48] C. Gokcel, N. Musaoglu, M. Gurel, N. Ulugtekin, A. G. Tanik, and D. Z. Seker, “Determination of land-use change in an urbanized district of Istanbul via remote sensing analysis,” FRESENIUS Environ. Bull., vol. 15, pp. 798–805, 2006.
[49] C. Gokcel, D. Mercan, S. Kabdasli, and F. Bektas, “Definition of sensitive areas in a lakeshore by using remote sensing and GIS.,” FRESENIUS Environ. Bull., vol. 13, no. 9, pp. 860–864, 2004.
[50] D. Kumar and S. Shekhar, “Statistical analysis of land surface temperature-vegetation indexes relationship through thermal remote sensing,” Ecotoxicol. Environ. Saf., vol. 121, no. 2, pp. 39–44, 2015, doi: 10.1016/j.ecoenv.2015.07.004.
[51] E. B. Palafox-Juárez, J. O. López-Martínez, J. L. Hernández-Stefanoni, and H. Hernández-Nuñez, “Impact of Urban Land-Cover Changes on the Spatial-Temporal Land Surface Temperature in a Tropical City of Mexico,” ISPRS Int. J. Geo-Information, vol. 10, no. 2, p. 76, 2021, doi: 10.3390/ijgi10020076.